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SHED Light on Segmentation for Depth Estimation

Supplementary Material

1. Implementation Details001

1.1. Training details002

We train our model on the NYUv2 dataset [2] using the of-003
ficial training split. Each RGB image is first cropped to004
remove invalid boundaries (coordinates: 43, 45, 608, 472),005
then resized to 416 × 416 resolution. The corresponding006
depth maps undergo the same spatial preprocessing and are007
normalized by dividing raw depth values by 1000.008

For data augmentation, we apply horizontal flipping with009
a probability of 0.5, gamma correction with γ ∈ [0.9, 1.1],010
brightness scaling using a random factor from [0.75, 1.25],011
and per-channel color jittering with multiplicative factors in012
[0.9, 1.1]. After augmentation, random spatial crops of size013
416× 416 are applied to both images and depth maps.014

For tokenization, we generate superpixels using OpenCV’s015
SEEDS [6] algorithm. Each image is segmented into 676016
superpixels using a single-level hierarchy (num levels=1)017
and a histogram bin size of 5. The algorithm is run for 50018
iterations to refine superpixel boundaries.019

1.2. Evaluation details020

We evaluate on the official NYUv2 [2] test split, which con-021
tains 654 images. All evaluations use an input resolution of022
416×416 pixels, with depth values clamped to the range023
[10−3, 10.0].024
Per-pixel depth metrics and efficiency. We compute stan-025
dard depth estimation metrics over valid pixels where ground026
truth depth is available. Depth error metrics include AbsRel027
(mean absolute relative error), RMSE (root mean squared028
error), and Log10 (mean absolute logarithmic error). Ac-029
curacy is measured using threshold metrics δ1, δ2, and δ3,030
which denote the percentage of pixels where the predicted-031
to-ground-truth depth ratio is below 1.25, 1.252, and 1.253,032
respectively. All metrics are computed with numerical safe-033
guards, including epsilon clamping at 1e-6 to prevent di-034
vision by zero and log-domain errors. For efficiency, we035
report FLOPs using PyTorch’s FlopCounterMode for a036
single forward pass on a 416× 416 input.037
Occlusion boundary. We follow the evaluation protocol of038
the NYUv2-OC++ dataset [3] to assess occlusion boundary039
accuracy. Each predicted depth map is first min-max nor-040
malized, followed by the application of the OpenCV Canny041
edge detector [1] with low and high thresholds of 100 and042
200 to produce a binary mask of predicted boundary pix-043
els. Using the ground-truth boundary labels from NYUv2-044
OC++, we compute two metrics: εa (accuracy), the aver-045
age distance from each predicted edge pixel to the nearest046
ground-truth edge; and εc (consistency), the average dis-047

tance from each ground-truth edge pixel to the nearest pre- 048
dicted edge. Both are reported in squared pixels, where 049
lower values indicate better alignment, and 0 denotes per- 050
fect correspondence. 051
3D scene reconstruction. We reconstruct 3D point clouds 052
by back-projecting each pixel of the predicted depth maps 053
into 3D space using the known camera intrinsics from the 054
NYUv2 dataset, following the standard protocol for seman- 055
tic scene completion [5]. To evaluate reconstruction qual- 056
ity, we compute the Chamfer distance between the predicted 057
and ground truth point clouds. Recall quantifies how well 058
the predicted points cover the ground truth surface, while 059
precision measures how accurately the predicted points align 060
with the true geometry. 061

Detailed evaluation protocols for intra-segment coher- 062
ence and layout-aware retrieval are provided in Secs. 2 063
and 3, respectively. 064

2. Intra-segment Coherence 065

We provide a detailed explanation of our proposed met- 066
ric, intra-segment coherence, which evaluates the structural 067
quality of depth maps by measuring how closely the depth 068
distribution within each segment matches the corresponding 069
reference ground-truth distribution. 070

Fig. 1 illustrates the evaluation of intra-segment coher- 071
ence between predicted and ground-truth depth maps. For 072
each ground-truth object segment, we first discard predicted 073
pixels with depths outside the valid range [dmin, dmax] = 074
[0.10, 10.0]. We then compute the one-dimensional first- 075
order Wasserstein distance W between the predicted and 076
reference depth distributions within each valid segment. An 077
object is classified as a true positive (TP) if W ≤ τ , and 078
as a false positive (FP) otherwise, given a tolerance thresh- 079
old τ . By sweeping τ from 0 to 0.50 in uniform steps, we 080
compute average precision and recall to provide a compre- 081
hensive evaluation across varying tolerance levels. 082

3. Layout-aware Retrieval 083

We provide a detailed explanation of our proposed metric, 084
layout-aware retrieval, which evaluates the structural qual- 085
ity of learned representations by measuring how well the 086
model retrieves frames from the same 3D scene in a video, 087
either across the full sequence or within nearby frames. 088

To compute this metric, we extract the [CLS] token 089
from the final layer of the vision transformer in DPT and 090
SHED for each image, denoted as zcls ∈ RD, and apply l2 091
normalization. We then construct a full pairwise similarity 092
matrix, where each entry is computed as the cosine sim- 093
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Figure 1. Visualization of intra-segment coherence computation. The image (top left) shows a bedroom scene with a bed, dresser, and
window. The segment map (top middle) highlights different segmented regions using distinct colors: the bed in red, the dresser in blue,
and the floor in pink. The segmented regions (top right) are shown overlaid on the original RGB image, illustrating how the image is
partitioned. The histograms (bottom right) compare the depth value distributions of ground truth (GT, blue) and prediction (Pred, orange)
within each segmented region across the range [0.1, 10.0]. The one-dimensional first-order Wasserstein distance W is computed between
GT and predicted depth values for each region. A region is classified as a true positive if W ≤ τ , and τ is swept from 0 to 0.50 to compute
average precision and recall.

ilarity between l2-normalized image embeddings: Sij =094

z
(i)
cls · z(j)cls .095

Retrieval performance is evaluated in two settings: scene-096
level and frame-level. In the scene-level setting, the goal097
is to retrieve other frames from the same annotated scene,098
testing the model’s ability to maintain structural consistency099
under varying viewpoints. In the frame-level setting, each100
frame is treated as an independent query, focusing on re-101
trieving visually similar frames regardless of scene mem-102
bership. We additionally define a frame-k variant, where103
retrieval is restricted to the k temporally adjacent frames,104
allowing us to assess the model’s sensitivity to local layout105
changes. We report top-K nearest neighbor retrieval accu-106
racy on the NYUv2 [2] test set.107

To further evaluate the robustness of layout-aware re-108
trieval, we vary both the candidate set size (k) and the top-109
K threshold. A smaller k imposes a stricter constraint, re-110
quiring the model to identify the most similar frame from a111
limited pool. As shown in Fig. 2, SHED consistently out-112
performs DPT across all settings. Performance improves for113
both methods as k increases, with the largest gap observed114
at low top-K values. These results suggest that SHED cap-115
tures layout similarity more precisely and excels at retriev-116
ing the most relevant match.117

4. Additional Visualizations118

We provide additional visualizations of depth maps by SHED119
and DPT in Fig. 3 and more visualization of image retrieval120
in Fig. 4 and 3D reconstruction in Fig. 5.121

5. Limitations and Broader Impacts 122

5.1. Limitations and future works 123

While our experiments focus on monocular depth estima- 124
tion, the SHED framework is also applicable to other dense 125
prediction tasks such as segmentation, optical flow, and im- 126
age generation. We show that depth supervision induces 127
emergent structural representations, including geometry-aware 128
features and segmentations. Extending this approach to other 129
objectives may uncover new forms of structure. For exam- 130
ple, training on optical flow could yield motion-aware seg- 131
mentations. 132

Depth estimation is fundamental to 3D scene understand- 133
ing. Although we present initial results on 3D reconstruc- 134
tion, further investigation is needed to assess the utility of 135
SHED in downstream tasks involving 3D reasoning and robotics.136
In particular, our framework enables unsupervised discov- 137
ery of 3D object parts, which may serve as building blocks 138
for modeling interactions, dynamics, and part affordances 139
in physical environments and embodied systems. 140

Finally, while we compare SHED fairly against DPT un- 141
der matched training conditions, state-of-the-art models such 142
as Depth Anything benefit from large-scale pretraining and 143
extensive engineering. Scaling up SHED with broader datasets 144
and more compute would be a valuable next step. Notably, 145
by jointly modeling segmentation and depth, SHED has the 146
potential to evolve into a unified foundation model that com- 147
bines the capabilities of Segment Anything and Depth Any- 148
thing. 149
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Figure 2. Frame-k recall with varying temporal range k. We report Top-K retrieval recall (K ∈ {1, 3, 5}) for DPT and SHED across
temporal ranges k ∈ [1, 5]. The consistent gains highlight the robustness of our depth-supervised representation to spatial and viewpoint
changes.

5.2. Broader impacts150

Structured understanding of the 3D world and accurate depth151
estimation are central challenges in AI, with direct impact152
on safety-critical applications such as autonomous driving,153
augmented reality, and robotics. In practice, failures in these154
systems often result not from a lack of data but from in-155
sufficient structured reasoning, making predictions vulnera-156
ble to occlusion, unusual viewpoints, and dynamic environ-157
ments. Our framework promotes geometry-aware percep-158
tion by producing robust and interpretable depth estimates159
that align with scene structure. This can improve reliabil-160
ity in complex real-world settings and lead to systems with161
more transparent failure modes.162
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Figure 3. Comparison of depth maps and boundaries. SHED captures more accurate shapes with sharper boundaries, whereas DPT
produces blurrier results. As a result, SHED correctly identifies boundaries (green), while DPT fails to detect them (red).
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Figure 4. Comparison of top-1 image retrieval results. SHED retrieves samples that are more structurally similar to the query, indicating
that its global embedding effectively captures scene layouts. In contrast, DPT focuses more on visual appearance, as shown in column 3,
where it retrieves an image from a different scene that shares a similar color of blue.
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Image DPT [4] SHED (ours) GT DPT [4] SHED (ours) GT

Figure 5. Comparison of 3D reconstruction results. Frontal views (cols 2–4) and bird’s-eye views (cols 5–7). DPT yields curved wall
boundaries in the frontal views, which lead to distorted 3D reconstructions visible in the bird’s-eye views. In contrast, SHED produces
sharp depth edges that preserve straight object contours and more faithfully represent the ground-truth 3D geometry.
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[4] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-175
sion transformers for dense prediction. In Proceedings of176
the IEEE/CVF international conference on computer vision,177
pages 12179–12188, 2021. 4, 5178

[5] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Mano-179
lis Savva, and Thomas Funkhouser. Semantic scene comple-180
tion from a single depth image. In Proceedings of the IEEE181
conference on computer vision and pattern recognition, pages182
1746–1754, 2017. 1183

[6] Michael Van den Bergh, Xavier Boix, Gemma Roig, Ben-184
jamin De Capitani, and Luc Van Gool. Seeds: Superpixels185
extracted via energy-driven sampling. In Computer Vision–186
ECCV 2012: 12th European Conference on Computer Vision,187
Florence, Italy, October 7-13, 2012, Proceedings, Part VII 12,188
pages 13–26. Springer, 2012. 1189

6


	Implementation Details
	Training details
	Evaluation details

	Intra-segment Coherence
	Layout-aware Retrieval
	Additional Visualizations
	Limitations and Broader Impacts
	Limitations and future works
	Broader impacts


