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A IMPLEMENTATION DETAILS

A.1 TRAINING DETAILS

We train our model on the NYUv2 dataset (Nathan Silberman & Fergus, 2012) using the official
training split. Each RGB image is first cropped to remove invalid boundaries (coordinates: 43, 45,
608, 472), then resized to 384 × 384 resolution. The corresponding depth maps undergo the same
spatial preprocessing and are normalized by dividing raw depth values by 1000.

For data augmentation, we apply horizontal flipping with a probability of 0.5, gamma correction
with γ ∈ [0.9, 1.1], brightness scaling using a random factor from [0.75, 1.25], and per-channel
color jittering with multiplicative factors in [0.9, 1.1]. After augmentation, random spatial crops of
size 384× 384 are applied to both images and depth maps.

For tokenization, we generate superpixels using OpenCV’s SEEDS (Van den Bergh et al.,
2012) algorithm. Each image is segmented into 676 superpixels using a single-level hierarchy
(num levels=1) and a histogram bin size of 5. The algorithm is run for 50 iterations to refine
superpixel boundaries.

A.2 EVALUATION DETAILS

We evaluate on the official NYUv2 (Nathan Silberman & Fergus, 2012) test split, which contains
654 images. All evaluations use an input resolution of 384×384 pixels, with depth values clamped
to the range [10−3, 10.0].

Per-pixel depth metrics. We compute standard depth estimation metrics over valid pixels where
ground truth depth is available. Depth error metrics include AbsRel (mean absolute relative er-
ror), RMSE (root mean squared error), and Log10 (mean absolute logarithmic error). Accuracy is
measured using threshold metrics δ1, δ2, and δ3, which denote the percentage of pixels where the
predicted-to-ground-truth depth ratio is below 1.25, 1.252, and 1.253, respectively. All metrics are
computed with numerical safeguards, including epsilon clamping at 1e-6 to prevent division by zero
and log-domain errors.

Occlusion boundary. We follow the evaluation protocol of the NYUv2-OC++ dataset (Ramamon-
jisoa et al., 2020) to assess occlusion boundary accuracy. Each predicted depth map is first min-max
normalized, followed by the application of the OpenCV Canny edge detector (Canny, 1986) with
low and high thresholds of 100 and 200 to produce a binary mask of predicted boundary pixels.
Using the ground-truth boundary labels from NYUv2-OC++, we compute two metrics: εa (accu-
racy), the average distance from each predicted edge pixel to the nearest ground-truth edge; and εc
(consistency), the average distance from each ground-truth edge pixel to the nearest predicted edge.
Both are reported in squared pixels, where lower values indicate better alignment, and 0 denotes
perfect correspondence.

3D scene reconstruction. We reconstruct 3D point clouds by back-projecting each pixel of the
predicted depth maps into 3D space using the known camera intrinsics from the NYUv2 dataset,
following the standard protocol for semantic scene completion (Song et al., 2017). To evaluate
reconstruction quality, we compute the Chamfer distance between the predicted and ground truth
point clouds. Recall quantifies how well the predicted points cover the ground truth surface, while
precision measures how accurately the predicted points align with the true geometry.

Detailed evaluation protocol for layout-aware retrieval is provided in Section B, respectively.
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B LAYOUT-AWARE RETRIEVAL

We provide a detailed explanation of our proposed metric, layout-aware retrieval, which evaluates
the structural quality of learned representations by measuring how well the model retrieves frames
from the same 3D scene in a video, either across the full sequence or within nearby frames.

To compute this metric, we extract the [CLS] token from the final layer of the vision transformer
in DPT and SHED for each image, denoted as zcls ∈ RD, and apply l2 normalization. We then
construct a full pairwise similarity matrix, where each entry is computed as the cosine similarity
between l2-normalized image embeddings: Sij = z

(i)
cls · z

(j)
cls .

Retrieval performance is evaluated in two settings: scene-level and frame-level. In the scene-level
setting, the goal is to retrieve other frames from the same annotated scene, testing the model’s
ability to maintain structural consistency under varying viewpoints. In the frame-level setting, each
frame is treated as an independent query, focusing on retrieving visually similar frames regardless
of scene membership. We additionally define a frame-k variant, where retrieval is restricted to the
k temporally adjacent frames, allowing us to assess the model’s sensitivity to local layout changes.
We report top-K nearest neighbor retrieval accuracy on the NYUv2 (Nathan Silberman & Fergus,
2012) test set.

To further evaluate the robustness of layout-aware retrieval, we vary both the candidate set size (k)
and the top-K threshold. A smaller k imposes a stricter constraint, requiring the model to identify
the most similar frame from a limited pool. As shown in Figure 9, SHED consistently outperforms
DPT across all settings. Performance improves for both methods as k increases, with the largest
gap observed at low top-K values. These results suggest that SHED captures layout similarity more
precisely and excels at retrieving the most relevant match.
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Figure 9: Frame-k recall with varying temporal range k. We report Top-K retrieval recall (K ∈
{1, 3, 5}) for DPT and SHED across temporal ranges k ∈ [1, 5]. The consistent gains highlight the
robustness of our depth-supervised representation to spatial and viewpoint changes.
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C ADDITIONAL VISUALIZATIONS

C.1 MORE VISUALIZATIONS OF DEPTH MAPS
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Figure 10: Comparison of depth maps. SHED captures more accurate shapes with sharper bound-
aries, whereas DPT produces blurrier results.
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C.2 MORE VISUALIZATIONS OF IMAGE RETRIEVAL
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Figure 11: Comparison of top-1 image retrieval results. SHED retrieves samples that are more
structurally similar to the query, indicating that its global embedding effectively captures scene
layouts. In contrast, DPT focuses more on visual appearance, as shown in column 3, where it
retrieves an image from a different scene that shares a similar color of blue.

C.3 MORE VISUALIZATIONS OF 3D RECONSTRUCTION

Image DPT SHED (ours) GT DPT SHED (ours) GT

Figure 12: Comparison of 3D reconstruction results. Frontal views (cols 2–4) and bird’s-eye
views (cols 5–7). DPT yields curved wall boundaries in the frontal views, which lead to distorted
3D reconstructions visible in the bird’s-eye views. In contrast, SHED produces sharp depth edges
that preserve straight object contours and more faithfully represent the ground-truth 3D geometry.
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D LIMITATIONS AND BROADER IMPACTS

D.1 LIMITATIONS AND FUTURE WORKS

While our experiments focus on monocular depth estimation, the SHED framework is also applica-
ble to other dense prediction tasks such as segmentation, optical flow, and image generation. We
show that depth supervision induces emergent structural representations, including geometry-aware
features and segmentations. Extending this approach to other objectives may uncover new forms of
structure. For example, training on optical flow could yield motion-aware segmentations.

Depth estimation is fundamental to 3D scene understanding. Although we present initial results on
3D reconstruction, further investigation is needed to assess the utility of SHED in downstream tasks
involving 3D reasoning and robotics. In particular, our framework enables unsupervised discovery
of 3D object parts, which may serve as building blocks for modeling interactions, dynamics, and
part affordances in physical environments and embodied systems.

Finally, while we compare SHED fairly against DPT under matched training conditions, state-of-the-
art models such as Depth Anything benefit from large-scale pretraining and extensive engineering.
Scaling up SHED with broader datasets and more compute would be a valuable next step. No-
tably, by jointly modeling segmentation and depth, SHED has the potential to evolve into a unified
foundation model that combines the capabilities of Segment Anything and Depth Anything.

D.2 BROADER IMPACTS

Structured understanding of the 3D world and accurate depth estimation are central challenges in
AI, with direct impact on safety-critical applications such as autonomous driving, augmented reality,
and robotics. In practice, failures in these systems often result not from a lack of data but from
insufficient structured reasoning, making predictions vulnerable to occlusion, unusual viewpoints,
and dynamic environments. Our framework promotes geometry-aware perception by producing
robust and interpretable depth estimates that align with scene structure. This can improve reliability
in complex real-world settings and lead to systems with more transparent failure modes.
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