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Abstract

The first order derivative of a data density can be estimated efficiently by denoising
score matching, and has become an important component in many applications,
such as image generation and audio synthesis. Higher order derivatives provide
additional local information about the data distribution and enable new applications.
Although they can be estimated via automatic differentiation of a learned density
model, this can amplify estimation errors and is expensive in high dimensional
settings. To overcome these limitations, we propose a method to directly estimate
high order derivatives (scores) of a data density from samples. We first show
that denoising score matching can be interpreted as a particular case of Tweedie’s
formula. By leveraging Tweedie’s formula on higher order moments, we generalize
denoising score matching to estimate higher order derivatives. We demonstrate
empirically that models trained with the proposed method can approximate second
order derivatives more efficiently and accurately than via automatic differentiation.
We show that our models can be used to quantify uncertainty in denoising and
to improve the mixing speed of Langevin dynamics via Ozaki discretization for
sampling synthetic data and natural images.

1 Introduction

The first order derivative of the log data density function, also known as score, has found many
applications including image generation [23, 24, 6], image denoising [20, 19] and audio synthesis [9].
Denoising score matching (DSM) [29] provides an efficient way to estimate the score of the data
density from samples and has been widely used for training score-based generative models [23, 24]
and denoising [20, 19]. High order derivatives of the data density, which we refer to as high order
scores, provide a more accurate local approximation of the data density (e.g., its curvature) and
enable new applications. For instance, high order scores can improve the mixing speed for certain
sampling methods [2, 18, 12], similar to how high order derivatives accelerate gradient descent in
optimization [11]. In denoising problems, given a noisy datapoint, high order scores can be used to
compute high order moments of the underlying noise-free datapoint, thus providing a way to quantify
the uncertainty in denoising.

Existing methods for score estimation [8, 29, 25, 32], such as denoising score matching [29], focus
on estimating the first order score (i.e., the Jacobian of the log density). In principle, high order
scores can be estimated from a learned first order score model (or even a density model) via automatic
differentiation. However, this approach is computationally expensive for high dimensional data
and score models parameterized by deep neural networks. For example, given a D dimensional

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



distribution, computing the pn` 1q-th order score value from an existing n-th order score model by
automatic differentiation is on the order of D times more expensive than evaluating the latter [25].
Moreover, computing higher-order scores by automatic differentiation might suffer from large
estimation error, since a small training loss for the first order score does not always lead to a small
estimation error for high order scores.

To overcome these limitations, we propose a new approach which directly models and estimates high
order scores of a data density from samples. We draw inspiration from Tweedie’s formula [4, 16],
which connects the score function to a denoising problem, and show that denoising score matching
(DSM) with Gaussian noise perturbation can be derived from Tweedie’s formula with the knowledge
of least squares regression. We then provide a generalized version of Tweedie’s formula which allows
us to further extend denoising score matching to estimate high order scores. In addition, we provide
variance reduction techniques to improve the optimization of these newly introduced high order score
estimation objectives. With our approach, we can directly parameterize high order scores and learn
them efficiently, sidestepping expensive automatic differentiation.

While our theory and estimation method is applicable to scores of any order, we focus on the second
order score (i.e., the Hessian of the log density) for empirical evaluation. Our experiments show that
models learned with the proposed objective can approximate second order scores more accurately
than applying automatic differentiation to lower order score models. Our approach is also more
computationally efficient for high dimensional data, achieving up to 500ˆ speedups for second
order score estimation on MNIST. In denoising problems, there could be multiple clean datapoints
consistent with a noisy observation, and it is often desirable to measure the uncertainty of denoising
results. As second order scores are closely related to the covaraince matrix of the noise-free data
conditioned on the noisy observation, we show that our estimated second order scores can provide
extra insights into the solution of denoising problems by capturing and quantifying the uncertainty of
denoising. We further show that our model can be used to improve the mixing speed of Langevin
dynamics for sampling synthetic data and natural images. Our empirical results on second order
scores, a special case of the general approach, demonstrate the potential and applications of our
method for estimating high order scores.

2 Background

2.1 Scores of a distribution

Definition 1. Given a probability density ppxq over RD, we define the k-th order score skpxq :
RD Ñ bkRD, wherebk denotes k-fold tensor multiplications, to be a tensor with the pi1, i2, . . . , ikq-
th index given by rskpxqsi1i2...ik fi B

k

Bxi1Bxi2 ¨¨¨Bxik
log ppxq, where pi1, i2, . . . , ikq P t1, ¨ ¨ ¨ , Duk.

As an example, when k “ 1, the first order score is the gradient of log ppxq w.r.t. to x, defined
as s1pxq fi ∇x log ppxq. Intuitively, this is a vector field of the steepest ascent directions for the
log-density. Note that the definition of first order score matches the definition of (Stein) score [8].
When k “ 2, the second order score is the Hessian of log ppxq w.r.t. to x. It gives the curvature of a
density function, and with s1pxq it can provide a better local approximation to log ppxq.

2.2 Denoising score matching

Given a data distribution pdatapxq and a model distribution ppx;θq, the score functions of pdatapxq
and ppx;θq are defined as s1pxq fi ∇x log pdatapxq and s1px;θq fi ∇x log ppx;θq respectively.
Denoising score matching (DSM) [29] perturbs a data sample x „ pdatapxq with a pre-specified noise
distribution qσpx̃ | xq and then estimates the score of the perturbed data distribution qσpx̃q “

ş

qσpx̃ |
xqpdatapxqdx which we denote s̃1px̃q fi ∇x̃ log qσpx̃q. DSM uses the following objective

1

2
EpdatapxqEqσpx̃|xqr}s̃1px̃;θq ´∇x̃ log qσpx̃ | xq}

2
2s. (1)

It is shown that under certain regularity conditions, minimizing Eq. (1) is equivalent to minimizing
the score matching [8] loss between s̃1px̃;θq and s̃1px̃q [29] defined as

1

2
EpdatapxqEqσpx̃|xqr}s̃1px̃;θq ´ s̃1px̃q}

2
2s. (2)
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When qσpx̃ | xq “ N px̃|x, σ2Iq , the objective becomes

LDSMpθq “
1

2
EpdatapxqEqσpx̃|xq

„

›

›

›
s̃1px̃;θq `

1

σ2
px̃´ xq

›

›

›

2

2



. (3)

Optimizing Eq. (3) can, intuitively, be understood as predicting x̃´x
σ2 , the added “noise" up to a

constant, given the noisy input x̃, and is thus related to denoising. Estimating the score of the
noise perturbed distribution qσpx̃q instead of the original (clean) data distribution pdatapxq allows
DSM to approximate scores more efficiently than other methods [8, 25]. When σ is close to zero,
qσpx̃q « pdatapxq so the score of qσpx̃q estimated by DSM will be close to that of pdatapxq. When σ
is large, the estimated score for qσpx̃q plays a crucial role in denoising [20] and learning score-based
generative models [23, 24].

2.3 Tweedie’s formula

Given a prior density pdatapxq, a noise distribution qσpx̃|xq “ N px̃|x, σ2Iq, and the noisy density
qσpx̃q “

ş

pdatapxqqσpx̃|xqdx, Tweedie’s formula [16, 4] provides a close-form expression for the
posterior expectation (the first moment) of x conditioned on x̃:

Erx | x̃s “ x̃` σ2s̃1px̃q, (4)

where s̃1px̃q fi ∇x̃ log qσpx̃q. Equation 4 implies that given a “noisy” observation x̃ „ qσpx̃q, one
can compute the expectation of the “clean” datapoint x that may have produced x̃. As a result,
Equation 4 has become an important tool for denoising [19, 20]. We provide the proof in Appendix B.

A less widely known fact is that Tweedies’ formula can be generalized to provide higher order
moments of x given x̃, which we will leverage to derive the objective for learning higher order scores.

3 Estimating Higher Order Scores by Denoising

Below we demonstrate that DSM can be derived from Tweedie’s formula [4, 16]. By leveraging the
generalized Tweedie’s formula on high order moments of the posterior, we extend DSM to estimate
higher order score functions.

3.1 DSM in the view of Tweedie’s formula

The optimal solution to the least squares regression problem

min
θ

EpdatapxqEqσpx̃|xqr}hpx̃;θq ´ x}22s (5)

is well-known to be the conditional expectation hpx̃;θ˚q “ Erx | x̃s. If we parameterize hpx̃;θq “
x̃ ` σ2s̃1px̃;θq where s̃1px̃;θq is a first order score model with parameter θ, the least squares
problem in Eq. (5) becomes equivalent to the DSM objective:

min
θ

EpdatapxqEqσpx̃|xqr}σ
2s̃1px̃;θq ` x̃´ x}22s “ min

θ
2σ4 ¨ LDSMpθq. (6)

From Tweedie’s formula, we know the optimal θ˚ satisfies hpx̃;θ˚q “ x̃` σ2s̃1px̃;θ˚q “ Erx |
x̃s “ x̃`σ2s̃1px̃q, from which we can conclude that s̃1px̃;θ˚q “ s̃1px̃q. This proves that minimizing
the DSM objective in Eq. (6) recovers the first order score.

There are other ways to derive DSM. For example, [15] provides a proof based on Bayesian least
squares without relying on Tweedie’s formula. Stein’s Unbiased Risk Estimator (SURE) [27] can
also provide an alternative proof based on integration by parts. Compared to these methods, our
derivation can be easily extended to learn high order scores, leveraging a more general version of
Tweedie’s formula.

3.2 Second order denoising score matching

As a warm-up, we first consider the second order score, and later generalize to any desired order.
Leveraging Tweedie’s formula on ErxxT | x̃s and Erx | x̃s, we obtain the following theorem.
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Theorem 1. Given a D-dimensional distribution ppxq and qσpx̃q fi
ş

ppxqqσpx̃|xqdx, we have

ErxxT | x̃s “ fpx̃, s̃1, s̃2q (7)

ErxxT ´ xx̃T ´ x̃xT | x̃s “ hpx̃, s̃1, s̃2q, (8)

where fpx̃, s̃1, s̃2q and hpx̃, s̃1, s̃2q are polynomials of x̃, s̃1px̃q, s̃2px̃q defined as

fpx̃, s̃1, s̃2q “ x̃x̃T ` σ2x̃s̃1px̃q
T ` σ2s̃1px̃qx̃

T ` σ4s̃2px̃q ` σ
4s̃1px̃qs̃1px̃q

T ` σ2I, (9)

hpx̃, s̃1, s̃2q “ ´x̃x̃
T ` σ4s̃2px̃q ` σ

4s̃1px̃qs̃1px̃q
T ` σ2I. (10)

Here s̃1px̃q and s̃2px̃q denote the first and second order scores of qσpx̃q.

In Theorem 1, Eq. (9) is directly given by Tweedie’s formula on ErxxT | x̃s, and Eq. (10) is derived
from Tweedie’s formula on both Erx | x̃s and ErxxT | x̃s. Given a noisy sample x̃, Theorem 1
relates the second order moment of x to the first order score s̃1px̃q and second order score s̃2px̃q of
qσpx̃q. A detailed proof of Theorem 1 is given in Appendix B.

In the same way as how we derive DSM from Tweedie’s formula in Section 3.1, we can obtain higher
order score matching objectives with Eq. (9) and Eq. (10) as a least squares problem.

Theorem 2. Suppose the first order score s̃1px̃q is given, we can learn a second order score model
s̃2px̃;θq by optimizing the following objectives

θ˚ “ arg min
θ

EpdatapxqEqσpx̃|xq
„

›

›

›
xxT ´ fpx̃, s̃1px̃q, s̃2px̃;θqq

›

›

›

2

2



, (11)

θ˚ “ arg min
θ

EpdatapxqEqσpx̃|xq
„

›

›

›
xxT ´ xx̃T ´ x̃xT ´ hpx̃, s̃1px̃q, s̃2px̃;θqq

›

›

›

2

2



(12)

where fp¨q and hp¨q are polynomials defined in Eq. (9) and Eq. (10). Assuming the model has an
infinite capacity, then the optimal parameter θ˚ satisfies s̃2px̃;θ˚q “ s̃2px̃q for almost any x̃.

Here Eq. (11) and Eq. (12) correspond to the least squares objective of Eq. (7) and Eq. (8) respectively,
and have the same set of solutions assuming sufficient model capacity. In practice, we find that
Eq. (12) has a much simpler form than Eq. (11), and will therefore use Eq. (12) in our experiments.

3.3 High order denoising score matching

Below we generalize our approach to even higher order scores by (i) leveraging Tweedie’s formula to
connect higher order moments of x conditioned on x̃ to higher order scores of qσpx̃q; and (ii) finding
the corresponding least squares objective.

Theorem 3. Erbnx|x̃s “ fnpx̃, s̃1, ..., s̃nq, where bnx P RDn denotes n-fold tensor multiplica-
tions, fnpx̃, s̃1, ..., s̃nq is a polynomial of tx̃, s̃1px̃q, ..., s̃npx̃qu and s̃kpx̃q represents the k-th order
score of qσpx̃q “

ş

pdatapxqqσpx̃|xqdx.

Theorem 3 shows that there exists an equality between (high order) moments of the posterior
distribution of x given x̃ and (high order) scores with respect to x̃. To get some intuition, for n “ 2
the polynomial f2px̃, s̃1, s̃2q is simply the function f in Eq. (9). In Appendix B, we provide a recursive
formula for obtaining the coefficients of fn in closed form.

Leveraging Theorem 3 and the least squares estimation of Erbkx|x̃s, we can construct objectives for
approximating the k-th order scores s̃kpx̃q as in the following theorem.

Theorem 4. Given score functions s̃1px̃q, ..., s̃k´1px̃q, a k-th order score model s̃kpx̃;θq, and

θ˚ “ arg min
θ

EpdatapxqEqσpx̃|xqr} b
k x´ fkpx̃, s̃1px̃q, ..., s̃k´1px̃q, s̃kpx̃;θqq}2s.

We have s̃kpx̃;θ˚q “ s̃kpx̃q for almost all x̃.

As previously discussed, when σ approaches 0 such that qσpx̃q « pdatapxq, s̃kpx̃;θ˚q well-
approximates the k-th order score of pdatapxq.
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4 Learning Second Order Score Models

Although our theory can be applied to scores of any order, we focus on second order scores for
empirical analysis. In this section, we discuss the parameterization and empirical performance of the
learned second order score models.

4.1 Instantiating objectives for second order score models

In practice, we find that Eq. (12) has a much simpler expression than Eq. (11). Therefore, we propose
to parameterize s̃2px̃q with a model s̃2px̃;θq, and optimize s̃2px̃;θq with Eq. (12), which can be
simplified to the following after combining Eq. (10) and Eq. (12):

LD2SMpθq fi EpdatapxqEqσpx̃|xq
„

›

›

›
s̃2px̃;θq ` s̃1px̃;θqs̃1px̃;θqT `

I ´ zzT

σ2

›

›

›

2

2



, (13)

where z fi x̃´x
σ . Note that Eq. (13) requires knowing the first order score s̃1px̃q in order to train the

second order score model s̃2px̃;θq. We therefore use the following hybrid objective to simultaneously
train both s̃1px̃;θq and s̃2px̃;θq:

Ljointpθq “ LD2SMpθq ` γ ¨ LDSMpθq, (14)

where LDSMpθq is defined in Eq. (3) and γ P Rą0 is a tunable coefficient. The expectation for
LD2SMpθq and LDSMpθqin Eq. (14) can be estimated with samples, and we optimize the following
unbiased estimator

L̂jointpθq “
1

N

N
ÿ

i“1

„

›

›

›
s̃2px̃i;θq ` s̃1px̃i;θqs̃1px̃i;θq

T `
I ´ ziz

T
i

σ2

›

›

›

2

2
`
γ

2

›

›

›
s̃1px̃i;θq `

zi
σ

›

›

›

2

2



, (15)

where we define zi fi x̃i´xi
σ , and tx̃iuNi“1 are samples from qσpx̃q “

ş

pdatapxqqσpx̃|xqdx which can
be obtained by adding noise to samples from pdatapxq. Similarly to DSM, when σ Ñ 0, the optimal
model s̃2px̃;θ˚q that minimizes Eq. (15) will be close to the second order score of pdatapxq because
qσpx̃q « pdatapxq. When σ is large, the learned s̃2px̃;θq can be applied to tasks such as uncertainty
quantification for denoising, which will be discussed in Section 5.

For downstream tasks that require only the diagonal of s̃2, we can instead optimize a simpler objective

Ljoint-diagpθq fi LD2SM-diagpθq ` γ ¨ LDSMpθq, where (16)

LD2SM-diagpθq fi EpdatapxqEqσpx̃|xq
„

›

›

›
diagps̃2px̃;θqq ` s̃1px̃;θq d s̃1px̃;θq `

1´ zd z

σ2

›

›

›

2

2



. (17)

Here diagp¨q denotes the diagonal of a matrix andd denotes element-wise multiplication. Optimizing
Eq. (16) only requires parameterizing diagps̃2px̃;θqq, which can significantly reduce the memory
and computational cost for training and running the second order score model. Similar to L̂jointpθq,
we estimate the expectation in Eq. (17) with empirical means.

4.2 Parameterizing second order score models

In practice, the performance of learning second order scores is affected by model parameterization. As
many real world data distributions (e.g., images) tend to lie on low dimensional manifolds [13, 3, 21],
we propose to parametrize s̃2px̃;θq with low rank matrices defined as below

s̃2px̃;θq “ αpx̃;θq ` βpx̃;θqβpx̃;θqT,

where αp¨;θq : RD Ñ RDˆD is a diagonal matrix, βp¨;θq : RD Ñ RDˆr is a matrix with shape
D ˆ r, and r ď D is a positive integer.

4.3 Antithetic sampling for variance reduction

As the standard deviation of the perturbed noise σ approximates zero, training score models with
denoising methods could suffer from a high variance. Inspired by a variance reduction method for
DSM [30, 26], we propose a variance reduction method for D2SM

LD2SM-VR “ Ex„pdatapxqEz„N p0,Iq

„

ψpx̃`q
2 `ψpx̃´q

2 ` 2
I´ zzT

σ2
d pψpx̃`q `ψpx̃´q ´ 2ψpxqq



,
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where x̃` “ x`σz, x̃´ “ x´σz and ψ “ s̃2` s̃1s̃T1 . Instead of using independent noise samples,
we apply antithetic sampling and use two correlated (opposite) noise vectors centered at x. Similar to
Eq. (14), we define Ljoint-VR “ LD2SM-VR ` γ ¨ LDSM-VR, where LDSM-VR is proposed in [30].

We empirically study the role of variance reduction (VR) in training models with DSM and D2SM.
We observe that VR is crucial for both DSM and D2SM when σ is approximately zero, but is optional
when σ is large enough. To see this, we consider a 2-d Gaussian distribution N p0, Iq and train
s̃1px̃;θq and s̃2px̃;θq with DSM and D2SM respectively. We plot the learning curves in Figs. 1a
and 1b, and visualize the first dimension of the estimated scores for multiple noise scales σ in Figs. 1c
and 1d. We observe that when σ “ 0.001, both DSM and D2SM have trouble converging after a
long period of training, while the VR counterparts converge quickly (see Fig. 1). When σ gets larger,
DSM and D2SM without VR can both converge quickly and provide reasonable score estimations
(Figs. 1c and 1d). We provide extra details in Appendix C.

(a) D2SM loss (b) D2SM-VR loss (c) Estimated s̃1 (d) Estimated s̃2

Figure 1: From left to right: (a) D2SM loss without variance reduction (σ “ 10´3). (b) D2SM loss
with variance reduction (σ “ 10´3). (c) Estimated s̃1. (d) Estimated s̃2, where the estimation for
D2SM (0.001) is too far from the ground truth to appear on the plot.

4.4 The accuracy and efficiency of learning second order scores

We show that the proposed method can estimate second order scores more efficiently and accurately
than those obtained by automatic differentiation of a first order score model trained with DSM. We
observe in our experiments that s̃1px̃;θq jointly optimized via L̂joint or L̂joint-diag has a comparable
empirical performance as trained directly by DSM, so we optimize s̃1px̃;θq and s̃2px̃;θq jointly in
later experiments. We provide additional experimental details in Appendix C.

Learning accuracy We consider three synthetic datasets whose ground truth scores are available—a
100-dimensional correlated multivariate normal distribution and two high dimensional mixture of
logistics distributions in Table 1. We study the performance of estimating s̃2 and the diagonal of s̃2.
For the baseline, we estimate second order scores by taking automatic differentiation of s̃1px̃;θq
trained jointly with s̃2px̃;θq using Eq. (15) or Eq. (17). As mentioned previously, s̃1px̃;θq trained
with the joint method has the same empirical performance as trained directly with DSM. For our
method, we directly evaluate s̃2px̃;θq. We compute the mean squared error between estimated second
order scores and the ground truth score of the clean data since we use small σ and qσpx̃q « pdatapxq
(see Table 1). We observe that s̃2px̃;θq achieves better performance than the gradients of s̃1px̃;θq.

Table 1: Mean squared error between the estimated second order scores and the ground truth on 105

test samples. Each setup is trained with three random seeds and multiple noise scales σ.

Methods σ “ 0.01 σ “ 0.05 σ “ 0.1 Methods σ “ 0.01 σ “ 0.05 σ “ 0.1

Multivariate normal (100-d) Mixture of logistics diagonal estimation (50-d, 20 mixtures)
s̃1 grad (DSM) 43.80˘0.012 43.76˘0.001 43.75˘0.001 s̃1 grad (DSM-VR) 26.41˘0.55 26.13˘ 0.53 25.39˘ 0.50

s̃1 grad (DSM-VR) 9.40˘0.049 9.39˘0.015 9.21˘0.020 s̃2 (Ours) 18.43˘ 0.11 18.50˘ 0.25 17.88˘0.15
s̃2 (Ours, r “ 15) 7.12˘ 0.319 6.91˘0.078 7.03˘0.039 Mixture of logistics diagonal estimation (80-d, 20 mixtures)
s̃2 (Ours, r “ 20) 5.24˘0.065 5.07˘0.047 5.13˘0.065 s̃1 grad (DSM-VR) 32.80˘ 0.34 32.44˘ 0.30 31.51˘ 0.43
s̃2 (Ours, r “ 30) 1.76˘0.038 2.05˘0.544 1.76˘0.045 s̃2 (Ours) 21.68˘ 0.18 22.23˘0.08 22.18˘ 0.08

Computational efficiency Computing the gradients of s̃1px̃;θq via automatic differentiation can
be expensive for high dimensional data and deep neural networks. To see this, we consider two
models—a 3-layer MLP and a U-Net [17], which is used for image experiments in the subsequent
sections. We consider a 100-d data distribution for the MLP model and a 784-d data distribution for
the U-Net. We parameterize s̃1 and s̃2 with the same model architecture and use a batch size of 10
for both settings. We report the wall-clock time averaged in 7 runs used for estimating second order
scores during test time on a TITAN Xp GPU in Table 2. We observe that s̃2px̃;θq is 500ˆ faster than
using automatic differentiation for s̃1px̃;θq on the MNIST dataset.
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Data Noisy Only s̃1 With s̃2 Data Noisy Only s̃1 With s̃2

Figure 2: Denoising 2-d synthetic data. The incorporation of s̃2 improves uncertainty quantification.

Clean ! = 0.3 ! = 0.5 ! = 0.8

R G B R G B R G B

! = 0.3 ! = 0.5 ! = 0.8 ! = 1.0Clean

Figure 3: Visualizations of the estimated covariance matrix diagonals on MNIST and CIFAR-10. For
CIFAR-10 images, we visualize the diagonal for R, G, B channels separately. Images corrupted with
more noise tend to have larger covariance values, indicating larger uncertainty in denoising. Pixels in
background have smaller values than pixels near edges, indicating more confident denoising.

5 Uncertainty Quantification with Second Order Score Models

Our second order score model s̃2px̃;θq can capture and quantify the uncertainty of denoising on
synthetic and real world image datasets, based on the following result by combining Eqs. (4) and (9)

Covrx | x̃s fi ErxxT | x̃s ´ Erx | x̃sErx | x̃sT “ σ4s̃2px̃q ` σ
2I (18)

By estimating Covrx | x̃s via s̃2px̃q, we gain insights into how pixels are correlated with each
other under denoising settings, and which part of the pixels has large uncertainty. To examine the
uncertainty given by our s̃2px̃;θq, we perform the following experiments (details in Appendix D).

Synthetic experiments We first consider 2-d synthetic datasets shown in Fig. 2, where we train
s̃1px̃;θq and s̃2px̃;θq jointly with Ljoint. Given the trained score models, we estimate Erx | x̃s and
Covrx | x̃s using Eq. (4) and Eq. (18). We approximate the posterior distribution ppx|x̃q with a
conditional normal distribution N px | Erx | x̃s,Covrx | x̃sq. We compare our result with that of
Eq. (4), which only utilizes s̃1 (see Fig. 2). We observe that unlike Eq. (4), which is a point estimator,
the incorporation of covariance matrices (estimated by s̃2px̃;θq) captures uncertainty in denoising.

Covariance diagonal visualizations We visualize the diagonal of the estimated Covrx | x̃s for
MNIST and CIFAR-10 [10] in Fig. 3. We find that the diagonal values are in general larger for pixels
near the edges where there are multiple possibilities corresponding to the same noisy pixel. The
diagonal values are smaller for the background pixels where there is less uncertainty. We also observe
that covariance matrices corresponding to smaller noise scales tend to have smaller values on the
diagonals, implying that the more noise an image has, the more uncertain the denoised results are.

Full convariance visualizations We visualize the eigenvectors (sorted by eigenvalues) of Covrx | x̃s
estimated by s̃2px̃;θq in Fig. 4. We observe that they can correspond to different digit identities,
indicating uncertainty in the identity of the denoised image. This suggests Covrx | x̃s can capture
additional information for uncertainty beyond its diagonal.

The first 19 30 80 200

Figure 4: Eigenvectors of the estimated covariance matrix on MNIST. The first column shows the
noisy images (σ “ 0.5) and the second column shows clean images. The remaining columns show
the first 19, plus the 30, 80 and 200-th eigenvectors of the matrix. We can see digit 7 and 9 in the
eigenvectors corresponding to the noisy 7, and digit 4 and 9 in the second row, which implies that the
estimated covariance matrix can capture different possibilities of the denoising results.

6 Sampling with Second Order Score Models

Here we show that our second order score model s̃2px̃;θq can be used to improve the mixing speed
of Langevin dynamics sampling.
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Table 2: Speed analysis: direct
modeling vs. autodiff.

Method Dimension D “ 100 (MLP) D “ 784 (U-Net)

Autodiff 32100 ˘ 156 µs 34600 ˘ 194 ms
Ours (rank=20) 380 ˘ 7.9 µs 67.9 ˘ 1.93 ms
Ours (rank=50) 377 ˘ 10.8 µs 72.5 ˘ 1.93 ms

Ours (rank=200) 546 ˘ 1.91 µs 68.8 ˘ 1.02 ms
Ours (rank=1000) 1840 ˘ 97.1 µs 69.4 ˘ 2.63 ms

Table 3: ESS on synthetic datasets.
Datasets are shown in Fig. 5. We
use 32 chains, each with length
10000 and 1000 burn-in steps.

Dataset 1 Dataset 2

Method Metric ESS Ò ESS Ò

Langevin 21.81 26.33
Ozaki 28.89 46.57

Dataset 1 Samples (5000) Single chain Samples (30000) Single chain

Dataset 2 Samples (3000) Single chain Samples (9000) Single chain

Figure 5: Sampling with Ozaki and Langevin dynamics. We
tune the optimal step size separately for both methods. The
number in the parenthesis (Column 2 and 4) stands for the
iterations used for sampling. We observe that Ozaki obtains
more reasonable samples than Langevin dynamics using 1/6 or
1/3 iterations. Column 3 and 5 show samples within a single
chain with length 31000 and 1000 burn-in steps.

6.1 Background on the sampling methods

Langevin dynamics Langevin dynamics [1, 31] samples from pdatapxq using the first order score
function s1pxq. Given a prior distribution πpxq, a fixed step size ε ą 0 and an initial value x̃0 „ πpxq,
Langevin dynamics update the samples iteratively as follows

x̃t “ x̃t´1 `
ε

2
s1px̃t´1q `

?
εzt, (19)

where zt „ N p0, Iq. As εÑ 0 and tÑ8, x̃t is a sample from pdatapxq under suitable conditions.

Ozaki sampling Langevin dynamics with Ozaki discretization [28] leverages second order informa-
tion in s2pxq to pre-condition Langevin dynamics:

x̃t “ x̃t´1 `Mt´1s1px̃t´1q ` Σ
1{2
t´1zt, zt „ N p0, Iq (20)

where Mt´1 “ pe
εs2px̃t´1q ´ Iqs2px̃t´1q

´1 and Σt´1 “ pe
2εs2px̃t´1q ´ Iqs2px̃t´1q

´1. It is shown
that under certain conditions, this variation can improve the convergence rate of Langevin dynamics
[2]. In general, Eq. (20) is expensive to compute due to inversion, exponentiation and taking square
root of matrices, so we simplify Eq. (20) by approximating s2px̃t´1q with its diagonal in practice.

In our experiments, we only consider Ozaki sampling with s2 replaced by its diagonal in Eq. (20).
As we use small σ, s̃1 « s1 and s̃2 « s2. We observe that diagps̃2px̃;θqq in Ozaki sampling can
be computed in parallel with s̃1px̃;θq on modern GPUs, making the wall-clock time per iteration
of Ozaki sampling comparable to that of Langevin dynamics. Since we only use the diagonal of
s̃2px̃;θq in sampling, we can directly learn the diagonal of s̃2px̃q with Eq. (16).

6.2 Synthetic datasets

We first consider 2-d synthetic datasets in Fig. 5 to compare the mixing speed of Ozaki sampling
with Langevin dynamics. We search the optimal step size for each method and observe that Ozaki
sampling can use a larger step size and converge faster than Langevin dynamics (see Fig. 5). We use
the optimal step size for both methods and report the smallest effective sample size (ESS) of all the
dimensions [22, 5] in Table 3. We observe that Ozaki sampling has better ESS values than Langevin
dynamics, implying faster mixing speed. Even when using the same step size, Ozaki sampling still
converges faster than Langevin dynamics on the two-model Gaussian dataset we consider (see Fig. 6).
In all the experiments, we use σ “ 0.1 and we provide more experimental details in Appendix E.

6.3 Image datasets

Ozaki discretization with learned s̃2px̃;θq produces more diverse samples and improve the mixing
speed of Langevin dynamics on image datasets (see Fig. 7) To see this, we select ten different digits
from MNIST test set and initialize 1000 different sampling chains for each image. We update the
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(a) Data (b) 50 iterations (c) 100 iterations (d) 200 iterations (e) 300 iterations (f) 400 iterations

(g) Initialization (h) 50 iterations (i) 100 iterations (j) 200 iterations (k) 300 iterations (l) 400 iterations

Figure 6: Sampling a two mode distribution. We use the same step size ε “ 0.01 for both methods.
We observe that Ozaki sampling converges faster than Langevin sampling.

Ozaki

Naive

5 iterations 10 iterations 20 iterations 50 iterations 100 iterations 200 iterations

Ozaki

Langevin

5 iterations 10 iterations 20 iterations 50 iterations 100 iterations 200 iterations

Figure 7: Sampling on MNIST. We observe that Ozaki sampling converges faster than Langevin
dynamics. We use step size σ “ 0.02 and initialize the chain with Gaussian noise for both methods.

(a) Percentage of changes in
class label w.r.t. iterations.

Ozaki

Langevin dynamics

(b) Different chains initialized with the same left panel image after 1000
iterations of update with step size ε “ 0.03.

Figure 8: Sample diversity analysis. The number in the parenthesis in Fig. 8a denotes the step size.
We initialize the chain with MNIST test images and report the percentage of images that have changed
class labels from the initialization w.r.t. sampling iterations. We observe that Ozaki sampling has
more diverse samples.

chains with Ozaki sampling and report the percentage of images that have class label changes after a
fixed number of sampling iterations in Fig. 8a. We compare the results with Langevin dynamics with
the same setting and observe that Ozaki sampling has more diverse samples within the same chain in
a fixed amount of iterations. We provide more details in Appendix E.

7 Conclusion

We propose a method to directly estimate high order scores of a data density from samples. We
first study the connection between Tweedie’s formula and denoising score matching (DSM) through
the lens of least squares regression. We then leverage Tweedie’s formula on higher order moments,
which allows us to generalize denoising score matching to estimate scores of any desired order. We
demonstrate empirically that models trained with the proposed method can approximate second
order scores more efficiently and accurately than applying automatic differentiation to a learned
first order score model. In addition, we show that our models can be used to quantify uncertainty
in denoising and to improve the mixing speed of Langevin dynamics via Ozaki discretization for
sampling synthetic data and natural images. Besides the applications studied in this paper, it would be
interesting to study the application of high order scores for out of distribution detection. Due to limited
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computational resources, we only consider low resolution image datasets in this work. However,
as a direct next step, we can apply our method to higher-resolution image datasets and explore its
application to improve the sampling speed of score-based models [23, 24, 6] with Ozaki sampling. In
general, when approximating the high-order scores with a diagonal or a low rank matrix, our training
cost is comparable to standard denoising score matching, which is scalable to higher dimensional
data. A larger rank typically requires more computation but could give better approximations to
second-order scores. While we focused on images, this approach is likely applicable to other data
modalities such as speech.
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A Related Work

Existing methods for score estimation focus mainly on estimating the first order score of the data
distribution. For instance, score matching [8] approximates the first order score by minimizing the
Fisher divergence between the data distribution and model distribution. Sliced score matching [25]
and finite-difference score matching [14] provide alternatives to estimating the first order score by
approximating the score matching loss [8] using Hutchinson’s trace estimator [7] and finite difference
respectively. Denoising score matching (DSM) [29] estimates the first order score of a noise perturbed
data distribution by predicting the added perturbed "noise" given a noisy observation. However,
none of these methods can directly model and estimate higher order scores. In this paper we study
DSM from the perspective of Tweedie’s formula and propose a method for estimating high order
scores. There are also other ways to derive DSM without using Tweedie’s formula. For example,
[15] provides a proof based on Bayesian least squares estimation. Stein’s Unbiased Risk Estimator
(SURE) [27] can also provide an alternative proof based on integration by parts. In contrast, our
derivation, which leverages a general version of Tweedie’s formula on high order moments of the
posterior, can be extended to directly learning high order scores.

B Proof

In the following, we assume that qσpx̃|xq “ N px̃|x, σ2Iq. Tweedie’s formula can also be derived
using the proof for Theorem 1.

Theorem 1. Given D-dimensional densities ppxq and qσpx̃q fi
ş

ppxqqσpx̃|xqdx, we have

ErxxT | x̃s “ fpx̃, s̃1, s̃2q (21)

ErxxT ´ xx̃T ´ x̃xT | x̃s “ hpx̃, s̃1, s̃2q, (22)

where fpx̃, s̃1, s̃2q and hpx̃, s̃1, s̃2q are polynomials of x̃, s̃1px̃q, s̃2px̃q defined as

fpx̃, s̃1, s̃2q “ x̃x̃T ` σ2x̃s̃1px̃q
T ` σ2s̃1px̃qx̃

T ` σ4s̃2px̃q ` σ
4s̃1px̃qs̃1px̃q

T ` σ2I, (23)

hpx̃, s̃1, s̃2q “ ´x̃x̃
T ` σ4s̃2px̃q ` σ

4s̃1px̃qs̃1px̃q
T ` σ2I. (24)

Here s̃1px̃q and s̃2px̃q denote the first and second order scores of qσpx̃q.

Proof. We can rewrite qσpx̃|xq in the form of exponential family

qσpx̃|ηq “ eη
Tx̃´ψpηqq0px̃q,

where η “ x
σ2 is the natural or canonical parameter of the family, ψpηq is the cumulant generating

function which makes qσpx̃|ηq normalized and q0px̃q “ pp2πqdσ2dq´
1
2 e´

x̃Tx̃
2σ2 .

Bayes rule provides the corresponding posterior

qpη|x̃q “
qσpx̃|ηqppηq

qσpx̃q
.

Let λpx̃q “ log qσpx̃q
q0px̃q

, then we can write posterior as

qpη|x̃q “ eη
Tx̃´ψpηq´λpx̃qppηq.

Since the posterior is normalized, we have
ż

eη
Tx̃´ψpηq´λpx̃qppηqdη “ 1.

As a widely used technique in exponential families, we differentiate both sides w.r.t. x̃
ż

pηT ´ Jλpx̃q
Tqqpη|x̃qdη “ 0,
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and the first order posterior moment can be written as

Erη | x̃s “ Jλpx̃q (25)

ErηT | x̃s “ Jλpx̃qT, (26)

where Jλpx̃q is the Jacobian of λpx̃q w.r.t. x̃.

Differentiating both sides w.r.t. x̃ again
ż

ηpηT ´ Jλpx̃q
Tqqpη|x̃qdη “Hλpx̃q,

and the second order posterior moment can be written as

ErηηT | x̃s “Hλpx̃q ` Jλpx̃qJλpx̃q
T, (27)

whereHλpx̃q is the Hessian of λpx̃q w.r.t. x̃.

Specifically, for qσpx̃|xq “ N px̃|x, σ2Iq, we have η “ x
σ2 and q0px̃q “ pp2πqdσ2dq´

1
2 e´

x̃Tx̃
2σ2 .

Hence we have

λpx̃q “ log qσpx̃q `
x̃Tx̃

2σ2
` constant

Jλpx̃q “ s̃1px̃q `
x̃

σ2

Hλpx̃q “ s̃2px̃q `
1

σ2
I.

From Eq. (27), we have

ErxxT | x̃s “ x̃x̃T ` σ2x̃s̃1px̃q
T ` σ2s̃1px̃qx̃

T ` σ4s̃2px̃q ` σ
4s̃1px̃qs̃1px̃q

T ` σ2I “ fpx̃, s̃1, s̃2q.

Combined with Eq. (25), Eq. (26), and Eq. (27), we have

ErxxT ´ xx̃T ´ x̃xT | x̃s “ ´x̃x̃T ` σ4s̃2px̃q ` σ
4s̃1px̃qs̃1px̃q

T ` σ2I “ hpx̃, s̃1, s̃2q.

Tweedie’s formula. Given D-dimensional densities ppxq and qσpx̃q fi
ş

ppxqqσpx̃|xqdx, we have

Erx | x̃s “ x̃` σ2s̃1px̃q, (28)

where s̃1px̃q fi ∇x̃ log qσpx̃q.

Proof. Plug in η “ x
σ2 and Jλpx̃q “ s̃1px̃q `

x̃
σ2 in Eq. (25), we have

Erx | x̃s “ x̃` σ2s̃1px̃q, (29)

which proves Tweedie’s formula.

Theorem 2. Suppose the first order score s̃1px̃q is given, we can learn a second order score model
s̃2px̃;θq by optimizing the following objectives

θ˚ “ arg min
θ

EpdatapxqEqσpx̃|xq
„

›

›

›
xxT ´ fpx̃, s̃1px̃q, s̃2px̃;θqq

›

›

›

2

2



,

θ˚ “ arg min
θ

EpdatapxqEqσpx̃|xq
„

›

›

›
xxT ´ xx̃T ´ x̃xT ´ hpx̃, s̃1px̃q, s̃2px̃;θqq

›

›

›

2

2



where fp¨q and hp¨q are polynomials defined in Eq. (9) and Eq. (10). Assuming the model has an
infinite capacity, then the optimal parameter θ˚ satisfies s̃2px̃;θ˚q “ s̃2px̃q for almost any x̃.
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Proof. It is well-known that the optimal solution to the least squares regression problems of
Eq. (11) and Eq. (12) are the conditional expectations fpx̃, s̃1px̃q, s̃2px̃;θ˚qq “ ErxxT | x̃s and
hpx̃, s̃1px̃q, s̃2px̃;θ˚qq “ ErxxT ´ xx̃T ´ x̃xT | x̃s respectively. According to Theorem 1, this
implies that the optimal solution satisfies s̃2px̃;θ˚q “ s̃2px̃q for almost any x̃ given the first order
score s̃1px̃q.

Note: Eq. (11) and Eq. (12) have the same set of solutions assuming sufficient model capacity.
However, Eq. (12) has a simpler form (e.g., involving fewer terms) than Eq. (11) since multiple
terms in Eq. (12) can be cancelled after expanding the equation by using Eq. (4) (Tweedie’s formula),
resulting in the simplified objective Eq. (13). Compared to the expansion of Eq. (11), the expansion
of Eq. (12) (i.e., Eq. (13)) is much simpler (i.e., involving fewer terms), which is why we use Eq. (12)
other than Eq. (11) in our experiments.

Before proving Theorem 3, we first prove the following lemma.

Lemma 1. Given a D dimensional distribution pdatapxq, and qσpx̃|xq fi N px̃|x, σ2Iq, we have the
following for any integer n ě 1:

Erbn`1x|x̃s “ σ2 B

Bx̃
Erbnx|x̃s ` σ2Erbnx|x̃s b

ˆ

s̃1px̃q `
x̃

σ2

˙

,

where bnx P RDn denotes n-fold tensor multiplications.

Proof. We follow the notation used in the previous proof. Since

Erbnη|x̃s “
ż

eη
Tx̃´ψpηq´λpx̃qppηq bn ηdη,

differentiating both sides w.r.t. x̃

B

Bx̃
Erbnη|x̃s “

ż

eη
Tx̃´ψpηq´λpx̃qppηq bn`1 ηdη ´

ż

eη
Tx̃´ψpηq´λpx̃qppηq bn ηdη b

B

Bx̃
λpx̃q

B

Bx̃
Erbnη|x̃s “ Erbn`1η|x̃s ´ Erbnη|x̃s b

ˆ

s̃1px̃q `
x̃

σ2

˙

.

Thus

Erbn`1x|x̃s “ σ2 B

Bx̃
Erbnx|x̃s ` σ2Erbnx|x̃s b

ˆ

s̃1px̃q `
x̃

σ2

˙

.

Example When n “ 2, plug in Eq. (4), we have

ErxxT|x̃s “ σ2pI ` σ2s̃2px̃qq ` σ
2px̃` σ2s̃1px̃qqps̃1px̃q `

x̃

σ2
qT,

which can be simplified as Eq. (9).

Lemma 1 provides a recurrence for obtaining fn in closed form. It is further used and discussed in
Theorem 3.

Theorem 3. Erbnx|x̃s “ fnpx̃, s̃1, ..., s̃nq, where bnx P RDn denotes n-fold tensor multiplica-
tions, fnpx̃, s̃1, ..., s̃nq is a polynomial of tx̃, s̃1px̃q, ..., s̃npx̃qu and s̃kpxq represents the k-th order
score of qσpx̃q “

ş

pdatapxqqσpx̃|xqdx.

Proof. We prove this using induction. When n “ 1, we have

Erx|x̃s “ σ2s̃1px̃q ` x̃.

Thus, Erx|x̃s can be written as a polynomial of tx̃, s̃1px̃qu. The hypothesis holds.

Assume the hypothesis holds when n “ t, then

Erbtx|x̃s “ ftpx̃, s̃1, ..., s̃tq.
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When n “ t` 1,

Erbt`1x|x̃s “ σ2 B

Bx̃
Erbtx|x̃s ` σ2Erbtx|x̃s b

ˆ

s̃1px̃q `
x̃

σ2

˙

“ σ2 B

Bx̃
ftpx̃, s̃1, ..., s̃tq ` σ2ftpx̃, s̃1, ..., s̃tq b

ˆ

s̃1px̃q `
x̃

σ2

˙

.

Clearly, σ2ftpx̃, s̃1, ..., s̃tq b
ˆ

s̃1px̃q `
x̃
σ2

˙

is a polynomial of tx̃, s̃1px̃q, ..., s̃tpx̃qu, and

σ2 B
Bx̃ ftpx̃, s̃1, ..., s̃tq is a polynomial of tx̃, s̃1px̃q, ..., s̃t`1px̃qu. This implies Erbt`1x|x̃s can

be written as ft`1px̃, s̃1, ..., s̃t`1q, which is a polynomial of tx̃, s̃1px̃q, ..., s̃t`1px̃qu. Thus, the
hypothesis holds when k “ t` 1, which implies that the hypothesis holds for all integer n ě 1.

Theorem 4. Given the true score functions s̃1px̃q, ..., s̃k´1px̃q, a k-th order score model s̃kpx̃;θq,
and

θ˚ “ arg min
θ

EpdatapxqEqσpx̃|xqr} b
k x´ fkpx̃, s̃1px̃q, ..., s̃k´1px̃q, s̃kpx̃;θqq}2s. (30)

Assuming the model has an infinite capacity, we have s̃kpx̃;θ˚q “ s̃kpx̃q for almost all x̃.

Proof. Similar to the previous case, we can show that the solution to the least squares regression
problems of Eq. (30) is fkpx̃, s̃1px̃q, ..., s̃k´1px̃q, s̃kpx̃;θq˚q “ Erbtx|x̃s. According to Theorem 3,
this implies s̃kpx̃;θ˚q “ s̃kpx̃q given the score functions s̃1px̃q, ..., s̃k´1px̃q.

C Analysis on Second Order Score Models

C.1 Variance reduction

If we want to match the score of true distribution pdatapxq, σ should be approximately zero for both
DSM and D2SM so that qσpx̃q is close to pdatapxq. However, when σ Ñ 0, both DSM and D2SM
can be unstable to train and might not converge, which calls for variance reduction techniques. In this
section, we show that we can introduce a control variate to improve the empirical performance of
DSM and D2SM when σ tends to zero. Our variance control method can be derived from expanding
the original training objective function using Taylor expansion.

DSM with varaince reduction Expand the objective using Taylor expansion

LDSM pθq “
1

2
EpdatapxqEqσpx̃|xq

„

›

›

›
s̃1px̃;θq `

1

σ2
px̃´ xq

›

›

›

2

2



“
1

2
EpdatapxqEz„N p0,Iq

„

›

›

›
s̃1px` σz;θq `

z

σ

›

›

›

2

2



“
1

2
EpdatapxqEz„N p0,Iq

„

}s̃1px` σz;θq}22 `
2

σ
s̃1px` σz;θqT z`

}z}22
σ2



“
1

2
EpdatapxqEz„N p0,Iq

„

}s̃1px;θq}22 `
2

σ
s̃1px;θqT z`

}z}22
σ2



`Op1q,

where Op1q is bounded when σ Ñ 0. Since

Ez„N p0,Iqr
2

σ
s̃1px;θqT z`

}z}22
σ2
s “

D

σ2
, (31)

where D is the dimension of pdatapxq, we can use Eq. (31) as a control variate and define DSM with
variance reduction as

LDSM´V R “ LDSM ´ EpdatapxqEz„N p0,Iqr
2

σ
s̃1px;θqT z`

}z}22
σ2
s `

D

σ2
(32)

An equivalent version of Eq. (32) is first proposed in [30].
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D2SM with variance reduction We now derive the variance reduction objective for D2SM. Let us
first consider the ij-th term of LD2SMpθq. We denote ψpx̃;θq “ s̃2px̃;θq ` s̃1px̃;θqs̃1px̃;θqT and
ψijpx̃;θq the ij-th term of ψpx̃;θq. Similar as the variance reduction method for DSM [30], we
expand the objective of D2SM (Eq. (13)) using Taylor expansion

LD2SMpθqij “
1

2
EpdatapxqEz„N p0,Iqrψijpx` σz;θq `

Iij ´ zizj
σ2

s2

“
1

2
EpdatapxqEz„N p0,Iqrψijpx` σz;θq2 ` 2

Iij ´ zizj
σ2

ψijpx` σz;θq `
pIij ´ zizjq

2

σ4
s

=
1

2
EpdatapxqEz„N p0,Iqrψijpx;θq2 ` 2

Iij ´ zizj
σ2

ψijpx;θq ` 2
Iij ´ zizj

σ
Jψijz`

pIij ´ zizjq
2

σ4
s `Op1q,

where Op1q is bounded when σ Ñ 0. It is clear to see that the term pIij´zizjq
2

σ4 is a constant w.r.t.
optimization. When σ approximates zero, both Iij´zizj

σ2 and Iij´zizj
σ would be very large, making the

training process unstable and hard to converge. Thus we aim at designing a control variate to cancel
out these two terms. To do this, we propose to use antithetic sampling. Instead of using independent
noise samples, we use two correlated (opposite) noise vectors centered at x defined as x̃` “ x̃` σz
and x̃´ “ x̃´ σz. We propose the following objective function to reduce variance

LD2SM-VR “ Ex„pdatapxqEz„N p0,Iq

„

ψpx̃`;θq2 `ψpx̃´;θq2 ` 2
I´ zzT

σ
d pψpx̃`;θq `ψpx̃´;θq ´ 2ψpx;θqq



. (33)

Similarly, we can show easily by using Taylor expansion that optimizing Eq. (33) is equivalent to
optimizing Eq. (13) up to a control variate. On the other hand, Eq. (33) is more stable to optimize than
Eq. (13) when σ approximates zero since the unstable terms Iij´zizj

σ2 and Iij´zizj
σ are both cancelled

by the introduced control variate.

C.2 Learning accuracy

This section provides more experimental details on Section 4.4. We use a 3-layer MLP model with
latent size 128 and Tanh activation function for s̃1px̃;θq. As discussed in Section 4.2, our s̃2px̃;θq
model consists of two parts αpx̃;θq and βpx̃;θq. We also use a 3-layer MLP model with latent size
32 and Tanh activation function to parameterize αpx̃;θq and βpx̃;θq. For the mean squared error
diagonal comparison experiments, we only parameterize the diagonal component αpx̃;θq. We use a
3-layer MLP model with latent size 32, and Tanh activation function to parameterize αpx̃;θq. We
use learning rate 0.001, and train the models using Adam optimizer until convergence. We use noise
scale σ “ 0.01, 0.05, 0.1 during training so that the noise perturbed distribution qσpx̃q is close to
pdatapxq. All the mean squared error results in Table 1 are computed w.r.t. to the ground truth second
order score of the clean data pdatapxq. The experiments are performed on 1 GPU.

C.3 Computational efficiency

This section provides more experimental details on the computational efficiency experiments in
Section 4.4. In the experiment, we consider two types of models.

MLP model We use a 3-layer MLP model to parameterize s̃1px̃;θq for a 100 dimensional data
distribution. As discussed in Section 4.2, our s̃2px̃;θq model consists of two parts αpx̃;θq and
βpx̃;θq. We use a 3-layer MLP model with comparable amount of parameters as s̃1px̃;θq to
parameterize αpx̃;θq and βpx̃;θq. We consider rank r “ 20, 50, 200 and 1000 for βpx̃;θq in the
experiment as reported in Table 2.

U-Net model We use a U-Net model to parameterize s̃1px̃;θq for the 784 dimensional data dis-
tribution. We use a similar U-Net architecture as s̃1px̃;θq for parameterizing αpx̃;θq and βpx̃;θq,
except that we modify the output channel size to match the rank r of βpx̃;θq. We consider rank
r “ 20, 50, 200 and 1000 for βpx̃;θq in the experiment as reported in Table 2. All the experiments
are performed on the same TITAN Xp GPU using exactly the same computational setting. We use
the implementation of U-Net from this repository https://github.com/ermongroup/ncsn.

D Uncertainty Quantification

This section provides more experimental details on Section 5.
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D.1 Synthetic experiments

This section provides more details on the synthetic data experiments. We use a 3-layer MLP model
for both s̃1px̃;θq and s̃2px̃;θq. We train s̃1px̃;θq and s̃2px̃;θq jointly with Eq. (15). We use
σ “ 0.15 for qσpx̃|xq, and train the models using Adam optimizer until convergence. We observe
that training s̃1px̃;θq directly with DSM and training s̃1px̃;θq jointly with Eq. (15) have the same
empirical performance in terms of estimating s̃1. Thus, we train s̃1px̃;θq jointly with s̃2px̃;θq in
our experiments.

D.2 Convariance diagonal visualizations

For both the MNIST and CIFAR-10 models, we use U-Net architectures to parameterize s̃1px̃;θq.
We also use a similar U-Net architecture to parameterize s̃2px̃;θq, except that we modify the
output channel size to match the rank r of βpx̃;θq. We use r “ 50 for βpx̃;θq for both MNIST
and CIFAR-10 models. We use the U-Net model implementation from this repository https:
//github.com/ermongroup/ncsn. We consider noise scales σ “ 0.3, 0.5, 0.8, 1.0 for MNIST and
σ “ 0.3, 0.5, 0.8 for CIFAR-10. We train the models jointly until convergence with Eq. (15), using
learning rate 0.0002 with Adam optimizer. The models are trained on the corresponding training sets
on 2 GPUs.

D.3 Full convariance visualizations

We use U-Net architectures to parameterize s̃1px̃;θq. We also use a similar U-Net architecture to
parameterize s̃2px̃;θq, except that we modify the output channel size to match the rank r of βpx̃;θq.
We use r “ 50 for βpx̃;θq for this experiment. We use the U-Net model implementation from
this repository https://github.com/ermongroup/ncsn. We train the models until convergence,
using learning rate 0.0002 with Adam optimizer. The models are trained on the corresponding
training set on 2 GPUs. We provide extra eigenvector visualizations for Fig. 4 in Figs. 9 and 10.
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Figure 9: Eigenvectors (sorted by eigenvalues) of Covrx | x̃s estimated by s̃2px̃;θq on MNIST
(more details in Section 5).
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Figure 10: Eigenvectors (sorted by eigenvalues) of Covrx | x̃s estimated by s̃2px̃;θq on MNIST
(more details in Section 5).

E Ozaki sampling

This section provides more details on Section 6.

E.1 Synthetic datasets

This section provides more details on Section 6.2. We use a 3-layer MLP model for both s̃1px̃;θq
and s̃2px̃;θq. Since we only need the diagonal of the second order score, we parameterize s̃2px̃;θq
with a diagonal model (i.e. with only αpx̃;θq) and optimize the models jointly using Eq. (16). We
use σ “ 0.1 during training so that the noise perturbed distribution qσpx̃q is close to pdatapxq. The
models are trained with Adam optimizer with learning rate 0.001.

Given the trained models, we perform a parameter search to find the optimal step size for both
Langevin dynamics and Ozaki sampling. We also observe that Ozaki sampling can use a larger step
size than Langevin dynamics, which is also discussed in [2]. We observe that the optimal step size
for Ozaki sampling is ε “ 5 on Dataset 1 and ε “ 6 on Dataset 2, while the optimal step size for
Langevin dynamics is ε “ 0.5 on Dataset 1 and ε “ 2 on Dataset 2. We also explore using the
same setting of Ozaki sampling for Langevin dynamics (i.e. we use the optimal step size of Ozaki
sampling and the same number of iterations). We present the results in Fig. 11. We observe that
the optimal step size for Ozaki sampling is too large for Langevin dynamics, and does not allow
Langevin dynamics to generate reasonable samples. We also find that Ozaki sampling can converge
using fewer iterations than Langevin dynamics even when using the same step size (see Fig. 6). All
the experiments in this section are performed using 1 GPU.
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(a) Dataset 1 (b) Ozaki (5ˆ 103) (c) Langevin (5ˆ 105) (d) Langevin (3ˆ 104)

(e) Dataset 2 (f) Ozaki (3ˆ 103) (g) Langevin (3ˆ 103) (h) Langevin (9ˆ 103)

Figure 11: Sampling 2-D synthetic data with score functions. The number in the parenthesis stands
for the number of iterations used for sampling. We observe that Ozaki obtains more reasonable
samples using 1/6 or 1/3 iterations compared to Langevin dynamics. The second column uses the
optimal step size for Ozaki, and the third column uses the same step size and setting for Langevin
dynamics. The fourth column uses the optimal step size for Langevin dynamics.

E.2 MNIST

We use the U-Net implementation from this repository https://github.com/ermongroup/ncsn.
We train the models until convergence on the corresponding MNIST training set using learning rate
0.0002 and Adam optimizer. We use 2 GPUs during training. As shown in [23], sampling images
from score-based models trained with DSM is challenging when σ is small due to the ill-conditioned
estimated scores in the low density data region. In our experiments, we use a slightly larger σ “ 0.5
to avoid the issues of training and sampling from s̃1px̃;θq as discussed in [23]. We train the s̃1px̃;θq
and s̃2px̃;θq jointly with Eq. (14).

For experiments on class label changes, we select 10 images with different class labels from the
MNIST test set. For each of the image, we initialize 1000 chains using it as the initialization for
sampling. We consider two sampling methods Langevin dynamics and Ozaki method in this section.
For the generated images, we first denoise the sampled results with Eq. (4) and then use a pretrained
classifier, which has 99.5% accuracy on MNIST test set classification, to classify the labels of the
generated images in Figure 8a.

F Broader Impact

Our work provides a way to approximate high order derivatives of the data distribution. The proposed
approach allows for applications such as uncertainty quantification in denoising and improved
sampling speed for Langevin dynamics. Uncertainty quantification in denoising could be useful for
medical image diagnosis. Higher order scores might provide new insights into detecting adversarial
or out-of-distribution examples, which are important real-world applications. Score-based generative
models can have both positive and negative impacts depending on the application. For example,
score-based generative models can be used to generate high-quality images that are hard to distinguish
from real ones by humans, which could be used to deceive humans in malicious ways ("deepfakes").
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