
A Code illustration

A.1 EvoGrad code

EvoGrad update is simple to implement if we use higher library [2] for the perturbed parameters of
different model copies. We show only the part that is relevant to the meta-update.

model_parameter = [i.detach() for i in get_func_params(model)]
theta_list = [[j + sigma * torch.sign(torch.randn_like(j))

for j in model_parameter]
for i in range(n_model_candidates)]

pred_list = [model_patched(feature_transformer(inputs), params=theta)
for theta in theta_list]

loss_list = [criterion(pred, targets) for pred in pred_list]
weights = torch.softmax(-torch.stack(loss_list)/temperature, 0)
theta_updated = [sum(map(mul, theta, weights))

for theta in zip(*theta_list)]
preds_meta = model_patched(inputs_meta, params=theta_updated)
loss_meta = criterion(preds_meta, targets_meta)

meta_opt.zero_grad()
loss_meta.backward()
meta_opt.step()

A.2 T1 − T2 code – for comparison

For comparison with EvoGrad, we also show how online T1 − T2-style meta-learning is often
implemented using so-called fast weights. This approach has been, for example, used in [1, 20]. The
meta-update itself is concise, but it requires us to implement layers that support fast weights, which is
a far more lengthy part.

preds = model(feature_transformer(inputs))
loss = criterion(preds, targets)
optimizer.zero_grad()
grads = torch.autograd.grad(

loss, model.parameters(), create_graph=True)
for k, weight in enumerate(model.parameters()):

weight.fast = weight - meta_lr * grads[k]

preds_meta = model(inputs_meta)
loss_meta = criterion(preds_meta, targets_meta)

meta_opt.zero_grad()
loss_meta.backward()
meta_opt.step()

We also show the definition of a linear layer that supports fast weights:

class Linear_fw(nn.Linear):
def __init__(self, in_features, out_features, bias=True):

super(Linear_fw, self).__init__(in_features, out_features,
bias=bias)

self.weight.fast = None
self.bias.fast = None

def forward(self, x):
if self.weight.fast is not None and self.bias.fast is not None:

out = F.linear(x, self.weight.fast, self.bias.fast)
else:

1



out = super(Linear_fw, self).forward(x)
return out

Normally we would use simple nn.Linear(in_features, out_features).

B How to select EvoGrad hyperparameters

EvoGrad as an algorithm has a few hyperparameters common to most evolutionary approaches:
perturbation value σ, temperature τ and the number of model copies K. In practice we use only 2
models as it is enough and improves the efficiency. The other hyperparameter values can be selected
relatively easily by looking at the training loss of the unperturbed model and the training loss of the
perturbed models. The losses should be similar to each other, but not the same – we want to make sure
the perturbed weights can still be successfully used. We have found that in practice value σ = 0.001
is reasonable. Once we have selected the value of σ, we can select the value of temperature τ which
leads to reasonably different weights for the two (or more) model copies. In practice we have found
τ = 0.05 to be a value which leads to suitable weights. For example, 0.48 and 0.52 for two model
copies could be considered reasonable, while 0.5001 and 0.4999 would be too similar. Note that in
the special case of a 1-dimensional toy problem, suitable EvoGrad hyperparameters are different than
what is useful for practical problems.

C Additional details

We include an algorithmic description of the details as well as additional description of the experi-
mental settings for all five problems that we discuss in the paper.

C.1 Illustration using a 1-dimensional problem

We provide more detailed descriptions of how we perform both analyses. In the first analysis, we
calculate the EvoGrad hypergradient estimate for 100 values of λ between 0 and 2, starting with 0.1
and ending with 2.0. In each case we perform 100 repetitions to obtain an estimate of the mean and
standard deviation of the hypergradient, considering the stochastic nature of EvoGrad. Given a value
of λ, the process of EvoGrad estimate can be summarized using Algorithm 1. As a reminder, we use
training loss function fT (x, λ) = (x− 1)2 + λ∥x∥22 that includes a meta-parameter λ and validation
loss function fV (x) = (x− 0.5)2 that does not include the meta-parameter. The value of temperature
is 0.5 and the number of model candidates varies between 2, 10 and 100.

Algorithm 1 EvoGrad hypergradient estimate for the 1D problem
1: Input: λ: target hyperparameter; K: number of model candidates; τ : temperature; fT , fV :

training and validation loss functions
2: Output: g: hypergradient estimate
3: Sample x ∼ N (0, 1)
4: Sample K noise parameters ϵk ∼ N (0, 1) and use them to create xk = x+ ϵk
5: Calculate losses ℓk = fT (xk, λ) for k between 1 and K
6: Calculate weights w1, w2, . . . , wK = softmax([−ℓ1,−ℓ2, . . . ,−ℓK ]/τ)
7: Calculate x∗ = w1x1 + w2x2 + · · ·+ wKxK

8: Calculate ℓV = fV (x
∗)

9: Calculate hypergradient g = ∂ℓV
∂λ by backpropagating through x∗ computation

The second analysis evaluates the trajectories that values of x, λ take if we update them with SGD
with the hypergradient estimated by EvoGrad compared to the ground-truth. We can summarize the
process using Algorithm 2. When using the ground-truth hypergradient, we simply replace lines
6 to 10 by directly updating the value of λ using the closed-form formula for the hypergradient:
g(λ) = (λ− 1)/(λ+ 1)3. We use 5 steps, learning rate of 0.1 and temperature 0.5.

2



Algorithm 2 Training with EvoGrad – 1D problem
1: Input: x0, λ0: initial values of x, λ; N : number of steps; α: learning rate; K: number of model

candidates; τ : temperature; fT , fV : training and validation loss functions
2: Output: Optimized values of x, λ
3: Initialize x = x0 and λ = λ0

4: for i between 1 and N do
5: Update x← x− α∂fT (x,λ)

∂x
6: Sample K noise parameters ϵk ∼ N (0, 1) and use them to create xk = x+ ϵk
7: Calculate losses ℓk = fT (xk, λ) for k between 1 and K
8: Calculate weights w1, w2, . . . , wK = softmax([−ℓ1,−ℓ2, . . . ,−ℓK ]/τ)
9: Calculate x∗ = w1x1 + w2x2 + · · ·+ wKxK

10: Update λ← λ− α∂fV (x∗)
∂λ

11: end for

C.2 Rotation transformation

As part of the rotation transformation problem, we try to prepare a model for the classification
of rotated images. We use MNIST images [8] and train the base model with unrotated training
images, while testing is done with images rotated by 30◦. We split the original training set to create a
meta-validation set of size 10,000 with images rotated by 30◦.

To prepare the model for the target problem, we meta-learn a rotation transformation alongside
training the base model – which we apply to the unrotated images. Our base model is LeNet [9]
that has two CNN layers followed by three fully-connected layers. We use ReLU non-linearity and
max-pooling. The base model is trained with Adam optimizer [5] with 0.001 learning rate, while the
meta-parameter is optimized with Adam optimizer with learning rate of 0.01. We use a batch size of
128 and cross-entropy loss ℓ. EvoGrad parameters are τ = 0.05, σ = 0.001,K = 2. We sample the
noise parameters as ϵk ∼ σsign(N (0, I)), and we use this formulation also in the further practical
meta-learning problems – it is a better-controlled version of simple N (0, σI). We train the models
for 5 epochs and repeat the experiments 5 times. The algorithm is summarized in Algorithm 3.

Rotations are performed using a model with one learnable parameter λ (angle). The input that the
model receives is rotated using matrix:(

cos(λ) − sin(λ)
sin(λ) cos(λ)

)
.

Algorithm 3 Training with EvoGrad hypergradient – rotation transformation
1: Input: α: learning rate; β: meta-learning rate; σ: noise parameter; K: number of model

candidates; τ : temperature
2: Output: θ: trained model; λ: rotation parameter
3: Initialize θ ∼ p(θ) and λ = 0
4: while training do
5: Sample minibatch of training xt, yt (standard) and validation xv, yv (rotated) examples
6: Update θ ← θ − α∇θℓ(fθ(fλ(xt)), yt)
7: Sample K noise parameters ϵk ∼ σsign(N (0, I)) and use them to create θk = θ + ϵk
8: Calculate losses ℓk = ℓ(fθk

(fλ(xt)), yt) for k between 1 and K
9: Calculate weights w1, w2, . . . , wK = softmax([−ℓ1,−ℓ2, . . . ,−ℓK ]/τ)

10: Calculate θ∗ = w1θ1 + w2θ2 + · · ·+ wKθK

11: Update λ← λ− β∇λℓ(fθ∗(xv), yv)
12: end while

We compare our meta-learning approach to simple standard training that does not use the rotation
transformer. In such case we keep the same settings as before and update the model simply as
θ ← θ − α∇θℓ(fθ(xt), yt). The results prove EvoGrad is capable of meta-learning suitable values.

3



C.3 Cross-domain few-shot classification via learned feature-wise transformation

We extend the Learning-to-Learn Feature-Wise Transformation method from [20] to show the
practical impact that EvoGrad can make. The goal of the LFT method is to make metric-based
few-shot learners robust to domain shift. A detailed description of the LFT method is provided in [20],
and here we describe the main changes that are needed to use EvoGrad for LFT. The key difference
is that we do not backpropagate via standard model update that leads to higher memory and time
consumption (we measure maximum allocated memory and time per epoch).

We summarize how EvoGrad is applied to LFT in Algorithm 4. A metric based model (we
choose RelationNet [19]) includes feature encoder Eθe

and metric function Mθm
. Feature trans-

formation layers parameterized by θf = {θγ ,θβ} are integrated into the feature encoder to form
Eθe,θf

. Similarly as [20], we sample pseudo-seen T ps and pseudo-unseen T pu domains from
the seen domains {T seen

1 , T seen
2 , · · · , T seen

n }. In each step, we sample pseudo-seen and pseudo-
unseen few-shot learning tasks that both include support and query examples. The pseudo-seen
task is described as T ps =

{
(X ps

s ,Yps
s ) ,

(
X ps

q ,Yps
q

)}
∈ T ps and the pseudo-unseen task is

T pu =
{
(X pu

s ,Ypu
s ) ,

(
X pu

q ,Ypu
q

)}
∈ T pu, for task examples X with labels Y .

We have used the exact same set-up as [20] with their official implementation (for RelationNet),
so we only describe the additional settings that are unique to us. In particular, EvoGrad-specific
parameters are τ = 0.05,K = 2, σ = 0.001 (we have used σ equal to the learning rate). We have
used ResNet-10 [3] backbone for direct comparison with [20]. The datasets that we use are processed
in the same way as done by [20], and they are MiniImagenet [16], CUB [21], Cars [6], Places [23]
and Plantae [4].

In order to use ResNet-34, we have trained a new ResNet-34 baseline model on MiniImagenet [16]
per [20] instructions. We use the same hyperparameters as were used for ResNet-10, which also
means that when using fixed feature transformation layers, we use θγ = 0.3, θβ = 0.5. Note that
ResNet-34 ran out of memory for the original second-order LFT approach on 5-way 5-shot task with
16 query examples when using standard GPU with 12 GB GPU memory. If we wanted to use this
model also for the second-order approach, we would need to decrease the number of examples in the
task appropriately. However, with EvoGrad we do not need to make this compromise and overall it
means that EvoGrad scales also to problems where the original second-order approach does not scale
because of GPU memory limitations.

Algorithm 4 Learning-to-learn feature-wise transformation – with EvoGrad
1: Input: {T seen

1 , T seen
2 , · · · , T seen

n }: seen domains; α: learning rate; σ: noise parameter; K:
number of model candidates; τ : temperature

2: Output: θe: feature extractor; θm: metric learner; θf : feature transformation layers
3: Initialize θe,θm,θf ∼ p(θe), p(θm), p(θf )
4: while training do
5: Randomly sample non-overlapping pseudo-seen T ps and pseudo-unseen T pu domains from

the seen domains
6: Sample a pseudo-seen task T ps ∈ T ps and a pseudo-unseen task T pu ∈ T pu

7: // Standard update of the metric-based model with pseudo-seen task:
8: Update θe,θm ← θe,θm − α∇(θe,θm)ℓ

(
Mθm

(
Yps
s , Eθe,θf

(X ps
s ) , Eθe,θf

(
X ps

q

))
,Yps

q

)
9: // EvoGrad computations:

10: Sample K noise parameters
{
ϵ
(k)
e , ϵ

(k)
m

}K

k=1
∼ σsign(N (0, I))

11: Create θ(k)
e = θe + ϵ

(k)
e and θ(k)

m = θm + ϵ
(k)
m for k between 1 and K

12: Calculate losses ℓk = ℓ
(
M

θ
(k)
m

(
Yps
s , E

θ
(k)
e ,θf

(X ps
s ) , E

θ
(k)
e ,θf

(
X ps

q

))
,Yps

q

)
13: Calculate weights w1, w2, . . . , wK = softmax([−ℓ1,−ℓ2, . . . ,−ℓK ]/τ)

14: Calculate θ∗
e = w1θ

(1)
e + w2θ

(2)
e + · · ·+ wKθ(K)

e

15: Calculate θ∗
m = w1θ

(1)
m + w2θ

(2)
m + · · ·+ wKθ(K)

m
16: // Update feature-wise transformation layers with pseudo-unseen task:
17: Update θf ← θf − α∇θf

ℓ
(
Mθ∗

m

(
Ypu
s , Eθ∗

e
(X pu

s ) , Eθ∗
e

(
X pu

q

))
,Ypu

q

)
18: end while

4



C.4 Label noise with Meta-Weight-Net

We use the experimental set-up from [18] for the label noise experiments, together with their official
implementation. The label noise experiments use ResNet-32 model and 60 epochs, each of which has
500 iterations. CIFAR-10 and CIFAR-100 [7] datasets are used. Meta-Weight-Net is represented by a
neural network with two linear layers with hidden size of 300 units, ReLU nonlinearity in between
and sigmoid output unit. Meta-Weight-Net weights instance-wise losses for each example in the
minibatch, which are then combined together by taking their sum. EvoGrad specific parameters are
τ = 0.05,K = 2, σ = 0.001. The level of label noise depends on the specific scenario considered –
40%, 20% or 0%.

We provide an overview of the EvoGrad approach applied to the label noise with Meta-Weight-Net
problem in Algorithm 5. Even though we do the standard update using noisy examples after the
meta-update, the order could be swapped and we simply follow the order chosen by [18]. Detailed
explanations are provided in [18], we only explain how we modify the method to use EvoGrad. Note
that we do not rerun the baseline experiments and we directly take the reported values from the Meta-
Weight-Net paper [18]. However, we do our own rerun of standard second-order Meta-Weight-Net to
get memory and runtime statistics.

Algorithm 5 Meta-Weight-Net for label noise – with EvoGrad
1: Input: α: learning rate; σ: noise parameter; K: number of model candidates; τ : temperature
2: Output: θ: trained model; ω: Meta-Weight-Net parameters
3: Initialize θ,ω ∼ p(θ), p(ω)
4: while training do
5: Sample minibatch of training xt, yt (noisy) and validation xv, yv (clean) examples
6: // EvoGrad update:
7: Sample K noise parameters ϵk ∼ σsign(N (0, I)) and use them to create θk = θ + ϵk
8: Calculate losses ℓk = fω (ℓ(fθk

(xt), yt)) for k between 1 and K
9: Calculate weights w1, w2, . . . , wK = softmax([−ℓ1,−ℓ2, . . . ,−ℓK ]/τ)

10: Calculate θ∗ = w1θ1 + w2θ2 + · · ·+ wKθK

11: Update ω ← ω − α∇ωℓ(fθ∗(xv), yv)
12: // Standard update using noisy examples and MWN:
13: Update θ ← θ − α∇θfω (ℓ(fθ(xt), yt))
14: end while

In addition, we provide further details about Meta-Weight-Net scalability analyses. We have chosen
MWN to conduct these analyses because it represents a real problem where meta-learning is helpful,
yet the memory consumption and time requirements are small enough to allow us to easily evaluate
scaling up of the numbers of parameters. All Meta-Weight-Net scalability experiments are repeated 5
times, but we do not run them fully – we only do 10 epochs to get estimates of the time per epoch.

We have provided the main results that evaluate the impact of using a model with significantly more
parameters in the main part of the paper. Here we provide additional figures. Figure 1 shows the
impact of variable number of meta-parameters (number of hidden units in MWN). We can see the
number of meta-parameters does not significantly impact the memory usage or runtime. This is
likely because we use reverse-mode backpropagation that becomes more expensive with more model
parameters and not hyperparameters [14]. Further, the number of meta-parameters still remains
small compared to the size of the model. Figure 2 shows the number of model copies does not lead
to increased memory consumption, perhaps because we only keep the model weights in memory
and not also many intermediate variables like activations that are needed for backpropagation –
backpropagation is significantly more expensive in terms of memory than forward propagation [15].
The runtime increases slightly with additional model copies, which comes from the need to calculate
additional forward propagations.

C.5 Low-resource cross-lingual learning with MetaXL

MetaXL [22] is an approach that meta-learns meta representation transformation to improve transfer
in low-resource cross-lingual learning. We show how EvoGrad is applied to MetaXL in Algorithm 6

5



0 5000 10000 15000 20000 25000 30000
Number of meta-parameters

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
em

or
y 

us
ag

e 
(G

B)

0 5000 10000 15000 20000 25000 30000
Number of meta-parameters

0

50

100

150

200

250

Ti
m

e 
pe

r e
po

ch
 (s

) MWN EvoGrad
MWN T1 − T2

Figure 1: Memory and time scaling of MWN EvoGrad vs original second-order Meta-Weight-Net –
when changing the number of learnable hyperparameters (meta-parameters). The number of meta-
parameters does not noticeably influence the memory usage and time per epoch in this case.

2 4 6 8 10
Number of model copies

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
em

or
y 

us
ag

e 
(G

B)

2 4 6 8 10
Number of model copies

0

50

100

150

200

250

Ti
m

e 
pe

r e
po

ch
 (s

) MWN EvoGrad

Figure 2: Memory and time scaling of MWN EvoGrad – when using different numbers of model
copies. A larger number of model copies does not increase the memory usage in this case, but it leads
to a larger time per epoch.

In order to do experiments, we have taken the official code provided by [22] and tried to replicate
their experiments as closely as possible. We used the named entity recognition (NER) task with
English source language. The only change we made is a smaller batch size: 12 instead of 16 to fit
into the memory of the largest GPUs that we have currently available. All details are described in
[22]. For EvoGrad we have selected the same hyperparameters as for the other tasks in our paper
(two model candidates, σ = 0.001 and τ = 0.05). In order to make the implementation of EvoGrad
on MetaXL simple, we have only applied noise perturbation on the top layer of the model. It is likely
that in practice it is enough to only apply the noise to the top layer, which can make using EvoGrad
very simple in most cases.

C.6 Datasets availability

All datasets that we use are freely available and their details are described in [20], [18] and [22] –
including how to download them.

C.7 Computational resources

Illustration using a 1-dimensional problem and rotation transformation can be easily run on a laptop
GPU. For cross-domain few-shot learning with LFT and label noise with MWN, we have used an
internal cluster with NVIDIA GPUs - Titan X or P100 (all with 12GB GPU memory). For MetaXL
we have used NVIDIA 3090 Ti GPUs with 24GB memory. When reporting the time and memory
statistics we made sure to use the same model of GPU so that the comparisons are accurate. The
experiments were allocated 14 GB RAM memory and 6 CPUs to allow for faster data loading (fewer
resources would also be suitable).

6



Algorithm 6 MetaXL for cross-lingual learning – with EvoGrad
1: Input: α, β: learning rates; σ: noise parameter; K: number of model candidates; τ : temperature;

Dt, Ds: input data from the target and source language
2: Output: θ: trained model; ω: representation transformation network
3: Initialize base model parameters θ with pretrained XLM-R weights, initialize parameters of the

representation transformation network ω randomly
4: while training do
5: Sample a source batch (xs, ys) from Ds and a target batch (xt, yt) from Dt

6: // EvoGrad update:
7: Sample K noise parameters ϵk ∼ σsign(N (0, I)) and use them to create θk = θ + ϵk
8: Calculate losses ℓk = ℓ(fω◦θk

(xs), ys) for k between 1 and K
9: Calculate weights w1, w2, . . . , wK = softmax([−ℓ1,−ℓ2, . . . ,−ℓK ]/τ)

10: Calculate θ∗ = w1θ1 + w2θ2 + · · ·+ wKθK

11: Update ω ← ω − β∇ωℓ(fθ∗(xt), yt)
12: // Standard update using representation transformation network:
13: Update θ ← θ − α∇θℓ(fω◦θ(xs), ys)
14: end while

D Evaluation of hypernetworks

We have evaluated hypernetworks [10] for cross-domain few-shot classification via learned feature-
wise transformation, to find if the approach can be useful for recent meta-learning applications. To
make the approach computationally viable, we have used hypernetworks with a bottleneck. For H
hyperparameters, P model parameters and bottleneck size of B, our hypernetwork ϕ consists of
two layers, one with a weight matrix of H × B, followed by B × P weight matrix, with sigmoid
non-linearity in between. Note that B needs to be relatively small and directly using one layer with a
weight matrix of H ×P would require far more memory than normally available – for the considered
problem. Following [10], we have used bottleneck size B = 10. We have used the exact same
experimental set-up as in our other experiments.

Our results in Table 1 show hypernetworks fail to discover a good solution within the standard number
of iterations used throughout, and their performance is poor. The results highlight that generating
model parameters based on the hyperparameters may not be sufficient in more challenging and more
realistic meta-learning problems. It also explains why hypernetworks are not commonly used in
meta-learning applications.

Table 1: RelationNet test accuracies (%) and 95% confidence intervals across test tasks on various
unseen datasets. 5-way 1-shot learning at the top and 5-way 5-shot learning at the bottom. Hypernet-
works lead to significantly worse accuracies than T1− T2 and EvoGrad, showing they fail to generate
well-performing model parameters.

Scenario CUB Cars Places Plantae

LFT with hypernetworks 38.94 ± 0.57 30.10 ± 0.48 38.07 ± 0.58 33.83 ± 0.58
LFT with T1 − T2 46.03 ± 0.60 31.50 ± 0.49 49.29 ± 0.65 36.34 ± 0.59
LFT with EvoGrad 47.39 ± 0.61 32.51 ± 0.56 50.70 ± 0.66 36.00 ± 0.56

LFT with hypernetworks 56.91 ± 0.57 40.64 ± 0.56 56.08 ± 0.58 44.73 ± 0.57
LFT with T1 − T2 65.94 ± 0.56 43.88 ± 0.56 65.57 ± 0.57 51.43 ± 0.55
LFT with EvoGrad 64.63 ± 0.56 42.64 ± 0.58 66.54 ± 0.57 52.92 ± 0.57

E Comparison to more meta-learning approaches

In this section we provide an extended comparison of hypergradient approximations by various
gradient-based meta-learners, similar to the analysis done in [11]. The approximations themselves
are provided in Table 2, while the time and memory requirements are given in Table 3.

7



Table 2: Comparison of hypergradient approximations of different gradient-based meta-learning
methods. Number of inner-loop steps is denoted by i. Note that also one-step approximation methods
can be used once per i steps. θ∗ describes the optimal model parameters given λ, while θ̂∗ represents
their approximation.

Method Hypergradient approximation

Unrolled diff. [13] ∂ℓV
∂λ −

∂ℓV
∂θ ×

∑
j≤i

[∏
k<j I −

∂2ℓT
∂θ∂θT

∣∣∣
θi−k

]
∂2ℓT

∂θ∂λT

∣∣∣∣
θi−j

K-step truncated
unrolled diff. [17]

∂ℓV
∂λ −

∂ℓV
∂θ ×

∑
K≤j≤i

[∏
k<j I −

∂2ℓT
∂θ∂θT

∣∣∣
θi−k

]
∂2ℓT

∂θ∂λT

∣∣∣∣
θi−j

T1 − T2 [12] ∂ℓV
∂λ −

∂ℓV
∂θ × [I]−1 ∂2ℓT

∂θ∂λT

∣∣∣
θ̂∗(λ)

Hypernetworks [10] ∂ℓV
∂λ + ∂ℓV

∂θ ×
∂θ∗

ϕ

∂λ where θ∗
ϕ(λ) = argminϕ ℓT (λ,θϕ(λ))

Exact IFT [11] ∂ℓV
∂λ −

∂ℓV
∂θ ×

[
∂2ℓT
∂θ∂θT

]−1
∂2ℓT

∂θ∂λT

∣∣∣∣
θ∗(λ)

Neumann IFT [11] ∂ℓV
∂λ −

∂ℓV
∂θ ×

(∑
j<i

[
I − ∂2ℓT

∂θ∂θT

]j)
∂2ℓT

∂θ∂λT

∣∣∣∣
θ̂∗(λ)

EvoGrad (ours) ∂ℓV
∂λ + ∂ℓV

∂θ × E
∂w
∂ℓ

∂ℓ
∂λ = ∂ℓV

∂λ + ∂ℓV
∂θ × E

∂ softmax(−ℓ)
∂λ

∣∣∣
θ̂∗(λ)

Table 3: Comparison of asymptotic time and memory requirements of EvoGrad and other gradient-
based meta-learners. P is the number of model parameters, H is the number of hyperparameters,
I is the number of inner-loop steps, N is the number of model copies in EvoGrad. Note this is
a first-principles analysis, so the time requirements are different when using e.g. reverse-mode
backpropagation that uses parallelization.

Method Time requirements Memory requirements

Unrolled diff. [13] O(IP 2 + PH) O(PI +H)
K-step truncated unrolled diff. [17] O(KP 2 + PH) O(PK +H)
T1 − T2 [12] O(PH) O(P +H)
Linear hypernetworks [10] O(PH) O(PH)
Neumann IFT [11] O(P 2 + PH) O(P +H)
EvoGrad (ours) O(NP +H) O(P +H)

8



References
[1] Chen, W.-Y., Liu, Y.-C., Kira, Z., Tech, G., Wang, Y.-C. F., Huang, J.-B., and Tech, V. (2019). A

closer look at few-shot classification. In ICLR.

[2] Grefenstette, E., Amos, B., Yarats, D., Htut, P. M., Molchanov, A., Meier, F., Kiela, D., Cho, K.,
and Chintala, S. (2019). Generalized inner loop meta-learning. In arXiv.

[3] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition. In
CVPR.

[4] Horn, G. V., Aodha, O. M., Song, Y., Cui, Y., Sun, C., Shepard, A., Adam, H., Perona, P., and
Belongie, S. (2018). The iNaturalist species classification and detection dataset. In CVPR.

[5] Kingma, D. P. and Ba, J. (2015). Adam: a method for stochastic optimization. In ICLR.

[6] Krause, J., Stark, M., Deng, J., and Fei-Fei, L. (2013). 3D object representations for fine-grained
categorization. In ICCV Workshops.

[7] Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Technical report.

[8] LeCun, Y., Cortes, C., and Burges, C. (1998). MNIST handwritten digit database.

[9] LeCun, Y., Jackel, L. D., Boser, B., Denker, J. S., Graf, H. P., Guyon, I., Henderson, D., Howard,
R. E., and Hubbard, W. (1989). Handwritten digit recognition: applications of neural network
chips and automatic learning. IEEE Communications Magazine, 27(11):41–46.

[10] Lorraine, J. and Duvenaud, D. (2018). Stochastic hyperparameter optimization through hyper-
networks. In arXiv.

[11] Lorraine, J., Vicol, P., and Duvenaud, D. (2020). Optimizing millions of hyperparameters by
implicit differentiation. In AISTATS.

[12] Luketina, J., Berglund, M., Klaus Greff, A., and Raiko, T. (2016). Scalable gradient-based
tuning of continuous regularization hyperparameters. In ICML.

[13] Maclaurin, D., Duvenaud, D., and Adams, R. P. (2015). Gradient-based hyperparameter
optimization through reversible learning. In ICML.

[14] Micaelli, P. and Storkey, A. (2019). Zero-shot knowledge transfer via adversarial belief matching.
In NeurIPS.

[15] Rajeswaran, A., Finn, C., Kakade, S., and Levine, S. (2019). Meta-learning with implicit
gradients. In NeurIPS.

[16] Ravi, S. and Larochelle, H. (2017). Optimization as a model for few-shot learning. In ICLR.

[17] Shaban, A., Cheng, C.-A., Hatch, N., and Boots, B. (2019). Truncated back-propagation for
bilevel optimization. In AISTATS.

[18] Shu, J., Xie, Q., Yi, L., Zhao, Q., Zhou, S., Xu, Z., and Meng, D. (2019). Meta-Weight-Net:
learning an explicit mapping for sample weighting. In NeurIPS.

[19] Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., and Hospedales, T. M. (2018). Learning to
compare: relation network for few-shot learning. In CVPR.

[20] Tseng, H.-Y., Lee, H.-Y., Huang, J.-B., and Yang, M.-H. (2020). Cross-domain few-shot
classification via learned feature-wise transformation. In ICLR.

[21] Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., and Perona, P. (2010).
Caltech-UCSD Birds 200. Technical report, California Institute of Technology.

[22] Xia, M., Zheng, G., Mukherjee, S., Shokouhi, M., Neubig, G., and Awadallah, A. H. (2021).
MetaXL: meta representation transformation for low-resource cross-lingual learning. In NAACL.

[23] Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., and Torralba, A. (2018). Places: a 10 million
image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(6):1452–1464.

9


	Code illustration
	EvoGrad code
	T1-T2 code – for comparison

	How to select EvoGrad hyperparameters
	Additional details
	Illustration using a 1-dimensional problem
	Rotation transformation
	Cross-domain few-shot classification via learned feature-wise transformation
	Label noise with Meta-Weight-Net
	Low-resource cross-lingual learning with MetaXL
	Datasets availability
	Computational resources

	Evaluation of hypernetworks
	Comparison to more meta-learning approaches

