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ABSTRACT

Deep Neural Networks (DNNs) have shown remarkable performance in various
downstream tasks. However, these models are vulnerable to backdoor attacks that
are conducted by poisoning data for model training and misleading poisoned mod-
els to output target labels on predefined triggers. Such vulnerabilities make train-
ing DNNs on third-party datasets risky and raise significant concerns and studies
for safety. With an unauthorized dataset, it is difficult to train a model on such data
without the backdoored behavior on poison samples. In this paper, we first point
out that training neural networks by forcing the dimension of the feature space
will induce trigger misclassification while preserving natural data performance.
Based on these observations, we propose a novel module called EigenGuard, natu-
rally trained with such a module will make neural networks neglect triggers during
training on the unauthorized datasets. Experiments show that, compared with pre-
vious works, models with our EigenGuard can show better performance on both
backdoor and natural examples compared with other defense algorithms.

1 INTRODUCTION

Deep Learning has achieved remarkable success in an array of tasks, including computer vision (Kir-
illov et al., 2023; Szegedy et al., 2016; 2017), speech recognition (Wang et al., 2017), and others
(Brandes et al., 2022; Nussinov et al., 2022). With deep learning models finding extensive deploy-
ment in critical applications, their security problems, such as adversarial attacks, backdoor attacks,
privacy concerns, and more, have gained increasing attention in recent years.

Among these threats, the backdoor attack is one of the most vulnerable threats which induces mod-
els to predict target classes when encountering triggers by poisoning the model’s training dataset.
To implement such an attack, adversaries inject backdoor triggers into machine learning models by
introducing specific trigger patterns into a limited subset of the training data (Chen et al., 2017; Liu
et al., 2018b). The primary aim is to forge robust connections between these covert backdoor trig-
gers and designated target classes while keeping the model’s original relationships between inherent
features and their labels corresponding to natural images. Consequently, models that suffer from
backdoor attacks demonstrate normal behavior when exposed to clean inputs but can be surrepti-
tiously manipulated to predict the target class when confronted with inputs attached with triggers.
Notably, DNNs have been identified as particularly susceptible to such backdoor attacks (Liu et al.,
2018b). Furthermore, backdoor triggers, once integrated, tend to be elusive and challenging to detect
or remove, presenting substantial security challenges to the realm of deep learning.

When attempting to train a clean model on unauthorized datasets, existing methods typically try to
fine-tune the neural networks on some additional datasets. However, such a method may not always
be effective since the tuning datasets may not change any neurons corresponding to backdoor triggers
when the distribution of fine-tuned datasets and backdoor datasets are dissimilar. Apart from that,
how to access a clean subset for tuning is also an open problem. Besides tuning models, most
works nowadays try to “unlearn” the connection between backdoor triggers and neural networks.
For example, the widely used pruning methods (Wu & Wang, 2021; Liu et al., 2018a) try to unlearn
the backdoor by removing some sensitive neurons or inactive neurons on a clean subset. And when
we can access any other clean datasets, a widely used way is to first identify backdoor examples
based on their effects on the model’s loss (Tran et al., 2018) or feature behavior (Yuan et al., 2023;
Gong et al., 2023). With the uncontaminated datasets split after the detection, we can train the model
to unlearn backdoor triggers with designed unlearning loss. However, such unlearning methods may
lead the neural network to forget many useful features for clean samples’ classification. Due to this
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Require Clean Data Unlearning Natural Training
Finetuning ✓ × ✓

Pruning ✓ ✓ ×
Splitting and Unlearning × ✓ ×

EigenGuard (ours) × × ✓

Table 1: Summary for the characteristics of current backdoor defense methods.

reason, such methods cannot show consistently good performance with respect to different poison
settings, neural networks, or datasets especially when the backdoor features and clean features are
mixed. Moreover, such kind of methods may harm more on neural networks’ natural performance.

To tackle the above weaknesses, we try to design a defense method without additional datasets and
the “unlearning” procedure called EigenGuard. It is a new module for deep networks and can defend
against various backdoor attacks with a satisfying performance by natural training without the need
for additional datasets. To clarify the difference between our method and other current methods, we
summarized the characteristics of the existing state-of-the-art backdoor defense methods in Table 1.

In the following paper, we begin by revisiting the spectral characteristics of features during training.
Initially, we observe that trigger features (backdoor features) tend to exhibit a concentrated behavior
within the spectral space, particularly around the top singular values. Inspired by such findings, we
propose our EigenGuard which can make the trigger feature ineffective with other natural features
by forcing top k spectral features to share the same scale during training. Then our EigenGuard
can lift the scale of natural features when encountering poison samples and prevent the model from
predicting trigger class only based on trigger features. As for natural examples, their performance is
less susceptible to our EigenGuard because the effective feature for natural classes is rich enough to
make correct predictions as our analysis shows. The experiments also demonstrate that our Eigen-
Guard enjoys superior consistency and performance when compared to alternative defense methods,
delivering enhanced results in many cases, especially on natural examples. In summary, our contri-
butions can be briefly outlined as follows:

1. We find the useful features for backdoor images are centered at a low-rank space. Therefore,
forcing a high-dimensional feature space will make backdoor images fail to attack.

2. We find that effective natural features are distributed in a high-dimensional space compared
with backdoor features. Therefore, forcing various features will not influence the perfor-
mance much.

3. We then propose a new module based on our findings. With the new module, neural net-
works can consistently defend against widely used backdoor attacks without additional
data and other training techniques. Furthermore, the natural accuracy of our method is also
better than other defense methods.

2 RELATED WORK

2.1 BACKDOOR ATTACKS

The backdoor attack is a category of assaults that occur during the training of deep neural networks
(DNNs). In this type of attack, attackers try to contaminate a portion of the training data by adding
a predefined trigger and reassigning them as the desired target labels, which is known as the "dirty-
label setting" (Gu et al., 2019; Chen et al., 2017). These trojan samples can either all be relabeled
as a single target class (known as "all-to-one"), or samples from different source classes can be
relabeled as distinct target classes (referred to as "all-to-all") (Nguyen & Tran, 2020). Subsequently,
after the model’s training phase, the attacker can manipulate models to predict the target labels by
attaching triggers during testing.

Such attacks differ significantly from other evasion attacks, such as adversarial attacks (Biggio et al.,
2013; Szegedy et al., 2014; Goodfellow et al., 2015). Backdoor attacks are focused on implanting a
trigger into the model that is agnostic to both the input data and the model itself, posing a significant
threat to the applications of deep learning (Goldblum et al., 2020). To avoid easy detection of
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incorrectly labeled samples, some attackers attach the trigger to samples from the target class, known
as the "clean-label setting" (Shafahi et al., 2018; Turner et al., 2019; Barni et al., 2019).

In addition to simple forms like a single-pixel or a black-and-white checkerboard (Tran et al., 2018;
Gu et al., 2019), trigger patterns can also take more intricate forms, such as a sinusoidal strip or a
dynamic pattern (Barni et al., 2019; Nguyen & Tran, 2020). Recent attacks have made these triggers
more natural (Liu et al., 2020) and imperceptible to humans (Zhong et al., 2020; Nguyen & Tran,
2021), rendering them stealthy and challenging to detect through visual inspection. Furthermore,
powerful adversaries with access to the model can optimize the trigger pattern (Liu et al., 2018b)
and even co-optimize the trigger pattern and the model together to enhance the potency of backdoor
attacks (Pang et al., 2020).

2.2 BACKDOOR DEFENSE

Defense with training data. When users need to train a clean neural network on unauthorized
datasets, the defenders usually try to detect and neutralize poisoned data. One widely used way to
identify these poison data is designing some outlier detection methods with some robust statistical
methods in either the input space or the feature space (Steinhardt et al., 2017; Koh et al., 2018;
Diakonikolas et al., 2019; Gao et al., 2020). These robust statistics techniques facilitate the identifi-
cation and removal of such anomalies, preserving the integrity of the training data.

Alternatively, researchers have explored various training strategies aimed at mitigating the impact
of poisoned data on the trained model (Li et al., 2021b; Tao et al., 2021). These strategies include
randomized smoothing (Rosenfeld et al., 2020; Weber et al., 2020), majority voting (Levine & Feizi,
2021), differential privacy (Ma et al., 2019), and input preprocessing techniques (Liu et al., 2017;
Borgnia et al., 2021). By incorporating these methods into the training pipeline, defenders can
enhance the model’s resistance to poisoned data, ultimately reinforcing its security and dependabil-
ity. However, such detection methods can not successfully detect the backdoor images especially
when a large amount of images are poisoned. Therefore, the inaccurate detection will weaken the
performance of the defense methods or model’s natural accuracy.

Defense with additional clean data. When dealing with downloaded models with the potential of
being poisoned, one possible way to purify the model is to fine-tune the model with additional clean
images. Apart from such a simple method, one approach for enhancing the defense performance is to
initially reconstruct an approximation of the backdoor trigger based on the clean subset. This can be
achieved through adversarial perturbation techniques (Wang et al., 2019) or by utilizing generative
adversarial networks (GANs) (Chen et al., 2019a; Qiao et al., 2019; Zhu et al., 2020). Once the
trigger is successfully reconstructed, it becomes feasible to prune neurons that activate in response
to the trigger or fine-tune the model to unlearn it, as demonstrated in previous work (Wang et al.,
2019).

However, recent advances in attack methods have introduced more complex trigger patterns, such as
dynamic triggers (Nguyen & Tran, 2020) or triggers based on natural phenomena (Liu et al., 2020),
making reconstruction increasingly challenging. Some studies have explored trigger-agnostic repair
approaches through model pruning (Liu et al., 2018a) or fine-tuning on clean data (Chen et al.,
2019b; Li et al., 2021a). It’s worth noting that these methods may suffer from significant accuracy
degradation when only limited clean data are available, as observed in (Chen et al., 2019b).

3 REVISITING THE SPECTRAL BEHAVIOR OF NEURAL NETWORKS’ FEATURE

3.1 PRELIMINARIES

The neural network, denoted as h, operates on input data x. f represents the head of the model
h, the first residual stage for example if h is ResNet, while g refers to the latter part of the model.
Thereby, h can be formulated as the composition function of g and f , that is h = g ◦f . Furthermore,
we employ the notation z = f(x) to represent the intermediate features generated by f . Within
these intermediate features, the singular values are denoted as σi, with the index indicating their
scale sequence. Additionally, the label associated with the input x is represented as y in subsequent
discussions.
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3.2 SPECTRAL ANALYSIS ON BACKDOOR IMAGES

According to former research (Feng et al., 2022), the dimension of the deep neural networks feature
space will be much smaller than its design. Therefore, the models will leave some redundant dimen-
sions during natural training. Since the feature of triggers will be much simpler than the image’s
natural structure according to former works, we would like to verify whether the dimension of fea-
tures will influence the model’s backdoor training behavior. Firstly, we try to assess the effectiveness
of the poisoned sample by progressively eliminating the dimension of the feature space after the first
residual stage in ResNet-18 by setting the top singular values of features SVD decomposition to 0
during the training process. In addition to reducing the dimension, we also try to increase the feature
dimensions by lifting the original small singular values and generating new features for training and
testing. The attack success rate for these two scenarios is drawn in Figure 1 (a) and (b).

The figure clearly illustrates a significant decline in the model’s attack success rate when introducing
additional subspace to the original feature space, whereas performance remains unaffected when
removing subspace during training. One plausible explanation for this observation is the limited
effective subspace associated with the trigger. This suggests that the trigger features are distributed
in a low-dimensional subspace. Consequently, when we compel the neural network to acquire more
features, the natural features contained in the samples will be extracted by the model and the natural
features will lead the neural networks to predict their true class instead of the target class.
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Figure 1: Attack success rate (ASR) and natural accuracy (ACC) of different poison methods when
adding dimensions or reducing dimensions.

3.3 SPECTRAL ANALYSIS ON CLEAN IMAGES

In this section, we extend our exploration to uncover the relationship between the dimensions of
natural features and the model’s natural performance from the spectral perspective. Just as we did
with backdoor features, we evaluate the effectiveness of natural features by incrementally removing
the subspace correlated with the top singular values (reducing dimensions) and lifting the small
singular values to incorporate more subspace (adding dimensions) during the training process. The
results are drawn in Figure 1(c) and (d), which illustrate the accuracy of clean images.

As depicted in the figure, it is apparent that the model’s natural accuracy remains virtually unchanged
when introducing additional subspace to the feature space, and there is no large drop in performance
when removing subspace during training. One plausible explanation for this behavior is that the
effective feature subspace corresponding to the true label is already sufficiently large. Consequently,
the model consistently manages to extract valuable features from natural samples, regardless of the
size of the feature subspace enforced during training.

To evaluate the above reason, we also calculate the effective rank (Roy & Vetterli, 2007) for features
obtained after ResNet-18’s first residual stage with respect to natural and backdoor inputs. The
calculation of effective rank (ERank) for matrix A can be formulated as follows:

ERank(A) = −
∑
i

pi log(pi), (1)

where pi = σi∑
i |σi| and σi denotes the i-th singular value of matrix A. The results are listed in Table

2. One can see that the effective rank for natural examples is higher than the ranks for backdoor
samples. Thereby, the dimensions of backdoor feature space are smaller than natural feature space.

Apart from the effective rank, we also draw t-SNE figures on natural examples and backdoor exam-
ples by first projecting their output features on its eigenspace with respect to the first ten singular
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Blend BadNets SIG Clean Label
Backdoor 2.7 3.5 4.0 3.1

Clean 3.6 4.0 4.4 3.5

Table 2: Effective rank of backdoor samples and clean samples for a naturally trained ResNet-18 on
CIFAR-10.
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Figure 2: t-SNE map on neural networks’ output features with respect to different eigenspace for
backdoor and clean images. The "pink" dots represent the backdoor samples while the other colors
stand for different natural samples with different classes.

values, the next 90 singular values, and the rest of the singular values. We treat backdoor classes as
the 11-th class on CIFAR-10, and results are shown in Figures 2.

From the figure, one can see that the t-SNE map for the features with respect to the top singular val-
ues is discriminative for both backdoor ("pink dots") and natural images ("other colors"). However,
from the middle t-SNE figure, one can see that the pink dots represent backdoor images distributed
uniformly in the space and overlap with other color dots. Thereby, the network cannot classify these
samples as trigger classes since they are similar to samples belonging to different natural classes.
However, one can see that the natural images can also be classified although some samples are over-
lapped. The third figure shows that samples cannot be classified with rest features. The above figures
validate our findings that backdoor samples’ dimensions for useful features are smaller than natural
samples.

3.4 EIGENGUARD FOR BACKDOOR DEFENSE

Building upon the insights gained from the preceding analysis, it is clear that models can maintain
their natural performance while effectively neutralizing the impact of backdoor connections when
forcing the feature dimensions to be large. Leveraging this critical understanding, we can propose
our defense mechanisms against backdoor attacks by seamlessly integrating an EigenGuard module
within neural networks. Our EigenGuard approach is illustrated in Algorithm 1. As one can see, the
algorithm can scale the features belonging to the top k eigenspace. Therefore, the effective rank of
the feature will increase when k gets larger. Then the backdoor sample classification can be misled
by natural features lifted by our EigenGuard module based on our former analysis. We also make a
toy model for the theoretical analysis in the following section.

3.5 THEORETICAL UNDERSTANDING ON EIGENGUARD

In this section, we are going to theoretically analyze the effectiveness of our EigenGuard module
with a toy model for binary classification. First, we define the latter model g for classification as
w⊤z with z = f(x) and w ∈ R5×1, z ∈ R5×1 and w has been normalized. Furthermore, the output
features z for each sample can be viewed as the composition of the following five eigenvectors
[f1, f2, f3, f4, f5] obtained by the projection on each eigenspace and each sample zi can be formulated
as zi =

∑
i αifi and f5 denotes the features vectors for triggers while the others are natural features.

We also set
∑

i αi = 1 for convenience. Then we have the following results:
Proposition 1. For features z corresponding to input x, if the latter model g’s weight w can classify
natural features (f1 to f4) to be positive (natural class) and backdoor features (f5) to be negative
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Algorithm 1: Inference procedure for neural networks with our EigenGuard.
Require: Input x, head module f , remaining modules g, filter factor k, history feature His, Momentum µ.
Ensure: Get the output feature z obtained from our EigenGuard with respec to f(x).

Updated history features:
His = µHis+ (1− µ)f(x)

Concatenate current features with history features:
feat = [His, f(x)]

Do Singular Value decomposition on feat:
U,Σ,V = SV D(feat)

Filtering features with a spectral filter:
Σ[: k] = σk, Σ[k + 1 :] = σk ∗ 0.001.

Get new features with the same size as f(x):
z = U(Σnew)V

⊤[: f(x).size(0), ..]
return z

(target class) with output scales lies in (β, 1) as the following states:

w⊤fi ∈ (β, 1) if i = 1, 2, 3, 4, w⊤f5 ∈ (−1,−β), (2)

Then the network will predict the input as the natural class instead of the target classes if the com-
position of the output feature obeys the following condition:

4∑
i=1

αi >
1

1 + β
. (3)

From the above proposition, one can see that if the composition of natural features is strong enough,
the neural networks can correctly predict the natural class instead of the target class. However, such
a scenario may not easily happen since backdoor samples may be learned to let

∑4
i=1 αi go small

for vanilla models’ features during training. Then the features’ natural components will be weaker
and the neural networks will make predictions as the target based on backdoor features. Fortunately,
by adding our EigenGuard with k = 5 in the neural network, the components of natural features
will not vanish with

∑4
i=1 αi = 0.8 even on backdoor samples. Moreover, we have the following

results:
Remark 1. In the above model, the model can always predict the correct natural class instead of
the target class with our EigenGuard and k = 5 only if β > 0.25.

We need to note that the above condition can be easily achieved during training as w and fi are
normalized. Therefore, our EigenGuard can lead neural networks to neglect backdoor triggers and
make true predictions.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Backdoor attacks and settings. We adopt four state-of-the-art backdoor attacks: 1) BadNets (Gu
et al., 2019), 2) Blend backdoor attack (Blend) (Chen et al., 2017), 3) Clean-label backdoor (CLB)
(Turner et al., 2019), and 4) Sinusoidal signal backdoor attack (SIG) (Barni et al., 2019). To ensure
equitable comparisons, we adhere to the default configurations outlined in their respective original
papers, including trigger patterns, trigger sizes, and target labels. The evaluation of both attack
and defense strategies takes place on the CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009) and
GTSRB datasets with 10% poison rate employing ResNet-18 (He et al., 2016) as the underlying
model. During the training of the neural networks, 90% of the training data is utilized, with the
remaining 10% being used, in whole or in part, for defense purposes. We set k = 20 and momentum
to be 0.7 for our defense and we also use 100 training samples (< 1%) with the lowest loss score to
make the SVD decomposition more accurate. Additional implementation of attacks can be found in
the Appendix.

Backdoor defenses and settings. We compare our proposed EigenGuard with 3 existing backdoor
defense methods: 1) standard fine-tuning (FT), 2) Adversarial Neural Pruning (ANP) (Wu & Wang,
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Data Types No Defense FT ANP ABL EigenGuard(ours)

C10

ASR

BadNets 100% 3.0% 0.5% 3.1% 5.3%
Blend 100% 10.2% 0.5% 15.2% 0.4%
CLB 100% 1.2% 4.0% 0.1% 1.0%
SIG 94.2% 0.4% 0.3% 0.01% 2.8%

ACC

BadNets 93.7% 87.2% 90.2% 89.1% 92.6%
Blend 94.8% 88.9% 93.4% 88.7% 93.5%
CLB 93.8% 91.9% 92.7% 89.3% 93.3%
SIG 93.6% 91.6% 93.4% 89.0% 92.9%

C100

ASR
BadNets 99.9% 8.9% 6.6% 8.8% 7.8%

Blend 100% 78.1% 3.1% 0.5% 0.4%
SIG 87.5% 78.6% 55.5% 2.1% 0.4%

ACC
BadNets 71.8% 68.2% 69.7% 66.8% 71.5%

Blend 73.7% 66.8% 67.4% 62.3% 74.8%
SIG 74.5% 60.7% 63.1% 65.3% 74.9%

GTSRB

ASR
BadNets 100% 0.5% 0.0% 1.0% 2.6%

Blend 100% 91% 20.7% 23.3% 13.7%
SIG 93.8% 100% 100% 6.2% 4.6%

ACC
BadNets 96.1% 96.7% 95.3% 94.7% 95.5%

Blend 93.4% 96.8% 93.1% 93.1% 94.7%
SIG 95.2% 95.1% 95.2% 94.8% 95.5%

Table 3: The attack success rate (ASR %) and the natural accuracy (ACC %) of 4 backdoor defense
methods against 4 widely used backdoor attacks. The bold numbers mean ours is the best against
the other three defense methods.

2021), and 3) Anti-Backdoor Learning (ABL) (Li et al., 2021b). In scenarios where FT and ANP
necessitate additional clean datasets, we assume that defenders have access to 1% clean training
data, comprising 500 images. We set the pruning threshold for ANP to 0.2 in accordance with their
original configurations. Regarding the ABL method, we set the isolate rate as 10% to suit the poison
rate setting of the training data. Furthermore, for consistency across all methods, we establish a
batch size of 256, initiate training with a learning rate of 0.1, and employ a momentum of 0.9 over a
total of 100 epochs. Additionally, we apply standard data augmentation techniques such as random
cropping and horizontal flipping, consistent with their original implementations.

Evaluation metrics. Like former works (Wu & Wang, 2021; Li et al., 2021b), we employ two key
performance metrics to evaluate various backdoor defense strategies: Attack success rate (ASR),
which represents classification accuracy on the test sets with triggers. natural accuracy (ACC), which
denotes the classification accuracy on clean test sets. These two metrics together offer a comprehen-
sive view of the defense strategy’s capabilities, capturing both its ability to resist backdoor attacks
and its performance under natural conditions.

4.2 EFFECTIVENESS OF EIGENGUARD

Comparison with existing defenses. Table 3 provides a comprehensive illustration of the remark-
able efficacy of our proposed EigenGuard across the CIFAR-10, CIFAR-100, and GTSRB datasets.
In this evaluation, we assess the performance of our EigenGuard against four prevalent backdoor at-
tack scenarios, comparing with three state-of-the-art backdoor defense techniques. The results show
that our EigenGuard can outperform the other methods in most cases especially when comparing
the natural accuracy on different datasets, even in situations where we lack prior knowledge of the
clean data. Moreover, we need to point out that the superior performance of our EigenGuard on
CIFAR-100 also demonstrates that our EigenGuard can consistently preserve the model’s accuracy
on clean images while achieving first-class defense performance.

Performance of our EigenGuard on different models. In addition to assessing the performance
of our EigenGuard on ResNet-18, we further evaluate its effectiveness on ResNet-34, VGG-16, and
MobileNetV2, as detailed in Table 4. The results unequivocally demonstrate that our EigenGuard
stands as a universal module capable of effectively safeguarding against a range of distinct backdoor
attacks for various models.
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ResNet-18 ResNet-34 VGG-16 MobileNetV2

ASR

BadNets 5.3% 2.1% 0.6% 0.5%
Blend 0.4% 3.8% 3.4% 3.3%

CL 1.0% 1.2% 1.0% 0.4%
SIG 2.8% 0.4% 0.7% 0.6%

ACC

BadNets 92.6% 93.1% 93.5% 92.1%
Blend 91.1% 92.1% 92.4% 91.7%

CL 93.3% 93.7% 94.1% 92.1%
SIG 92.9% 94.1% 94.6% 94.3%

Table 4: The attack success rate (ASR %) and the natural accuracy (ACC %) of different models
with our EigenGuard against 4 widely used backdoor attacks on CIFAR-10.
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Figure 3: Natural accuracy and attack success rate for our method against different poison methods
on CIFAR-10 with respect to different poison rates ((a) and (b)) and different filtering numbers k for
our EigenGuard ((c) and (d)).

Universality of our EigenGuard against backdoor attacks with different poison rates. In ad-
dition to the conventional poisoning scenario which involves 10% poisoned samples in the training
dataset, we conducted a comprehensive evaluation of the robustness of our EigenGuard across a
range of different poison rates, spanning from 2% to 20%. The experiments are finished on CIFAR-
10 with ResNet-18 and the results of these experiments are drawn in Figure 3 (a) and (b).

Upon analyzing the figures, it becomes evident that as the poisoning rate increases, there is only a
marginal fluctuation observed in both natural accuracy and attack success rate. These observations
collectively affirm the consistency and robust defense capabilities of our EigenGuard in the face of
varying poisoning rates with satisfying natural accuracy.

4.3 ABLATION STUDIES

Apart from the above evaluations on our proposed EigenGuard against different backdoor attacks in
different scenarios, we also finish some experiments to further understand our proposed module.

Performance of EigenGuard with different filtering numbers. To begin our analysis, we focus
on the pivotal hyperparameter, denoted as “k”, within our EigenGuard framework when applied to
CIFAR-10. The results of this analysis are visually depicted in Figure 3 (c) and (d). From the figure,
one can see that as the value of k increases, the attack success rate of ResNet-18 equipped with our
EigenGuard progressively diminishes and almost becomes zero. Consequently, we set k = 20 as
the optimal setting for our EigenGuard framework, as detailed in our paper.

Performance of EigenGuard attached on different deep layers.

In our previous configurations, we strategically positioned EigenGuard after the first residual stage
(before the initial down-sampling module) to minimize the influence of backdoor attacks. In this
section, we delve into an examination of the impact of EigenGuard module placement within the
network architecture. The results of this investigation are presented in Table 5. The figures indicate
a clear trend: when EigenGuard is attached to deeper layers, the defense performance deteriorates
and, in some cases, even fails to effectively mitigate backdoor attacks. One plausible explanation
for this phenomenon is that the backdoor features have already dominated the semantic features
for deep layers and their dimension also increases through convolution layers and skip connections.
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Location BadNets Blend
ACC ASR ACC ASR

After 1st residual stage 92.6% 5.3% 93.5% 0.4%
After 2nd residual stage 92.5% 6.2% 93.7% 68.4%
After 3rd residual stage 93.0% 43.2% 93.5% 97.9%
After 4th residual stage 92.4% 94.9% 93.6% 99.9%

Table 5: The attack success rate (ASR %) and the natural accuracy (ACC %) when applying our
EigenGuard after different location.

Based on this finding, we integrate our EigenGuard before the first down-sampling stage in every
neural network, as detailed in our paper.

t-SNE map for models with our EigenGuard. In addition to the aforementioned experiments, we
conducted a visual analysis of ResNet-18 features with the integration of our EigenGuard module
located after different layers, as illustrated in Figure 4. This visual representation underscores a
noteworthy observation: when attaching our EigenGuard, the backdoor features (depicted as "pink"
points) exhibit significant overlap with samples belonging to different classes. This overlap means
the model will treat the backdoor samples as natural ones. Therefore, the network will not clas-
sify these features to the target class and the network will not suffer from the backdoor threats.
Furthermore, the visualization reveals that the features of distinct natural classes are distinctly sepa-
rated, facilitating accurate classification. Consequently, our model not only offers robust protection
against backdoor attacks but also excels in correctly predicting outcomes for natural samples.
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Figure 4: t-SNE map on output features of ResNet-18 with our EigenGuard with respect to different
eigenspace for backdoor and clean images for different datasets. The "pink" dots represent the
backdoor samples while the other colors stand for different natural samples with different classes.

5 CONCLUSION

To tackle the challenge of training on unauthorized data, we first analyze the model’s backdoor and
natural behaviors from the spectral view and find that lifting the dimension of the feature space can
prevent the network from making target predictions when encountering the triggers while preserv-
ing its natural performance. Building upon this insight, we introduce a novel module named Eigen-
Guard. By integrating EigenGuard before the first down-sampling operation into the neural network,
the model can prevent the backdoor behavior on triggers while greatly maintaining the performance
of the model on natural data through natural training on the unauthorized datasets compared with
other defending methods. Empirical experiments demonstrate the efficacy of our approach, indicat-
ing that models incorporating our novel modules exhibit superior performance compared to previous
methodologies. This heightened performance is evident across both backdoor and natural data sce-
narios, surpassing the capabilities of alternative defense algorithms.
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A APPENDIX

A.1 EXPERIMENT DETAILS ON BACKDOOR ATTACKS

The implementation of backdoor attacks is based on Wu & Wang (2021)’s setting. we take class 0
as target for both CIFAR-10, CIFAR-100 and GTSRB. The details are listed in the following:

• BadNets Gu et al. (2019): The trigger is a 3× 3 checkerboard at the bottom right corner of
images. Given the target label, we attach the trigger to 10% of training samples from other
classes and relabel them as the target label.

• Blend attack Chen et al. (2017): We use a trigger pattern generated by Wu & Wang (2021)
where each pixel value is sampled from a uniform distribution in [0, 255]. Given the target
class, we randomly select 10% of training samples from other classes for poisoning. We
attach the trigger t to the sample x using a blended injection strategy, i.e., αt+ (1α)x with
α = 0.2. Then, we relabel them as the target label.

• Sinusoidal signal attack (SIG) Barni et al. (2019): We superimpose a sinusoidal signal over
the inputs as the trigger following Barni et al. Barni et al. (2019). And the poison rate here
is 80%.

• Clean-label Attack (CLB) Turner et al. (2019): The trigger is a 3 × 3 checkerboard at
the four corners of images and the poisoning rate is 80%. To make the poisoning process
much easier, we apply adversarial perturbations to render these poisoned samples harder
to classify during training following Turner et al. (2019)’s settings. Specifically, we use
Projected Gradient Descent (PGD) to generate adversarial perturbations with perturbation
budgets equal to 16/255.

A.2 PROOF OF THE PROPOSITION

Proof. If the model is going to predict the input x as the natural class instead of the target classes,
the final output should be positive, which means:

w⊤z >0 (4)

w⊤
5∑
i

αifi >0 (5)

w⊤
4∑
i

αifi >−w⊤α5f5 (6)

Since w⊤fi ∈ (β, 1) if i = 1, 2, 3, 4, w⊤f5 ∈ (−1,−β), the worst case is when all w⊤fi = β
for i = 1, 2, 3, 4 and w⊤f5 = −1. Then we need to find when the following inequality holds:

β

4∑
i

αi > α5 = (1−
4∑
i

αi), (7)

Then we can get the above inequality holds only if the following condition holds:

4∑
i

αi >
1

1 + β
. (8)

Then we have the following inequality:

w⊤
4∑
i

αifi > β

4∑
i

αi > α5 > −w⊤α5f5. (9)

Therefore, the model will predict the natural class instead of the target class.
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