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Due to the space limitation in the main paper, we provide more
details on implementation and experimental results in the supple-
mentary material.

1 DOWNSTREAM TASKS VALIDATION ON
SEMANTIC SEGMENTATION

In the main paper, we present the validation results for downstream
remote sensing tasks in scene classification based on the UC Merced
Land dataset. Additionally, we evaluate the effects of reconstructed
images from various compression methods on the performance of
a fine-grained downstream task, specifically semantic segmenta-
tion, using the ISPRS-Potsdam dataset. Details of these datasets are
shown in Table 1.

The effects of reconstructed images for semantic segmentation
tasks are shown in Table 2. We marked the results with similar bpp
in blue for easy comparison. Our context model exhibits the least
degradation in downstream tasks at similar bpp. It is also notewor-
thy that when our context model is combined with the backbone
network of HL_RSCompNet, our approach achieves relatively sat-
isfactory results even at extremely low bpp, as indicated by the
underlined data.

2 IMPLEMENTATION DETAILS
2.1 Detailed Network Structures of our STCM

In this section, we provide a detailed network illustration of our
Spatial-Temporal Conext Model (STCM). Figure 1 shows the net-
work structures of the channel-wise, spatial, and temporal context-
predicting modules in our context model and the structure of the
parameter aggregation block used in the entropy model to combine
context priors and hyper priors. In our approach, the stacking layer
number of spatial context predicting can be adjusted arbitrarily
according to data characteristics and model performance. We follow
the uneven group division in ELIC[2] for the channel-wise context
prediction, whose channel number ranges from 8 to 96 for each

group.

2.2 Training and Evaluation Details

In this section, we provide more implementation details of the
training process of our context model and other experimental details
including downstream tasks.

Training data organization. The fMoW-full dataset includes
RS images with different numbers of bands, such as 3, 4, and 8. To
organize the training data, we randomly select three bands from
the images to guide the model in learning to deal with spectral
data with different wavelengths. The original fMoW dataset can be
downloaded according to their official GitHub repository!.

Downstream task implementation details. For scene classifi-
cation tasks validation, we train the MSMatch[1] on the UCM. The

10Official fMoW dataset repository: https:/github.com/fMoW/dataset

Table 1: Datasets Details for compression models and down-
stream application validation. UCM is for scene classification
tasks. ISPRS-Potsdam dataset is for semantic segmentation
task.

Datasets GSD(m) Resolution Train/Test Num Source
UCM 0.3 256X256 1680/420 Aerial
ISPRS-Potsdam  0.05  6000x6000 36/2 Aerial
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Figure 1: The network architectures of the channel, spatial,
temporal context prediction modules in context model and
parameter aggregation block in entropy model.

experiment is trained from scratch and without using additional
data. The UCM can be obtained from the official website? . We
use 1680 labels in total for the training on UCM. For the division
train and test sets, the test set contains 20% of the data in the UCM
dataset (420 images). The code of MSMatch can be acquired from
the authors’ GitHub open-source repository®. For the semantic
segmentation task, we train an LSKNet-T on the ISPRS-Potsdam
dataset, which is based on the DCSwin[3]. We use a pretrianed back-
bone provided by the authors and fine-tune it on ISPRS-Potsdam.
All the data preparation procedures follow the instructions given
in the GitHub repository.
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Table 2: Comparison of downstream semantic segmentation task results based on reconstructed images from various methods
and quality settings (i.e., bpp), using the ISPRS-Potsdam dataset. Blue highlights indicate results with similar bpp, while red
highlights indicate the best result among these methods.

| No Comp | \a'e | ELIC(Ori) \ MLIC++ | Ours+HL_RSComp |  Ours+ELIC
bpp - 1.15 2.45 1.13 7.58 1.15 1.93 0.05 1.24 1.14 2.23
mloU 0.8230 0.2807 0.3520 0.6771 0.7922 0.7968 0.8003 0.6554 0.8009 0.7937 0.7989
OA 0.8975 0.5646 0.6352 0.7973 0.8834 0.8813 0.8841 0.8008 0.8870 0.8829 0.8860
contextual adaptive coding. In Proceedings of the IEEE/CVF Conference on Computer [3] Libo Wang, Rui Li, Chenxi Duan, Ce Zhang, Xiaoliang Meng, and Shenghui Fang.
Vision and Pattern Recognition. 5718-5727. 2022. A novel transformer based semantic segmentation scheme for fine-resolution

remote sensing images. IEEE Geoscience and Remote Sensing Letters 19 (2022), 1-5.
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