A Appendix

A brief note on notation and convention—we’ve adopted the following standards for consistency
across the paper:

1. Tensor axis order: when indexing into any output of our model (e.g. . +,;), the component
aka object dimension (generally size K) precedes the time dimension (size T), which in
turn precedes the spatial dimension. We use a single spatial dimension to account for 2D
image-centric space.

2. Allocentric spatial axes: when discussing the position or orientation of an observer or object,
we label the axes of 3D space consistently across datasets. The ‘x‘ and ‘z‘ directions span
the ground plane (with z pointing determining an object’s depth), while ‘y* points upward
(determining height).

3. Latent vs latents: We use "latent" to denote a multidimensional hidden variable. Therefore,

"latents" denotes a ser of multidimensional hidden variables (such as O or F'). Any particular
dimension of a latent is referred to as a latent attribute or feature.

4. Segmentation maps: we use a consistent color scheme when plotting segmentation maps
(e.g. Figure 4). See Figure 7 for our component-wise color palette. The component order is
always determined by the output of a given model.

Palette used for all segmentation maps

1 2 3 4 5 6

7 8 9 10 1 1z 1B 14 15 16

Figure 7: Color palette used for all segmentation masks.

A.1 Extended Related Work

In Figure 8, we demonstrate a limitation of existing scene decomposition approaches which attempt
to recognize object-based structure without taking into account a potentially moving observer.

A B
—e— latent 1
3 latent 2
y . - —e— latent 3
—o— latent 4
—e— latent 5
. —e— latent 6
latent 7
latent 8
N -
\.\“"
N
>

- >
time

Latent posterior mean

Decoded entity

time

Figure 8: Changing view in a 3D scene illustrating an issue with existing models. A. Consider a
static 3D scene observed from a changing viewpoint. We draw attention to the soccer ball lying on the
bed. Its size and position appear to change in image space. Row 2 shows the decoded reconstruction
of this particular object by a MONet [3] model (fed and trained with ground-truth object masks
instead of inferring its own segmentation). B. Given their ignorance of spatial structure with respect
to viewpoint, many existing object-centric representation learning methods are bound to conflate
changes in viewpoint with object attributes; in this case, MONet encodes the changes directly into
the ball’s latent representation.

We also draw connections to more prior work (following Section 2 in the main paper):

Video processing and vision. (1) Human pose estimation has been a common motivation of
view-invariant representation learning in vision [48—51]. Some of this work also uses variational
unsupervised learning, but the focus is largely on single objects, or makes strong assumptions about

15

the kind of object (e.g. hands and their degrees of freedom [52]) being studied. (2) A subset of
video understanding and generation models do aim to separate time-invariant and time-varying
information like SIMONe. Some [53, 54] require specially designed objectives to achieve this
separation; others [55—57] structure their generative models to encourage it. While this principle
has enabled models to generate quality video predictions, all of them represent the whole scene
with a single latent; they cannot decompose it into objects. (3) Another spate of successes has
emerged from the use of transformers [58] in vision. They work well at supervised image and video
tasks ranging from classification to detection and segmentation [59-62]. One such model [63] is
capable of foreground-background segmentation without supervision but is trained on still images.
For video-based tasks, [64—67] showed the importance of spatio-temporal attention (i.e., integrating
information jointly over space and time), a principle that also works for SIMONe’s inference network.
However, most prior work relies on supervised learning. To our knowledge, SIMONe is the first
model to demonstrate the benefit of spatio-temporal, cross-frame (rather than sequential) attention to
decomposing multi-object scenes in a fully unsupervised manner.

A.2 Datasets

A.2.1 Objects Room 9

Objects Room was a MuJoCo-based dataset originally released [68, 44] under the Apache 2.0 license
and used for prior work such as GQN and MONet [7, 3]. Our variant, which we denote Objects
Room 9, contains more objects per scene (nine rather than three). We use length-16 input sequences
with the camera moving on a fixed ring and facing the center of the room. The objects themselves are
static.

A.2.2 CATER

CATER (a dataset for Compositional Actions and TEmporal Reasoning) was released by [45] under
the Apache 2.0 license. We augmented the open-source data generation scripts to further export
ground-truth object masks (with lighting disabled, so there’s no object shadows). We keep all settings
identical to the publicly available version of the dataset containing the moving camera and two
moving objects per scene. Like the original dataset, we have three, randomly placed light sources in
each scene. This often leads to multiple shadows per object.

See Figure 9 for a scatter plot of ground-truth object positions in CATER, highlighting the presence
of static and moving objects.

To train SIMONe, we crop the original 320x240 images centrally to a square aspect ratio and
then resize them to 64x64. We use length-16 sequences from the beginning of each video. For
segmentation figures on CATER (Figures 4, 16-18), we add a constant value 0.2 to images of the
scene (and reconstructions) to increase their brightness. This is done for visualization only.

Ground-truth object positions in CATER

3.0

T T (N (NN T O 6 ¢

2 25 Sessshesnindeboodh avlodhmw nsoone o
e © S wes 8 - e
» .
L] g -.“..10.-‘—* Sesnm®

[y . "> . H

1 20 Bem o8 o e . .

« e @ . s o mws w @

c c s . . .o

S

-2 = .. 2 .-o. L o‘ i ‘o.o“.$
G0 @ . ® © s e PO LY
2 g s s 8 e e ety ma

N N W TO® 08, $a 0, . -
. 1) O} o e
=] e LY e om's seg

.
10 . +] o %

R ———
I8E NG e Ll g0 T B M I 6

05 B S e CENEe N0 0 CEeme JIEEX
1) . oEEES—

s = 5
[T =R=E = SPst

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
x-position x-position

Figure 9: Random sample of object positions from 50 CATER scenes over 32 timesteps.

16

A.2.3 Playroom

The Playroom is a Unity-based environment for object-centric tasks [69, 46], originally released as
pre-packaged Docker containers with an Apache 2.0 license. We used an arbitrary behaviour policy
(trained by demonstrations) to generate video sequences from the environment (one per episode). The
L shape of the room remains the same in each instantiation but its appearance and all object/furniture
attributes are varied. See Figure 10 for a sample of the agent’s pose in the environment. See also
Figure 11 for images of Playrooms arranged by the agent’s orientation (yaw)—these can be used as a
reference for the view synthesis outputs in Figures 3, 13, and 14.

Sample of agent trajectories
around the Playroom

z-position

B) 2 7 2
X-position

Figure 10: Random sample of 64 ground-truth agent trajectories around the Playroom. Arrow
heads denote the agent’s orientation, while arrow positions denote location. Note that the trajectories
are varied, and the agent rarely observes the full room in a single sequence.

17

Ground-truth views around the Playroom

z orientation

~1.00 075 —0.50 —025 0.00
x orientation

Figure 11: A scatter plot of ground-truth views around the Playroom, when the agent is roughly at
the center of the room, with a level pitch (i.e. it’s not looking at the floor or ceiling). This reveals the
structure and variety in the procedurally generated Playroom from different orientations (yaw).

18

A.3 Model and Hyperparameters

See Table 7 for compute resources used in training SIMONe and baseline models.

A.3.1 Decoder

{01 10k}

Object Iatems

Pixel mixture
model

Frame latent

Figure 12: SIMONe’s decoder network Dy architecture.

Our pixel-level decoder Dy (o, f;;1;, t) is implemented as a 1x1 CNN (effectively a pixel-wise MLP),
which receives concatenated inputs [0y, f;, 1;, t]. Note this means the decoder can be parallelized (i.e.
batch-applied) across all batch elements, all K objects, and all T frames. For CATER and Playroom,
the CNN has 6 hidden layers with 512 output channels each. For Objects Room 9, we use 4 hidden
layers with 128 channels each. An additional output layer produces 4 channels containing the RGB
pixel (reconstruction) means pt, ; ; and mixture logits My ¢ ;.

We’ve used Dy(oy, f;;1;,t) as shorthand for Dy(oy i, £ 1,3 1i, t). Instead of prior decoding ap-
proaches [70] which sampled a single latent variable per object and broadcast it spatially to form the
input to the decoder, we take i.i.d samples o, ; ; ~ ¢(0x|X) across all time-steps 1 < ¢t < T and
across all pixels 1 < i < HW = 64 - 64. Likewise, we take i.i.d samples f;, ; ; ~ ¢(f;|X) across
all object slots 1 < k£ < K and across all pixels 1 < i < HW = 64 - 64. This "multisampling"
approach, while not crucial, does improve early training performance. We hypothesize that this is
due to a reduction in the gradient bias resulting from (the alternative approach of) copying single
samples oy, and f; across all space and time in a sequence.

Hence, to be explicit, the full pixel-wise decoder can be written as follows:

M iy Weti = Do(Ok tiy Titi51is)
A.3.2 Encoder

See Figure 2 in the main text for an architecture diagram.

CNN. The encoder £4(X) contains an initial CNN which outputs I.J = 8 - 8 spatial feature maps
for each frame. The CNN layers have stride 2, kernel size 4, and output 128 channels each—hence
the number of layers is determined by the size of the input (e.g. three layers when the input size
HW = 64 -64). We use a ReLU activation after each layer.

Transformers. The CNN is followed by transformers 7; and 73, which have identical hyperparam-
eters. For CATER and Playroom, the transformers have 4 layers, 5 heads, value size 64, and MLPs
with a single hidden layer (size 1024). For Objects Room 9, we use even simpler transformers, with 3
heads and 256 MLP hidden units each (other settings are kept the same). Note that the transformer
embedding size is determined as the product of the number of heads and the value size—it is not
constrained by the dimensionality of the transformer inputs.

Spatial pool (if necessary). In between 7; and 75, we need to reduce the number of slots from
TIJtoTK (if IJ > K). We use a strided sum across the spatial dimensions (sized I and J) to do

s, with the kernel size and stride each set to [I /v K, J/v/ K| = [2,2]. Finally, we scale the pooled
values by /K /IJ = /16/64 = 1/2 for our experiments.

19

Objects Room 9 CATER Playroom
Shape of input, [T, H, W] [16, 64, 64] [16, 64, 64] [32, 64, 64]
Shape of decoded image, [4, 32, 32] [8, 32, 32] [4, 64, 64]
(T4, Ha, Wal
Number of objects, K 16
Frame/object latent dimen- 32
sionality

Annealed:
Object latents KL loss le-8 le-5 5e-6 = 5§—7
weight, G, (exponential
window: 50k steps)

Frame latents KL loss le-8 le-4 le-7
weight, B¢
Reconstruction (NLL) loss 0.2
scale,
Pixel likelihood scale, o, 0.08
Number of training iterations 4e5 2.5e6 2.5e6
Learning rate 20e-5
Optimizer Adam

Table 4: Summary of hyperparameters for SIMONe across all datasets.

MLPs. The outputs € , of 7> are aggregated separately along the spatial and temporal axes. These
aggregates are passed through mlp, and mlp,, to yield the frame and object posterior parameters
respectively. Both MLPs have a single hidden layer with 1024 units.

A.3.3 Training details

While training, we decode fewer frames than the number fed and encoded by the model as motivated
in Section 3.3. We simply take 7T; random frame indices from {1,...,7} without replacement.
However, when we subsample pixels to decode, we use a strided slice of the input (e.g. stride [2, 2]
when Hy = H/2 and W; = W/2). Note that for any evaluation or visualization, we decode the full
length and size [T, H, W] of the input sequence.

A.4 Baseline Models

See Table 7 for compute resources used in training baseline models.

A.4.1 Slot Attention

For all three datasets, we use slot size (i.e., dimensionality) 32 and train for 500,000 steps with a
batch size of 128. We use linear learning rate warmup over the first 10,000 steps. Slot Attention
seemed very sensitive to the choice of number of slots, with the model prone to oversegmenting
rather than leaving slots empty. So we swept over the following settings for all datasets: number of
slots (7 vs 10), encoder/decoder architecture (see Table 5), and learning rate (de—3, 4de—4, 4e—5).
We ran 5 random seeds for each hyperparameter setting. The mean and standard deviations reported
in the Table 1 are calculated over the random seeds for the best performing hyperparameter setting
(in terms of ARI-F).

A4.2 MONet

For all three datasets, we use 10 object slots, 64-dimensional latents, and train for 5,000,000 steps
with an effective batch size of 32. We swept over the following: scale of the KL penalty 5 (0.5
or annealed from 0.01 to 30 with an exponential window of 200,000 steps), pixel likelihood scale
for the foreground slots (0.08 or 0.09), and the size of the pixel broadcast decoder (64 channels/5
hidden layers or 512 channels/6 hidden layers). The decoder settings are the same we used for
the Slot Attention sweeps, except that we use 1x1 convolutions with stride 1 for MONet. Note

20

Small Large
Conv2D(c=512, k=5, s=1)
Conv2D(c=64, k=5, s=1) Conv2D(c=512, k=5, s=1)
CNN Conv2D(c=64, k=5, s=1) Conv2D(c=512, k=5, s=1)
Conv2D(c=64, k=5, s=1) Conv2D(c=512, k=5, s=1)
Encoder
Conv2D(c=64, k=5, s=1) Conv2D(c=512, k=5, s=1)
Conv2D(c=512, k=5, s=1)
Position MLP MLP(64) MLP(512)
Output MLP MLP([64, 64]) MLP([512, 512])
num iterations=3, slot size=32 | num iterations=3, slot size=32
Slot Attention GRU(32) GRU(32)
MLP(128) MLP(512)
Conv2D” (c=512, k=1, s=1
Conv2D7 (c=64, k=5, 5=2) onv2D (e=312, k=1, s=1)
T Conv2D* (¢=512, k=1, s=1)
Conv2D"* (c=64, k=5, s=2) T
T Conv2D" (c=512, k=1, s=1)
Conv2D"* (c=64, k=5, s=2) T
CNN T Conv2D" (c=512, k=1, s=1)
Decoder Conv2D" (c=64, k=5, s=1) T
T Conv2D* (c=512, k=1, s=1)
Conv2D* (c=64, k=5, s=1) T
Conv2D(c=4, k=3, s=1) Conv2D* (c=512, k=1, s=1)
o Conv2D(c=4, k=3, s=1)
Position MLP MLP([64, 32]) MLP([128, 32])

Table 5: Slot Attention baseline architectures. c: number of channels, k: kernel size, s: stride,
Position MLP: MLP applied to positional encoding. MLP([m, n]) denotes an MLP with layers of size
m and n.

that the background pixel likelihood scale is fixed at 0.07. The encoder is identical to the original
implementation.

A4.3 S-IODINE

For all three datasets, we use latent size of 64 and train for 500,000 steps with a batch size of 128.
We use a fixed learning rate of 3e-4 using the Adam optimizer. We use 7 slots for all models. We
swept over the following: encoder/decoder architecture (see Table 6), scale of KL term (0.5 or 1.0)
and output likelihood standard deviation (0.08 and 0.09).

A44 GON

For the view synthesis comparison, we trained GQN on Playroom data. The architecture is the
same as in [30]. We use an autoregressive decoder with 5 steps, 16-dimensional latents, and 256
hidden units in each layer. We use a Nouveau ResNet encoder and a 2D convolutional LSTM as the
recurrent core. We set the likelihood scale to 0.08 to ensure the output distribution is parameterized
identically to SIMONe-VS. To train the model, we used GECO to target a minimum reconstruction
log likelihood (4.3, 4.5 or 4.7 nats per pixel). We used 16 frames as the context for each scene; these
were randomly sampled from a 32-frame sequence.

A4.5 NeRF-VAE

The NeRF-VAE model for the view synthesis comparison is the same as in [30]. Like GQN, we trained
NeRF-VAE with GECO, setting thresholds of 3.8, 4.0 or 4.2 nats per pixel for the reconstruction log
likelihood (values higher than 3.8 were not attained). We used 16 context frames from the sequence,
0.08 likelihood scale, and 512 latent dimensions.

A.5 Extended Results
A.5.1 View synthesis

Figures 13-14 show more examples of viewpoint traversals comparing SIMONe-VS, NeRF-VAE and
GQN. We execute the same traversal around the room (as in Figure 3) given different input sequences

21

Small Large

2D = 4 k: :]
Conv2D(c=32, k=3, s=2) 0 c=04, k=5, s=

CNN Conv2D(c=64, k=5, s=1)
Conv2D(c=32, k=3, s=2
Encoder onv2D(e=32,k=3,5=2) | L oDem64, k=5, s=1)

Conv2D(c=64, k=3, s=2) Conv2D(c=64. k=5, s=1)
Output MLP MLP([256, 256])

LSTM(128)

Linear(128)

Conv2DT (c=512, k=1, s=1)
Conv2D7T (¢=512, k=1, s=1)
Conv2D7 (c=512, k=1, s=1)
Conv2DT (¢=512, k=1, s=1)
Conv2DT (¢=512, k=1, s=1)
Conv2D(c=4, k=3, s=1)

Table 6: S-IODINE baseline architectures. c: number of channels, k: kernel size, s: stride, MLP([m,
n]) denotes an MLP with layers of size m and n.

Refinement Network

Conv2D7T (c=32, k=5, s=2)
Conv2D7 (¢=32, k=5, s=2)
CNN Conv2D7T (c=32, k=5, s=2)
Conv2D7T (¢=32, k=5, s=1)
Conv2D(c=4, k=3, s=1)

Decoder

Playroom CATER Objects Room
SIMONe 64/128 TPUVI x 9 sweeps x Sreps 64 TPUv2 x 4 sweeps x Sreps 64 TPUV2 x 4 sweeps x 5 reps
MONet 32 TPUv1 x 8 sweeps X 5 reps 32 TPUv1 x 8 sweeps X 5 reps 32 TPUv1 x 8 sweeps X 5 reps
S-IODINE 32 TPUv1 x 16 sweeps X 5 reps 32 TPUvI1 x 16 sweeps x Sreps 32 TPUvI x 16 sweeps x 5 reps
Slot Attention 8 TPUvV2 x 24 sweeps X 5 reps 8 TPUV2 x 24 sweeps x Sreps 8 TPUV2 x 24 sweeps X 5 reps

Table 7: Compute resources used to train SIMONe and baseline models. TPU: Tensor Processing
Unit. TPUv1 and TPUv2 have 8GiB and 16GiB memory respectively. Each TPU unit refers to 1
core. Each "sweep" refers to a unique hyperparameter combination, while "reps" refer to independent
random seeds.

(i.e. different rooms observed partially via different agent trajectories). Note that some context input
sequences contain very little motion between frames (see last example in Figure 14). The model still
handles this well.

We also compare the view-supervised models based on their representation cost and reconstruction
fidelity (rate and distortion respectively) in Figure 15. We first trained SIMONe-VS, and attempted
to replicate its attained log-likelihood in the baseline models via constrained optimization (GECO).
NeRF-VAE and GQN reconstructions saturate at the low end of the GECO thresholds we tried,
implying bottlenecks that prevent the models from reaching higher log likelihoods. GQN does match
SIMONe-VS in its KL representation cost (summed over K object latents in SIMONe-VS’s case).
But as observed in the view synthesis images, GQN overfits to the context frames and is unable to
interpolate between viewpoints successfully.

This speaks to the effectiveness of SIMONe’s object-centric latent structure. Generally speaking,
we expect SIMONe to achieve better reconstruction fidelity at the same total KL cost (or a similar
reconstruction fidelity at lower KL cost) than a model which infers a single latent variable for the
whole scene.

A.5.2 Instance segmentation

Figures 16-18 visualize how baseline models perform at segmenting CATER and Playroom scenes
in comparison to the SIMONe results we showed in Figure 4. Note that for all segmentation maps
visualized, we use soft (inferred) component mixture weights in combination with the color palette in
Figure 7. This helps show each model’s confidence in its segmentation. A blurry segmentation map
(e.g. S-IODINE on Playroom data in Figure 17) suggests higher-entropy component weights.

To elaborate on the qualitative differences between the models, note that (1) MONet exhibits a
tendency for clustering by color. On Playroom data, it consistently merges the brown base of each
bed with the brown floor. It also groups toys/small objects by color (e.g. the blue mattress and
blue-windowed bus in column 4 or the purple duck and purple cushion in column 5 of Figure 16). On

22

the other hand, SIMONe segments the full (two-colored) bed as one object consistently, and we don’t
see it group the aforementioned toys by color. (2) When Slot Attention segments CATER, it ignores
object shadows completely. It infers crisp shapes, showing a clear propensity to use each object’s
uniform color and lack of texture. SIMONe on the other hand assigns every object’s shadows (up to
three) in the corresponding object’s segment.

A.5.3 Temporal abstraction and dynamics prediction

We show more examples of the separation between object representations/trajectories and the camera’s
trajectory on CATER in Figure 19. In particular, we showcase other object dynamics present in the
dataset (e.g. objects sliding on the floor or rotating), which SIMONe also captures accurately. As
before, the first row in each figure shows an input sequence X. The other two rows reuse the object
latents O|X from the first sequence, but recompose them with frame latents from other (arbitrary)
sequences: F|X’ and F|X". We observe that the recomposed scenes are still composed of the same
objects with their exact trajectories, while only the camera motion changes. This shows that object
trajectories are represented invariantly of viewpoint (and vice versa).

A.5.4 Frame latents

To expand on our quantitative assessment of frame latents in Table 2, we look at the effect of
hyperparameters /3, and 8¢ on the relationship between frame latents and camera pose (see Figure 20).
This relationship is one determinant of how "view-invariant" the object latents can possibly be.

Beyond their aggregate information content, we might also want that frame latents capture meaningful
changes (e.g. in terms of view) per latent dimension. Figure 21 shows the effect of individual frame
latent attributes on Playroom. We selected the top ranking latents by marginal KL, and traverse
them individually on several seed scenes. We indicate our interpretations of their behaviour in each
row. Note that the latents controlling position in the room appear somewhat entangled. This may
be a consequence of the policy used to collect our dataset; the agent’s position is not arbitrary but
influenced by the objects in the room.

A.5.5 Composition of object latents from different scenes

Given an object-centric representation, one should be able to manipulate scene contents and produce
plausible compositional behaviour. This could involve removing or adding objects, swapping content
between scenes, or varying the number of objects. We present an early assessment of SIMONe’s
capabilities to perform such scene editing. We take a few different input scenes and compose (subsets
of) their object latents into a novel composite scene, which can be then rendered from different points
of view. See Figure 22 for an example.

A.6 Wider Impact

SIMONe could benefit robotics and computer vision in multi-object scenes, whether indoors or on
the street. There is some potential for misuse, especially in surveillance. While some prior work [20]
has in fact used CCTYV visuals of crowded scenes to demonstrate real use cases, we refrained from
doing so.

23

Room layout and viewpoints Target novel views
D> 4 Y » < » A A
-
¥
>
lnPUtframes o

NeRF-VAE

c
S
ksl
[T
Z o
(=]
=5
(2]
g - -
£
g

Room layout and viewpoints Target novel views

> 4 Y » < » A 7
[«
V)

-;‘ﬁ] .--J

> 4
i
NeRF-VAE

«rf

Input frames (4 of 16)

SIMONe

segmentation prediction

Room layout and viewpoints Target novel views

@
-

>
NeRF-VAE

»
4
*>~(

Input frames (4 of 16)

z
(U]

IIIIIIII
o

Figure 13: Extended comparisons of scene representation and view synthesis capabilities be-
tween SIMONe-VS, NeRF-VAE, and GQN. In each figure, a sub-sample of the input context sequence
is shown at the lower left. At the upper left, a map of the room shows the camera pose corresponding
to the visualized input images in dark gray, as well as the remaining input frames (observed by the
models) in light gray. Columns on the right correspond to the colored (novel) viewpoints on the map.
Refer to Figure 3 for more details.

SIMONe

segmentation prediction

24

Room layout and viewpoints Target novel views
P> 4 Y » - » A 7
4 '

p <

' ‘
Ly

NeRF-VAE

GQN

Input frames (4 of 16)

SIMONe
segmentation prediction

."]l’ ’{l | l . ‘! :ﬂ ‘

Target novel views

,,
v
A
NeRF-VAE

»r<
>

GQN

i . - 4
APTERRP |

Figure 14: Extended comparisons of scene representation and view synthesis capabilities be-
tween SIMONe-VS, NeRF-VAE, and GQN. Refer to Figures 3, 13 for more details.

SIMONe

segmentation prediction

GECO Il threshold
(color)

‘
5000 3.8 (@
40
42 o0
43 <
4000 45
47 O

Model (marker)
3000 GON

NeRF-VAE

SIMONe-VS

2000

Total KL

1000

3.8 39 40 41 42 43 44 45 46
Reconstruction log-likelihood

Figure 15: Log-likelihood & KL comparison across view-supervised models. We show five
independent runs of GQN and NeRF-VAE for three GECO log-likelihood thresholds each. For
SIMONe-VS, we show three independent runs (trained as usual without GECO). Note that SIMONe-
VS’s KL shown here is the sum (not average) over K object latents.

25

@
£
o
]
o
=

MONet
Reconstruction

-
e

e

O

Playroom

Ground-truth
segmentation
-

4.
&

R

V..
I

MONet
segmentation

' oo
o

I B

$
|

&
i ¥

-
B
o

t

Figure 16: Segmentations produced by MONet on CATER and Playroom. Compare to Figure 4 in

main text.

@
£
e
=]
o
=

CATER

S-IODINE
Reconstruction

m

Playroom
=

Ground-truth
segmentation

g

“®

R

-

.!

:

5
W
£
5%
aE
g

=
e
E

S
L

Figure 17: Segmentations produced by S-IODINE on CATER and Playroom. Compare to Figure 4

in main text.

Playroom

Y '. "i - . ‘-ﬂ'ﬂd

';'L
Wi

Figure 18: Segmentations produced by Slot Attention on CATER and Playroom. Compare to
Figure 4 in main text.

]
E
2

&=
=
5
a
£

Slot Attention
Reconstruction

Ground-truth
segmentation

Slot Attention
segmentation

27

Cube rotating Cone sliding, cone flying

Camera
motion 1
Camera
motion 1

O|X,F|X

Camera
motion 2

O|X,F|X"
Camera
motion 2

time

Flying sphere

O|X,F|X
Camera
motion 1
Camera
motion 1

Camera
motion 2

o~
Sc
20
5]
@ O
Ve

O|X,F|X"

Figure 19: Extended results showing separation of object trajectories from camera trajectories.
See Figure 6 for details.

Camera pose prediction R2 as a function of KL loss hyperparameters

Camera location Camera vector (Rodrigues)
-
(2=
o E‘ 08 0.8
g
‘ 0.6 0.6
— o - L .
g ¢
2 A
@ 04 0.4
53 1
g 02 02
g o
(T8
- 0.0 0.0
1e-8 1le-6 1le-4 1e-2 1e-8 le-d 1le-4 1le-2

Object latent KL scale By Object latent KL scale By

Figure 20: Camera pose prediction given KL pressure hyperparameters. Effect of 3, and 8¢ on
the performance of predicting camera pose from frame latents (R? score, higher is better).

28

feature traversal of frame latents feature traversal of frame latents

-10 0 +10 -10 0 +10

feature traversal of frame latents feature traversal of frame latents

-10 0 +10 -10 0 +10

Figure 21: Traversals of frame latent attributes. We manipulate independent dimensions of a given
frame latent. These should hypothetically control global/view attributes. (In contrast to Figure 5, all
objects in the scene are affected when a frame latent attribute is manipulated). Each panel shows a
different seed scene (visible in the middle column). The rows correspond to different latent attributes
being manipulated (values are across the columns). We have labeled the rows with our interpretation
for the effect of each latent attribute.

Pitch

Zoom/ Yaw /
strafe objects depth objects rotation (looking up/down)

Wall to wall

Room
layout/view

Pitch

Zoom/ Yaw /
strafe objects depth objects rotation (looking up/down)

Wall to wall

Room
layout/view

29

Source scenes Composite scene

Pink
duck

Ceiling
Walls
Floor

\ ’)

~_, 7 i
\
Red I
duck

Figure 22: Composition of object latents from different scenes. Left: We take three different
source scenes, and select different content from each (i.e. specific object latents, corresponding to the
circled/labelled objects). Right: We then compose the selected contents into a novel set of objects
(fewer than the usual K = 16), which we can render from any viewpoint around the room (for this
figure, we take the frame latent f; from each source image on the left). Note that the model is able to
cope with removing and adding objects, and renders them in a plausible fashion despite never being
trained to do so.

30

