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Abstract

Reward engineering has long been a challenge
in Reinforcement Learning (RL) research, as it
often requires extensive human effort and itera-
tive processes of trial-and-error to design effective
reward functions. In this paper, we propose RL-
VLM-F, a method that automatically generates
reward functions for agents to learn new tasks,
using only a text description of the task goal
and the agent’s visual observations, by leverag-
ing feedbacks from vision language foundation
models (VLMs). The key to our approach is
to query these models to give preferences over
pairs of the agent’s image observations based on
the text description of the task goal, and then
learn a reward function from the preference la-
bels, rather than directly prompting these mod-
els to output a raw reward score, which can be
noisy and inconsistent. We demonstrate that RL-
VLM-F successfully produces effective rewards
and policies across various domains — including
classic control, as well as manipulation of rigid,
articulated, and deformable objects — without
the need for human supervision, outperforming
prior methods that use large pretrained models
for reward generation under the same assump-
tions. Videos can be found on our project website:
https://rlvimf2024.github.io/.

1. Introduction

One of the key challenges of applying reinforcement learn-
ing (RL) is designing an appropriate reward function that
will lead to the desired behavior. This procedure, known
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as reward engineering, demands considerable human effort
and trial-and-error iterations, but is often required for good
results (Laud, 2004; Silver et al., 2016; OpenAl et al., 2019;
Gupta et al., 2022). In this work, we aim to develop a fully
automated system that can generate a reward function and
use it to teach agents to perform a task with RL by using only
a language description of the task, eliminating the extensive
human effort required to craft reward functions manually.

Prior work has studied replacing human supervision by
prompting large language models (LLMs) to write code-
based reward functions (Xie et al., 2023; Ma et al., 2023b;
Wang et al., 2023). However, these methods usually as-
sume access to the environment code, rely on the low-level
ground-truth state information for reward generation, and
face challenges with scaling up to high-dimensional environ-
ments and observations, such as manipulating complex de-
formable objects. Others (Klissarov et al., 2023; Chu et al.,
2023) extract an intrinsic reward and combine it with the
task reward using preference labels generated by an LLM
comparing text descriptions of two agent states. However,
text descriptions of the states can be non-trivial for certain
tasks, such as manipulating deformable objects, as the exact
states are hard to describe accurately using language. Fur-
ther, these works rely on the ground-truth low-level state
information to generate the text descriptions of the states,
which may not be easily accessible.

Another related line of work obtains rewards from visual
observations by using contrastively trained vision language
models, such as CLIP (Radford et al., 2021), to align image
or video observations with task descriptions in a learned la-
tent space (Cui et al., 2022b; Mahmoudieh et al., 2022; Ma
et al., 2023a; Sontakke et al., 2023; Adeniji et al., 2023;
Rocamonde et al., 2023). However, the reward signals
produced in these works are often of high variance and
noisy (Sontakke et al., 2023; Mahmoudieh et al., 2022). As
a result, prior work often has to fine-tune these CLIP-style
models for their specific tasks at hand (Ma et al., 2023a;
Mahmoudieh et al., 2022).

To this end, we present RL-VLM-F, a method that automat-
ically generates reward functions for agents to learn new
task. RL-VLM-F (Figure 1) requires only a single text de-
scription of the task goal and the agent’s visual observations,
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Figure 1. RL-VLM-F automatically generates reward functions for policy learning on new tasks, using only a text description of the task
goal and the agent’s visual observations. The key to RL-VLM-F is to query VLMs to give preferences over pairs of the agent’s image
observations based on the text description of the task goal, and then learn a reward function from the preference labels.

leveraging vision language foundation models (VLMs) that
are trained on diverse, general text and image corpora (e.g.,
GPT-4V (OpenAl, 2023), Gemini (Team et al., 2023)). The
key to our approach is to query these models to give pref-
erences over pairs of the agent’s image observations based
on the text description of the task goal and then learn a
reward function from the preference labels, rather than di-
rectly prompting these models to output a raw reward score,
which can be noisy and inconsistent (Sontakke et al., 2023;
Rocamonde et al., 2023). This allows us to draw from the
rich literature on reinforcement learning from human prefer-
ences (Christiano et al., 2017; Wirth et al., 2017; Lee et al.,
2021a), without requiring actual humans, to train reward
functions automatically for new tasks. Furthermore, by us-
ing a VLM to compare image observations instead of text
descriptions of the states, RL-VLM-F does not need access
to the low-level ground-truth states for reward generation
and can be applied to complex tasks involving deformable
objects where accurate text description of the states are non-
trivial. We test our method on 7 tasks involving classic
control, rigid, articulated, and deformable object manip-
ulation. We show that our approach can produce reward
functions that lead to policies that solve diverse tasks, and
our approach substantially outperforms prior methods and
alternative ways to use VLMs to generate rewards. We also
perform extensive analysis and ablation studies to provide
insights into RL-VLM-F’s learning procedure and perfor-
mance gains.

In summary, we make the following contributions:

* We propose RL-VLM-F, a method that automatically gen-
erates reward functions for agents to learn new tasks, us-
ing only a text description of the task goal and the agent’s

visual observations, eliminating the extensive human ef-
fort involved in manually crafting reward functions.

* We show that RL-VLM-F can be used to generate reward
functions and learn policies that can solve a series of
rigid, articulated, and deformable object manipulation
tasks, and it greatly outperforms prior methods.

* We perform extensive analysis and ablation studies to
provide insights into RL-VLM-F’s learning procedure
and performance gains.

2. Related Works

Inverse Reinforcement Learning. Similar to our work,
inverse reinforcement learning (IRL) aims to learn a reward
function that can be used to train a policy to solve tasks.
IRL methods usually learn a reward function from expert
demonstrations (Ng & Russell, 2000; Abbeel & Ng, 2004;
Ziebart et al., 2008; Ho & Ermon, 2016; Fu et al., 2018;
Ni et al., 2021). In contrast, while RL-VLM-F also learns
a reward function to train a policy, it only requires a text
description of the task goal and does not require collecting
expert demonstrations.

Learning from Human Feedback. Another line of work
directly learns a reward function from human feedback,
in the form of pairwise trajectory preference or ranking
comparisons, to train a reward function (Christiano et al.,
2017; Wirth et al., 2017; Ibarz et al., 2018; Leike et al.,
2018; Biyik et al., 2019; 2020; Lee et al., 2021a; Myers
et al., 2021; Biyik et al., 2022). In most cases, human
preferences and rankings of robot trajectories are easier to
collect than demonstrations of robot trajectories. However,
because each comparison conveys little information on its
own, many preference queries are needed before the reward
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function is well-trained enough to train an agent to perform
the task. RL-VLM-F instead queries a VLM to perform the
comparison to train a reward function, removing the need
for extensive human labor in giving preference labels.

Large Pre-trained Models as Reward Functions. Kwon
et al. (2023) first demonstrated that large pre-trained
models—Ilarge language models (LLM) specifically—can
generate rewards for RL agents in text-based tasks. Other
works followed by demonstrating that LLMs can write struc-
tured code for training robots (Yu et al., 2023) or directly
write Python code for training many kinds of agents (Xie
et al., 2023; Ma et al., 2023b; Wang et al., 2023). However,
many tasks are challenging to write reward functions for.
For example, cloth folding requires tracking the locations
of many individual cloth keypoints, which can change from
one folding task to another. In these instances, visual rea-
soning is better suited for understanding how to reward the
agent. RL-VLM-F queries a VLM to compare agent ob-
servation images so that it can use visual observations to
reason about how well the agent is progressing in a task.
In addition, prior methods usually assume access to the en-
vironment source code when writing the reward functions,
whereas our method does not require such assumptions.

Another line of prior works rewards agents from image ob-
servations by aligning agent trajectory images with task
language descriptions or demonstrations with contrastively
trained visual language models (Cui et al., 2022a; Fan
et al., 2022; Nottingham et al., 2023; Ma et al., 2023a;
Sontakke et al., 2023; Rocamonde et al., 2023; Nam et al.,
2023). However, experiments from these papers directly
demonstrate that contrastive alignment is noisy and its accu-
racy relies heavily on the input task specification and how
well-aligned the agent observations are to the pre-training
data (Ma et al., 2023a; Sontakke et al., 2023; Rocamonde
et al., 2023; Nam et al., 2023). Further, CLIP-style models
have thus far been limited to outputting noisy raw scores.
We demonstrate that using preferences results in superior
performance to outputting raw scores, shown in our experi-
ments in Section 6. Finally, our work shares a similar idea
to RLAIF (Bai et al., 2022), which proposed to mix pref-
erence labels generated by an LLM and a human in the
context of fine-tuning LLMs, and Motif (Klissarov et al.,
2023), which proposed to generate intrinsic rewards using
preference feedback from an LLM in the game of NetHack
based on ground-truth text descriptions of the game state.
In contrast, we use a VLM to generate the preference labels
without any human labeling and learn the reward function
from visual image observations without the need to access
ground-truth states, focus on the domain of robotics control
and manipulation, and directly generate task rewards instead
of intrinsic rewards.

3. Background

We consider the standard Markov Decision Process and rein-
forcement learning setup (Sutton & Barto, 2018). At every
timestep t, the agent receives a state s; from the environ-
ment and chooses an action a; based on a policy m(a; | s¢).
The environment gives a reward r; after the agents executes
action a; and transitions to s;11. The goal of the agent is to
maximize the return, which is defined as discounted sum of
rewards R = Y 72 7" (sy, a)) with discount factor .

Preference-based reinforcement learning. Our work
builds upon preference-based RL, in which an agent learns
a reward function from preference labels over its behav-
iors (Christiano et al., 2017; Ibarz et al., 2018; Lee et al.,
2021a;b). Formally, a segment o is a sequence of states
{s1,...,sm}, H > 1. In this paper we consider the case
where the segment is represented using a single image, i.e.,
H = 1. Given a pair of segments (¢°, o!), an annotator
gives a feedback label y indicating which segment is pre-
ferred: y € {—1,0,1}, where 0 indicates the first segment
ol is preferred, 1 indicates the second segment is preferred,
and —1 indicates they are incomparable or equally prefer-
able. Given a parameterized reward function r,, over the
states, we follow the standard Bradley-Terry model (Bradley
& Terry, 1952) to compute the preference probability of a
pair of segments:

exp (LI ru(sh)

Pylo' = 0°] = .

216{0,1} exp (Zf:l T4 (Si))

where o = o7 denotes segment i is preferred to segment
j. Given a dataset of preferences D = {(¢?,0},v:)},
preference-based RL algorithms optimize the reward func-
tion 7, by minimizing the following loss:

Lreward = = E (50 51 4)D [H{y = (0" = ")} log Py[c° = o'

+{y = (0" = )} log Pylo" » 00]:| .
@

In preference-based RL algorithms, a policy 7y and reward
function ry, are updated alternatively: the reward function
is updated with a dataset of preferences as described above,
and the policy is updated with respect to this learned re-
ward function using standard reinforcement learning algo-
rithms. Specifically, we use PEBBLE (Lee et al., 2021a), a
preference-based RL method with unsupervised pre-training
and off-policy learning, as the underlying preference-based
RL algorithm.

4. Assumptions

We make the following assumptions on the VLMs to be
used in this paper: 1) We assume that the VLMs have been
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Figure 2. We use a two-stage VLM-querying process for generating preference labels to train the reward function. In the analysis stage,
we query the VLM to generate free-form responses describing and comparing how well each of the two image observations achieves
the task goal. Then, in the labeling stage, we prompt the VLM with the VLM-generated text responses from the first stage to extract a
preference label between the two image observations. The template shown here is the actual entire template we use for all experiments.

Algorithm 1 RL-VLM-F

input Text description of task goal [

1: Initialize policy 7y and reward 7,

2: Initialize the preference buffer D < (), RL replay buffer
B <« 0, image observation buffer Z < (), policy gradient
update steps N, reward gradient update steps N, VLM
query frequency K, number of preference queries per time
M

3: for each iteration iter do

4 /I POLICY LEARNING AND DATA COLLECTION

5: fort=1toT do
6
7
8

Collect state s¢1, image I;+1 by taking a; ~ 7o (a|st)
Add transition B < BU {(st, at, St+1,74(st))}
Add image observation Z < Z U {I¢11

9:  end for
10:  forn = 1to N; do
11: Sample random batch {(s¢, ar, se41,7y(s¢)); } =1 ~ B
12: Optimize policy my using the sampled batch with any
oft-policy RL algorithm
13:  end for

14:  // PREFERENCE BY VLM AND REWARD LEARNING
15:  ifiter % K == 0 then

16: for m = 1to M do

17: Randomly sample two images (¢°, o) from buffer Z
18: Query VLM with (¢°, o) and task goal I for label y
19: Store preference D + D U {(c°, 0", y)}

20: end for

21: forn =1to N, do

22: Sample minibatch {(0°, o', y); 112, ~ D

23: Optimize r,; in Equation (2) with respect to 1)

24: end for

25: Relabel entire replay buffer 13 using updated 7.,

26:  endif

27: end for

trained on diverse text and image corpora, enabling them to
generalize well and reason across various environments and
tasks. 2) The VLMs should be capable of processing mul-
tiple images simultaneously and performing comparative
analyses on pairs of images as this is crucial for generating
preference labels. 3) RL-VLM-F is designed to operate

on tasks for which the quality or success of a state can be
discerned from a single image or a sequence of images.
We consider large pretrained vision-language foundation
models, such as Gemini (Team et al., 2023) and GPT-4
Vision (OpenAl, 2023), to satisfy these assumptions.

5. Method

Figure 1 provides an overview of RL-VLM-F. Unlike previ-
ous preference-based RL algorithms that require a human
annotator to give the preference labels, RL-VLM-F lever-
ages a VLM to do so based solely on a text description of
the task’s goal, thus automating preference-based RL and
mitigating the time-intensive human supervision required
in writing reward functions or providing preference labels.
RL-VLM-F works as follows: first, the policy 7y and the
reward function ry, are randomly initialized. Given a task
goal description, our method then iterates through the fol-
lowing cycle: (1) The policy 7y is updated using RL with
the reward function 7, interacts with the environment, and
stores image observations into a buffer; (2) A batch of im-
age pairs is randomly sampled from the stored buffer and
sent to a VLM. The VLM is queried to produce preference
labels for these image pairs in terms of which one better
performs the task based on the text description of the task
goal; (3) The reward model is updated with the loss in Equa-
tion (2) using the preference labels produced by the VLM.
The full detailed procedure of RL-VLM-F can be found in
Algorithm 1.

5.1. Prompting VLMs to Generate Preference labels for
Reward Learning

To train the reward model ry, we first need to generate
preference labels from the VLM. To do this, we sample two
images from the “image observation buffer” Z, which stores
image observations of the policy during learning, and then
query the VLM for which of the two images better performs
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the task according to the text goal description (Algorithm 1
lines 17-18).

The querying process is illustrated in Figure 2. It consists of
two stages: an analysis stage and then a labeling stage. In
the analysis stage, we query the VLM to generate free-form
responses describing and comparing how well each of the
two images achieves the task goal. Then, in the labeling
stage, we prompt the VLM with the VLM-generated fext
responses from the first stage to extract a preference label
between the two images.' Specifically, the labeling stage
prompt repeats the questions in the analysis prompt, fills in
the VLM’s response from the analysis stage, and then asks
the VLM to generate a preference label y € {—1,0,1}. We
specify in the prompt that O or 1 indicates that the first or
second image is better, respectively, and -1 indicates no dis-
cernible differences. We do not use the image pairs to train
the reward model if the VLM returns -1 as the preference
label. Finally, as shown at line 19 of Algorithm 1, we store
the preference labels produced by the VLM into the prefer-
ence label buffer D during the training process. Standard
preference-based reward learning can then be performed
(as detailed in Section 3) to train the reward function with
Equation 2 using the preference buffer D. Reward learning
corresponds to lines 21-24 in Algorithm 1.

To minimize prompt engineering effort, we use a unified
template across all environments (the exact entire template
is shown in Figure 2). Therefore, to train a policy for a new
environment with RL-VLM-F, one only needs to provide
the task goal description; the labels and subsequently the
reward function will then be automatically trained with the
above process.

5.2. Implementation Details

For policy training, we use SAC (Haarnoja et al., 2018) as
the underlying RL algorithm. As in PEBBLE (Lee et al.,
2021a), we relabel all the transitions stored in the SAC
replay buffer once the reward function ry, is updated (line
25 in Algorithm 1). We set the policy gradient update step
N to be 1. The values of all other parameters in Alg. 1 can
be found in Appendix B.

6. Experiments
6.1. Setup

We evaluate RL-VLM-F on a set of tasks, spanning from
straightforward classic control tasks to complex manipu-
lation tasks involving rigid, articulated, and deformable
objects. The tasks are as follows.

'We can also use an LLM in this stage as it only requires text
inputs, but for simplicity, we use the same model as for the first
stage of the querying process (a VLM).

* One task from OpenAl Gym (Brockman et al., 2016):

— CartPole where the goal is to balance a pole on a mov-
ing cart.

* Three rigid and articulated object manipulation tasks from
MetaWorld (Yu et al., 2020) with a simulated Sawyer
robot:

— Open Drawer, where the robot needs to pull out a
drawer;

— Soccer, where the robot needs to push a soccer ball
into a goal; and

— Sweep Into, where the robot needs to sweep a green
cube into a hole on the table.

* Three deformable object manipulation tasks from Soft-
Gym (Lin et al., 2021):

— Fold Cloth, where the goal is to diagonally fold a cloth
from the top left corner to the bottom right corner;

— Straighten Rope, where the goal is to straighten a rope
from a random configuration; and

— Pass Water, where the goal is to pass a glass of water
to a target location without water being spilled out.

See Figure 3 for visualizations of these tasks. Further details
about the tasks can be found in Appendix A.

We compare to the following baselines that make similar
assumptions to us when generating the reward function, i.e.,
those requiring only a text description and image observa-
tions from the agents (without access to environment code).
Below is a brief description of each baseline:

* VLM Score. Instead of querying the VLM to give prefer-
ence labels over two images, this baseline directly asks
the VLM to give a raw score between O to 1 for a given
image based on the task goal description. We inform the
VLM in the prompt that the score should be 1 if the task
goal is perfectly achieved in the image. A reward model
is then learned to regress to the scores given by the VLM.

* CLIP Score (Rocamonde et al., 2023). Given an image,
the reward is computed as the cosine similarity score
between the embedding of the image and the text descrip-
tion of the task goal using the CLIP model (Radford et al.,
2021). Such a reward computation method has also been
explored in several other prior works (Cui et al., 2022b;
Mahmoudieh et al., 2022; Adeniji et al., 2023).

* BLIP-2 Score. Similar to the CLIP Score baseline but
uses BLIP-2 (Li et al., 2023) instead of CLIP to compute
the cosine similarity score.

¢ RoboCLIP (Sontakke et al., 2023). This baseline uses a
pre-trained video-language model, S3D (Xie et al., 2018),
to compute the reward as the similarity score between the
embedding of the video of the policy trajectories and a
demonstration video. Since we do not assume to have
access to demonstrations of the task in our method, we
use the text version of RoboCLIP for a fair compari-
son. RoboCLIP-Text uses the pre-trained video-language
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Figure 3. We evaluate RL-VLM-F on 7 tasks including classic control, rigid and articulated object manipulation, as well as deformable
object manipulation. For Pass Water, the red dot represents the target location.
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Figure 4. Learning curves of all compared methods on 7 tasks. RL-VLM-F outperforms all baselines in all tasks, and matches or surpasses
the performance of GT preference on 6 of the 7 tasks. Results are averaged over 5 seeds, and shaded regions represent standard error.
RoboCLIP is only evaluated on the MetaWorld tasks, as this is the set of tasks where the original method is evaluated.

model to generate rewards as the similarity score between
the video embedding of the trajectory and the text embed-
ding of the task description.

* GT Preference. We use the original ground-truth reward
function (provided by the authors of each benchmark) to
give the preference label. This should in theory serve as
an oracle and upper bound on the learning performance.

Further details on the baselines, including all the text
prompts we use, can be found in Appendices C and D.

For MetaWorld tasks, we use the author-defined task suc-
cess rate of the policy as the evaluation metric (Yu et al.,
2020). For all other tasks, we report the episode return of
the learned policy. For all methods, the policy is learned
with state observations, and we use the same policy learning
hyper-parameters for all methods, i.e., the only difference
between all compared methods is the reward function. For
methods where a reward function needs to be learned (RL-
VLM-F and VLM Score), the reward function is learned
using image observations. For RL-VLM-F and the VLM
Score baseline, we use Gemini-Pro (Team et al., 2023) as the
VLM for all tasks except Fold Cloth. We find Gemini-Pro

to perform poorly on Fold Cloth, so we instead use GPT-
4V (OpenAl, 2023) as the VLM for this task for these two
methods (see Appendix E.2 for a comparison of Gemini-Pro
and GPT-4V on this specific task). We did not run GPT-4V
on all tasks due to its quota limitations. For all methods
except RoboCLIP, we remove the robot from the image for
the MetaWorld tasks, as these tasks are all object-centric
and removing the robot allows the VLM to focus on the
target object when analyzing the images. Since these tasks
are simulated, we conveniently use the simulator to make
the robot transparent when rendering the images. For real-
world applications, techniques such as inpainting can be
used to remove the robot from image observations as done
in prior work (Bahl et al., 2022; Bharadhwaj et al., 2023).
We keep the robot within the image for RoboCLIP follow-
ing the original paper’s setup. We test RoboCLIP only on
the MetaWorld tasks, as this is the set of tasks where the
original method is evaluated.
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Figure 5. Comparison of the achieved final state of different methods on SoftGym deformable object manipuation tasks: Fold Cloth (Top),
Straighten Rope (Middle), and Pass Water (Bottom). RL-VLM-F achieves better final states compared to all the baselines.

6.2. Does RL-VLM-F Learn Effective Rewards and
Policies?

We first examine if RL-VLM-F leads to useful rewards and
policies that can solve the tasks. The learning curves of all
compared methods on all tasks are shown in Figure 4. As
shown, RL-VLM-F outperforms all other baselines in all
tasks. We find that prior approaches using CLIP or BLIP-2
score can only solve the easiest task — CartPole, and strug-
gle for more complex environments, such as the rigid object
manipulation tasks in MetaWorld and the deformable object
manipulation tasks in SoftGym. The text version of Robo-
CLIP performs poorly on all three MetaWorld tasks, align-
ing with the original paper’s results, as RoboCLIP works
the best with video demonstrations available. RL-VLM-F
also outperforms VLM Score in all tasks, which indicates
that prompting VLMs to output a preference label for re-
ward learning results in better task performance in contrast
to treating the VLM as a reward function that outputs raw
reward scores. We also observe that RL-VLM-F is able to
match the performance of using GT preference in all tasks
except Cloth Fold, which suggests we can use a single text
description with RL-VLM-F to mitigate human efforts in
writing complex reward functions for these tasks.

Interestingly, for the task of Sweep Into, the performance of
RL-VLM-F actually surpasses that of using GT preference.
We suspect the reason could be as follows: the ground-truth
reward function written by the authors for this task includes
terms that are not directly correlated to task success. This

includes a reward term for grasping the cube, which is not
critical for pushing the cube into the hole. In contrary, RL-
VLM-F simply uses a text description of the task goal as
“minimize the distance between the cube and the hole”, thus
the learned reward is less prone to bias in human-written
reward functions and may better reflect the true task goal,
leading to better performance.

We show the final states achieved by the policies learned
with different methods on the three SoftGym deformable ob-
ject manipulation tasks in Figure 5. As shown, for all three
tasks, RL-VLM-F achieves a final state that is quantifiably
better than the baselines. For Fold Cloth, RL-VLM-F is
closest to a diagonal fold. For Straighten Rope, RL-VLM-F
is able to fully straighten the rope and match the perfor-
mance of GT preference, where all other baselines failed to
fully straighten it. For Pass Water, RL-VLM-F is able to
transport the water to the target location without any water
being spilled, and the baselines either do not move the glass,
or move it in a way that spills large amounts of water.

6.3. What is the Accuracy of VLM Preference Labeling?

Given that RL-VLM-F can learn effective rewards and poli-
cies that solve the tasks, we perform further analysis on the
accuracy of the preference labels generated by a VLM. To
compute accuracy, the VLM outputs {—1,0, 1} (no prefer-
ence, first image preferred, second image preferred) which
we compare to a ground truth preference label defined ac-
cording to the environment’s reward function. Note that we
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Figure 6. We provide analysis of the accuracy of the VLM preference labels, compared to ground-truth preference labels defined according
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bins, where the difference is measured as the difference between the ground-truth task progress associated with the image pairs. The y-axis
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The learned rewards are averaged over 3 trained reward models with different seeds, and the shaded region represents the standard error.

discard the image pairs with a label -1 (no preference) when
training the reward model.

Our intuition is that, like humans, it would be hard for the
VLM to give correct preference labels when comparing two
similar images, and easier to produce correct preference
labels when the two images are noticeably dissimilar in
terms of achieving the goal. Figure 6 presents the accuracy
of the VLM at various levels of differences between the two
images. The “difference” between two images is measured
as the difference between the ground-truth task progress
associated with the images. We discretize the differences
into 10 bins along the x axis in Figure 6, where a larger
number indicates a greater difference between two images
in terms of task progress. On the y axis, the green, orange,
and blue bars represent the percentage where the VLM
preference label is correct, incorrect, or when there is no
preference. For all tasks, we observe a general trend of
increasing accuracy, decreasing uncertainty, and decreasing
error as the differences between the images increase, which

aligns with intuition. This trend is most clear and consistent
for the CartPole, Open Drawer and Soccer tasks. Overall,
for all tasks, we find that the VLM is able to generate more
correct preference labels than incorrect ones, and as shown
in Figure 4, the accuracy of VLM-generated preference
labels is sufficient for learning a good reward function and
policy.

6.4. How Does the Learned Reward Align With the Task
Progress?

Figure 7 plots the learned rewards (averaged over 3 trained
reward models with different random seeds) as well as the
true task progress on three MetaWorld environments along
an expert trajectory that fully solves the task. Note the
ground-truth task progress is not the same as the author-
provided reward function: the author provided reward is a
shaped version of the task progress. For Open Drawer, the
task progress is measured as the distance the drawer has
been pulled out; For Soccer, it is measured as the negative
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Figure 8. We compare RL-VLM-F using the proposed two-stage prompting strategy, and an ablated version of using a single-stage
prompting strategy. The performance of the single-stage prompting is lower on 3 of the 4 tasks.

distance between the soccer ball and the goal; For Sweep
Into, it is measured as the negative distance between the
cube and the hole. We normalize both the ground-truth task
progress and the learned reward into the range of [0, 1] for
a better comparison between them. An ideal learned reward
should increase as the time step increases along the expert
trajectory, as like the ground-truth task progress. As shown,
the reward learned by RL-VLM-F aligns better with the
ground-truth task progress compared with the VLM Score
baseline. We do observe that the learned reward tends to
be noisy and includes many local minima. Despite this,
the learned reward still achieves the highest value when the
task progresses the most (except for the task of Sweep Into).
As shown in Figure 4, the learned reward is sufficient for
learning successful policies. For Open drawer, we notice
that the reward produced by VLM Score remains zero. This
is likely because, during training, most of the scores given by
the VLM are 0, and the model learns to predict O at all time
steps to minimize the regression loss. We find the CLIP and
BLIP-2 scores on these environments are generally noisys;
the corresponding plots can be found in Appendix E.3.

6.5. Ablation on the Prompt Strategy

We used a two-stage prompting strategy for RL-VLM-F,
where the VLM is first asked to analyze the pair of images
in the analysis stage, and then output the preference label in
the labeling stage. Here we compare it with a single-stage
prompting strategy where we query the VLM to directly
output a preference label over the two image observations
in a single stage. The detailed single-stage prompt can be
found in Appendix D.4. Figure 8 presents the comparison
on 4 tasks: Open Drawer, Soccer, Sweep Into and Straighten
Rope. As shown, the success rate of using the VLM with the
single-stage prompt is lower than that of using the two-stage
prompt on 3 out of the 4 tasks.

7. Conclusion and Future Work

In this work, we present RL-VLM-F, a method that auto-
matically generates reward functions via querying VLMs
with preferences given a task descriptions and image ob-

servations for a wide range of tasks. We demonstrate our
proposed method’s effectiveness on rigid, articulated, and
deformable object manipulation tasks.

Future work could extend RL-VLM-F to an active learning
context, exploring both easy and informative VLM queries
for more efficient reward learning. The adaptable nature
of our method allows for the integration of more advanced
VLMs when they become available, potentially addressing
more complex tasks. It would also be interesting to test
RL-VLM-F on tasks with a longer horizon. One could first
decompose the tasks into subtasks with shorter horizons, ei-
ther via manual decomposition or foundation models (Ahn
et al., 2022). Then, RL-VLM-F can be used to solve each
subtask. Additionally, our approach offers a practical path-
way to applying RL in real-world settings, where obtaining
reward functions is often difficult.
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Appendix
A. Details on Tasks and Environments

We run our method and baselines on CartPole from openAl
Gym (Brockman et al., 2016), three rigid and articulated
object manipulation tasks from MetaWorld (Yu et al., 2020),
and three deformable object manipulation tasks from Soft-
Gym (Lin et al., 2021). For the three MetaWorld tasks, we
modified the gripper initial state such that it starts close
to the target object to manipulate. Figure 3 in the paper
shows the initial state for these 3 tasks. We also adjusted
the camera view such that the target object is clearly visible
at around the center of the image, to provide good images
for VLM to give preferences. We describe the observation
space and action space for those tasks as follows:

A.1. Observation Space

For policy learning with SAC, we use state-based observa-
tions; for reward learning, we use high dimensional RGB
image observations, rendered by the simulator. We now
detail the state-based observation space for each task.

MetaWorld Tasks. For MetaWorld tasks, we follow the
setting in the original paper (Yu et al., 2020). The state
observation always has 39 dimensions. It consists of the
position and gripper status of the robot’s end-effector, the
position and orientation of objects in the scene, and the
position of the goal.

CartPole. The state observation has 4 dimensions, including
the position and velocity of the cart, as well as the angle and
angular velocity of the pole.

Cloth Fold. The state observation is the position of a subset
of the particles in the cloth mesh. The cloth is of size 40 x
40, and we uniformly subsample it to be of size 8 x 8. The
state is then the position of the picker, and the positions of
all those subsampled particles.

Straighten Rope. The state observation is the positions of
all particles on the rope and has 36 dimensions.

Pass Water. The state observation includes the size (width,
length, height) of the container, the target container position,
height of the water in the container, amount of water inside
and outside of the container. The state observation has 7
dimensions.

A.2. Action Space

For all environments, we normalize the action space to be
within [—1, 1]. Below we describe the action space for each
environment.

MetaWorld Tasks. For MetaWorld tasks, the action space
always has four dimensions. It includes the change in 3D
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position of the robot’s end-effector followed by a normalized
torque that the gripper fingers should apply.

CartPole. The original action space is a discrete value in
0,1, indicating the direction of the fixed force the cart is
pushed with. We modified it to be continuous within range
[0, 1] such that SAC can be used as the learning algorithm.
The continuous action represents the force applied to the
pole.

Cloth Fold. For this task, we use a pick-and-place action
primitive. We assume that the corner of the cloth is grasped
when the task is initialized. The action is the 2D target place
location.

Straighten Rope. For this task, we use two pickers, one at
each end of the rope, to control the rope. Therefore, the
action space is the 3D delta positions for each picker and
has 6 dimensions in total. We assume the two end points of
the rope is already grasped at the beginning of the task.

Pass Water. The motion of the glass container is constrained
to be in one dimension. Therefore, the action also has a
dimension of 1 and is the delta position of the container
along the dimension.

B. Hyper-parameters and Network
Architectures

B.1. Image-based Reward Learning

For the image-based reward model, we use a 4-layer Con-
volutional Neural Network for MetaWorld tasks and Cart-
Pole and a standard ResNet-18 (He et al., 2016) for the
three deformable object manipulation tasks. Following PEB-
BLE (Lee et al., 2021a), we also use an ensemble of three
reward models and use tanh as the activation function for
outputting reward. For RL-VLM-F, we train the model by
optimizing the cross-entropy loss, defined in Equation 2. For
VLM Score, we train the mode by optimizing the MSE loss
between the predicted score and ground-truth score output
by the VLM. For both methods, we use ADAM (Kingma &
Ba, 2014) as the optimizer with an initial learning rate of
0.0003.

B.2. Policy Learning

Following PEBBLE (Lee et al., 2021a), we use SAC as the
off-policy learning algorithm. We follow the network archi-
tectures for the actor and critic and all the hyper-parameter
settings in the original paper for policy learning.

B.3. Training details

Our implementation is based on PEBBLE (Lee et al., 2021a).
Below we describe the feedback collection schedule for
each task. For all tasks, we use a segment size of 1. We



RL-VLM-F: Reinforcement Learning from Vision Language Foundation Model Feedback

M K N

Open Drawer 40 | 4000 | 20000
Soccer 40 | 4000 | 20000
Sweep Into 40 | 4000 | 20000
CartPole 50 | 5000 | 10000

Cloth Fold 50 | 1000 | 500
Straighten Rope | 100 | 5000 | 12000
Pass Water 100 | 5000 | 12000

Table 1. Hyper-parameters for feedback learning schedule.
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Figure 9. On the Fold Cloth task, we find the performance of GPT-
4V to be better than Gemini-Pro, possibly due to the complex
visual appearance of the cloth.

12000 14000

summarize the number of queries per feedback session (M
in Algorithm 1), the frequency at which we collect feedback
in terms of environment steps (KX in Algorithm 1), and the
maximum budget of queries (V) for each task in Table 1.
For Cloth Fold, we have to use a small number of maximum
budget of queries due to the quota limitation of GPT-4V.

C. Baselines
C.1. VLM score

For this baseline, we use the same amount of queries (K)
at the same frequency (M) as in our method to ask VLM to
directly output a score between 0 to 1. The reward model’s
architecture is the same as our method, except that the model
is trained with regression loss to regress to VLM’s output
score instead of classification loss as done in our method.

C.2. RoboCLIP

In RoboCLIP, the backbone video-language model is
S3D (Xie et al., 2018), trained on clips of human activi-
ties paired with textual descriptions from the HowTo100M
dataset (Miech et al., 2019). Given the assumption that the
model generalizes to unseen robotic environments, we ap-
plied this baseline solely to the three MetaWorld tasks that
contain a robot in the scene. We obtain the implementation

directly from the authors. To maintain uniform assumptions
across methods, we compare against the RoboCLIP variant
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that only uses a text description instead of a video demon-
stration to compute the similarity score with the agent’s
episode rollout for reward computation. According to the
original paper, this text-only variant of RoboCLIP under-
performs the video-based method, corroborating the lower
performance observed in our tasks.

D. Prompts
D.1. RL-VLM-F and VLM Score

For both RL-VLM-F and VLM Score, we use a unified
query template combined with specific task goal descrip-
tions. The templates for RL-VLM-F and VLM Score are
shown in Figure 11 and Figure 13:

The only task-specific part in both prompts is the task goal
description. We use the same set of descriptions for both
methods. We summarize the textual description for each
task in Table 2.

D.2. CLIP Score and BLIP-2 Score

The task descriptions for both CLIP Score and BLIP-2 Score
baselines are summarized in Table 3. The semantic meaning
is almost identical to those used by RL-VLM-F and VLM
Score, except that the description is structured differently.
For CartPole, we used the exact same prompt as in (Roca-
monde et al., 2023), since they reported successful learning
of this task using that prompt.

D.3. RoboCLIP

For the task descriptions for the RoboCLIP baseline, we
followed the format used in the original paper (Sontakke
et al., 2023). We summarize the text descriptions in Table 4.

D.4. RL-VLM-F single stage prompt

In Section 6.5 we compared to an ablated version of RL-
VLM-F where a single-stage prompting strategy is used.
The single-stage prompt used is shown in Figure 12. For a
fair comparison, it is kept to be the same as the two-stage
prompt with only minor differences.

E. Additional Experiment Results

E.1. GT Task Reward (Oracle) and GT Sparse Reward
(Oracle)

To better contextualize the results from different reward
models, we test two more baselines, i.e., GT Task Reward
(Oracle) and GT Sparse Reward (Oracle). For GT Task
Reward (Oracle), we use the original ground-truth human-
written reward function with SAC as the RL algorithm to
train the policy. For GT Sparse Reward (Oracle), we use
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Figure 10. Learning curves of GT Task Reward (Oracle) and GT Sparse Reward (Oracle), along with RL-VLM-F and all baselines.

sparse reward with SAC. The reward is 1 when the goal is
achieved and 0 otherwise. The results of GT Task Reward
(Oracle) and GT Sparse Reward (Oracle), along with our
method and all baselines, are shown in Figure 10. For most
tasks, RL-VLM-F ’s final performance can match that of
using ground-truth reward, highlighting the effectiveness of
our method.

E.2. Ablation Study: Influence of Using Different VLMs

For RL-VLM-F and the VLM score baseline, we use
Gemini-Pro (Team et al., 2023) as the VLM for all tasks
except Fold Cloth. We find Gemini-Pro to perform poorly
on Fold Cloth, so we instead use GPT-4V (OpenAl, 2023) as
the VLM for this task for both methods. Figure 9 compares
the learning performance of Gemini-Pro versus GPT-4V on
the task of Fold Cloth. We do observe GPT-4V to achieve
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much better performance on this task than Gemini-Pro. The
poorer performance of Gemini-Pro on this task could be
possibly due to the more complex visual reasoning required
for deformable cloth.

E.3. More Visualization of the Learned Reward

Here we show the learned reward from RL-VLM-F and the
VLM Score baseline, as well as the CLIP and BLIP-2 score
along an expert trajectory on three MetaWorld tasks. We
compare the learned reward from RL-VLM-F and the VLM
Score / CLIP and BLIP-2 score to the ground-truth task
progress. The results are shown in Figure 14. For all three
tasks, the reward learned by RL-VLM-F aligns the best with
the ground-truth task progress.
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Prompt Template for RL-VLM-F (ours)

Analysis Template

Consider the following two images:
Image 1:

[Image 1]

Image 2:

[Image 2]

1. What is shown in Image 1?
2. What is shown in Image 2?
3. The goal is to [task description]. Is there any difference between Image 1 and Image 2 in terms of achieving the goal?

Labeling Template

Based on the text below to the questions:

[Repeat the 3 questions in the Analysis Template]

[VLM response]

Is the goal better achieved in Image 1 or Image 2? Reply a single line of 0 if the goal is better achieved in Image 1, or 1 if
it is better achieved in Image 2.

Reply -1 if the text is unsure or there is no difference.

Figure 11. Prompt Template for RL-VLM-F.

Task Name Goal Description

Open Drawer to open the drawer

Soccer to move the soccer ball into the goal

Sweep Into to minimize the distance between the green cube and the hole

CartPole to balance the brown pole on the black cart to be upright

Cloth Fold to fold the cloth diagonally from top left corner to bottom right corner

Straighten Rope to straighten the blue rope

Pass Water to move the container, which holds water, to be as close to the red circle as possible without causing

too many water droplets to spill

Table 2. Goal description used in RL-VLM-F and VLM Score baseline.

Single Stage Prompt Template for RL-VLM-F

Consider the following two images:
Image 1:

[Image 1]

Image 2:

[Image 2]

1. What is shown in Image 1?
2. What is shown in Image 2?
3. The goal is [task description]. Is there any difference between Image 1 and Image 2 in terms of achieving the goal?

Is the goal better achieved in Image 1 or Image 2?7 Reply a single line of 0 if the goal is better achieved in Image 1, or 1 if
it is better achieved in Image 2.
Reply -1 if the text is unsure or there is no difference.

Figure 12. The single stage prompt Template for RL-VLM-F.
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Prompt Template for VLM Score

Analysis Template Consider the following image:

[Image]

1. What is shown in the image?

2. The goal is [task description]. On a scale of O to 1, the score is 1 if the goal is achieved. What score would you give
the image in terms of achieving the goal?

Labeling Template

Based on the text below to the questions:

[Repeat the 3 questions in the Analysis Template]

[VLM response]

Please reply a single line of the score the text has given. Reply -1 if the text is unsure.

Figure 13. Prompt Template for VLM Score.

Task Name Goal Description

Open Drawer The drawer is opened.

Soccer The soccer ball is in the goal.

Sweep Into The green cube is in the hole.

CartPole pole vertically upright on top of the cart.

Cloth Fold The cloth is folded diagonally from top left corner to bottom right corner.

Straighten Rope The blue rope is straightened.

Pass Water The container, which holds water, is as close to the red circle as possible without causing too many

water droplets to spill.

Table 3. Goal description used in CLIP Score and BLIP-2 Score.

Task Name Goal Description

Open Drawer  robot opening green drawer

Soccer robot pushing the soccer ball into the goal

Sweep Into robot sweeping the green cube into the hole on the table

Table 4. Goal description used in RoboCLIP.
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Figure 14. Comparison of learned reward functions from RL-VLM-F and VLM Score, as well as CLIP and BLIP-2 score to the ground-
truth task progress along a trajectory rollout on three MetaWorld tasks. From left column to right: reward learned by RL-VLM-F, reward
learned by VLM Score, CLIP Score, BLIP-2 Score. From top row to bottom: Open Drawer, Soccer, and Sweep Into. The reward learned

by RL-VLM-F aligns the best across all compared methods.
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