
Published as a conference paper at ICLR 2023

A DETAILS IN EXPERIMENT

A.1 IMPLEMENTATION

We use Pytorch (Paszke et al., 2019) for all the implementation. For experiments on CIFAR-10 and
CIFAR-100, we use a single NVidia A6000 GPU. Training of 200 epochs took a few hours. For
experiments on ImageNet, we use A100 DGX with four GPUs. Training of 100 epochs took five
days.

A.2 NETWORK ARCHITECTURE

CIFAR-10/CIFAR-100 We use ResNet18 (He et al., 2016a) for this experiment. To adapt to
the smaller input size of 32 (compared with 224 of ImageNet (Deng et al., 2009)), we follow the
protocol of CIFAR-10 example used in Lighting Bolts library (Falcon & Cho, 2020); replace the
first 7⇥7 convolution layer (stride 2) for 3⇥3 convolution layer (stride 1) and remove the following
max-pooling layer. The output dimensions of the final linear layer are changed according to the
dataset’s number of classes (10 for CIFAR-10 and 100 for CIFAR-100).

ImageNet We use ConvNeXt-B (Liu et al., 2022). To utilize the activation sparsity, we replace
GELU (Hendrycks & Gimpel, 2016) activation with ReLU activation. From their intensive ablation
study (figure 2 in their paper), this change of activation function has very little impact on accuracy.

A.3 DATA AUGMENTATION

CIFAR-10/CIFAR-100 We follow the convention in the literature for training the datasets; ran-
domly crop of 32⇥ 32 region after 4 pixel padding then applies random horizontal flip.

ImageNet We use the data augmentation techniques used in ConvNeXt (Liu et al., 2022) (settings
for the fine-tuning stage) except for the stochastic depth. Specifically, we use random erasing of the
probability 0.25 and label smoothing of factor 0.1. We use PyTorch Image Models library (timm)
(Wightman, 2019) for the data augmentation.

A.4 DETAIL IN WEIGHT-PRUNING

For Weight-Pruning, we use magnitude-based pruning using Hoyer-Square Yang et al. (2020) for the
magnitude computation combined with the LSQ-based quantization. In Weight-Pruning, weights
elements that are zero after the quantization is pruned. The algorithm for the Weight-Pruning is
similar to the one proposed in the neural-wiring Wortsman et al. (2019), edge-popup Ramanujan
et al. (2020), and the ones adopted by Hoyer-Square Yang et al. (2020). We use quantization by
LSQ instead of thresholding, and the elements of the weight that are zero after the quantization
are pruned. Therefore, pruned weight can be active again, which is key to finding a good pruned
network having good accuracy/energy tradeoff.

We adopt the Weight-Pruning setting for a fair comparison with the proposed Bit-Pruning. In Bit-
Pruning, quantized weight is converted into binary format, and elements that become zeros are
pruned. In other words, both methods prune a value smaller than the threshold (e.g., half the quan-
tization scale) where the difference between the target weight (0 for Weight-Pruning and Ŵ for
Bit-Pruning) is evaluated using Hoyer-Square.

A.5 DETAIL IN BIT-PRUNING

A.5.1 BALANCING PARAMETER �(l) FOR PROXIMAL WEIGHT

As a preliminary study investigating the effectiveness of Bit-Pruning, we use the same � for entire
layers. But we can use a different value of � for each layer. It can be set proportional to the number
of operations for the given layers, or it could take the susceptibility of the weight change to the
output layer into account. Learning the layer-wise � end-to-end may also be possible using task
loss. However, this requires an additional ingenuity to approximate the gradient w.r.t. � (because

13

Published as a conference paper at ICLR 2023

of the non-differentiability f argmin operation). In any case, it will introduce an additional hyper-
parameter to be tuned. In this study, we focus on comparing the Weight-Pruning and Bit-Pruning
in a simple and fair setup as possible. Therefore we left the exploration in this direction for future
work.

A.5.2 SCHEDULING THE STRENGTH ⌘ OF SPARSITY REGULARIZATION

We use constant ⌘ across the entire training sequence both for Weight-Pruning and Bit-Pruning. We
adopted this setting because we want to compare the Weight-Pruning and Bit-Pruning in a simple
and fair configuration as possible.

Scheduling of the ⌘ will improve the accuracy/energy tradeoff; however, we prioritize the compari-
son on simple and fair configuration, and we left the exploration of the dynamic scheduling of ⌘ as
future work.

14

Published as a conference paper at ICLR 2023

(a) CIFAR-10/4bit (b) CIFAR-10/8bit (c) CIFAR-10/32bit

(d) CIFAR-100/4bit

(e) CIFAR-100/8bit

(f) CIFAR-100/32bit
Figure 8: Accuracy/energy tradeoff of ResNet18 trained on CIFAR-10 and CIFAR-100 for difference acti-
vation quantization level. Bit-Pruning (add-shift-add mode) (BP/asa) and Weight-Pruning (mult-add
mode) (WP/ma) are compared. Bit-Pruning always uses an 8bit basis, and Weight-Pruning uses the same bit
for weight as activation. The result of Bit-Pruning in mult-add mode (BP/ma) is provided for reference.

B ADDITIONAL EXPERIMENT RESULT

As a supplemental result of the accuracy/energy comparison experiment (Figure 4) presented in
the main paper, the results, including the training accuracy, are shown in Figure 8 for CIFAR-10
(Figure 8a,8b,8c) and CIFAR-100 (Figure 8d,8e,8f). The training loss of Bit-Pruning is lower than
that of Weight-Pruning for the same computational energy. It suggests that the add-shift-add
network has more capacity than the mult-add network given the same energy.

Figure 9 - 10 shows the evolution of major statics during training epochs. The results presented in
Figure 8 in the main paper is a summary of (a) and (e) of Figure 9 - 10.

Using a large weight for the sparsity regularization ⌘ (both for Weight-Pruning and Bit-Pruning),
both weight and activation become sparse (Figure 9 - 10 (c), (g), (h)). This is because the sparsity
regularization (Lwgt of (3) for Weight-Pruning and Lbit of (7) for Bit-Pruning) can be reduced
not only by sparsifying the mult or add but also by suppressing the activation by promoting the
activation to the minus region of ReLU activation function.

15

Published as a conference paper at ICLR 2023

(a) Training

(b) Validation

Figure 9: Evolution of major statics on CIFAR-10 (Krizhevsky et al., a). Weight-Pruning (solid line) vs.
Bit-Pruning (dash line with small dot). ResNet18 (He et al., 2016a). Color encode the strengths of sparsity
regularization ⌘ (Lwgt for Bit-Pruning and Lbit for Bit-Pruning). Black: ⌘ is zero, Blue: ⌘ is small, Orange:
⌘ is large. (a) Classification accuracy in [%], (b) Task loss Ltask (cross-entropy loss). (c) Average nonzero
synapse count with respect to the original synapse connection (i.e., 1.0 is equivalent to dense connection.) (d)
Loss for sparsification (mult for Wight-Pruning (Lwgt) and add for Bit-Pruning (Lbit)). (e) Estimated energy
consumption from sparse mult-add and add-shift-add based on the statistics in Table 1. (f) Operation
count of mult (Weight-Pruning) and add (Bit-Pruning). (g) Average bit count for each neuron (initial bit
count is about 4 when initialized by Kaiming uniform for 8-bit weight as shown in figure 6a). (h) Activation
sparsity (i.e., the ratio of zero elements in X)

.

16

Published as a conference paper at ICLR 2023

(a) Training

(b) Validation

Figure 10: Evolution of major statics on CIFAR-100 (Krizhevsky et al., b). Weight-Pruning (solid line) vs.
Bit-Pruning (dash line with small dot). ResNet18 (He et al., 2016a). Color encode the strengths of sparsity
regularization ⌘ (Lwgt for Bit-Pruning and Lbit for Bit-Pruning). Black: ⌘ is zero, Blue: ⌘ is small, Orange:
⌘ is large. (a) Classification accuracy in [%], (b) Task loss Ltask (cross-entropy loss). (c) Average nonzero
synapse count with respect to the original synapse connection (i.e., 1.0 is equivalent to dense connection.) (d)
Loss for sparsification (mult for Wight-Pruning (Lwgt) and add for Bit-Pruning (Lbit)). (e) Estimated energy
consumption from sparse mult-add and add-shift-add based on the statistics in Table 1. (f) Operation
count of mult (Weight-Pruning) and add (Bit-Pruning). (g) Average bit count for each neuron (initial bit
count is about 4 when initialized by Kaiming uniform for 8bit weight as shown in figure 6a). (h) Activation
sparsity (i.e., ratio of zero element in X)

.

17

Published as a conference paper at ICLR 2023

C LOSS LANDSCAPE OF PROXIMAL WEIGHT

The loss landscape of the bit sparsity regularization of (7) is visualized in Figure 11. There will
be multiple local minima, depending on the magnitude of �(l). When �(l) is very large, the local
minima will be PoT and zero; on the other hand, when �(l) is zero, it coincides with the add cost
Cadd of Figure 3a. Depending on the current weight value, the weights are guided toward the local
minima except in the case when �(l) = 0.0 (In this case Ŵ=W and we won’t have any gradient
from the bit-sparsity regularization of (7)).

(a) Loss landscape of bit-sparsity regularization Lbit (� = 0.0)

(b) Loss landscape of bit-sparsity regularization Lbit (� = 0.1)

(c) Loss landscape of bit-sparsity regularization Lbit (� = 1.0)

Figure 11: Loss landscape of bit-sparsity regularization Lbit := Cmv(w, ŵ) + Cadd(ŵ). (b) and (c) corre-
sponds to Figure 3b and Figure 3c in the main paper.

18

Published as a conference paper at ICLR 2023

D MORE DISCUSSION ON COMPUTATIONAL EFFICIENCY

Figure 12: Fine-grained pruning of Bit-
Pruning. The energy cost for the nonzero
weight of add-shift-add ranges from
Eadd to Emult⇡MEadd. Bit-Pruning aims
for Eadd, by sparsifying B.

As discussed in the main paper (Section 3.3), we roughly
get Emult ⇡ MEadd from Table 1 in the case of ASIC;
therefore, the computational efficiency of Bit-Pruning
over Weight-Pruning is almost determined by the ratio of
obtained connection density �add/�mult.

When the network weight is initialized with a uniform
random variable, then about 50% of the bits in B is one
(Figure 6a); in this case, their computational efficiency is
comparable (same order).

By the fine-grained pruning, we expect that the average
�add in a Bit-Pruned network is much smaller than the av-
erage �mult in a Weight-Pruned network when both net-
works achieve comparable accuracy (Figure 12). In the
extreme case where all the nonzero weights in a network
are represented as PoT, the computational cost in add-shift-add representation is M times
smaller than that in mult-add representation. The mult-equivalent computation can be executed
using roughly Eadd instead of Emult.

19

Published as a conference paper at ICLR 2023

E ABLATION

In this section, we compare Bit-Pruning and Weight-Pruning in a wide range of configurations which
we could not cover in the main paper.

The additional results are shown only for CIFAR10 using 8-bit activation.

E.1 SMALLER SIZED NETWORK

Wight-Pruning and Bit-Pruning assume some redundancy in weights to be pruned. To investigate
the behavior of both methods in a situation where the number of possible unnecessary weights is
scarce, we’ve conducted experiments using the narrow version of ResNet18 (narrow ResNet18).
The narrow ResNet18 has 8⇥ less input and output channels w.r.t the original ResNet18 we’ve used
in the main experiments, except the input and output layer. In this situation, we can not expect
significant pruning, either on weights or bits.

Figure 13: Ablation result from using narrow (8⇥) network. Results using ResNet18 model with 8-bit activa-
tion on CIFAR10.

Figure 13 shows the result from using the narrow ResNet18. As expected, even when there is no
sparsity regularization, e.g., ⌘ = 0, we already observe significant degeneration in accuracy com-
pared with the original full-sized ResNet18, both on Weight-Pruning and Bit-Pruning. Increasing
the weight for the regularization ⌘, we observed the reduction in energy at the cost of accuracy de-
generation in both methods. However, we observed a similar trend as in the case of the full-size
network; the Bit-Pruning shows a better tradeoff than the Weight-Pruning.

E.2 DIFFERENT BALANCING PARAMETER �(l) FOR THE PROXIMAL WEIGHT

The proximal weight Ŵ is computed by finding the best balance between the gain from reducing
the bit cost Cbit and proximity from the current weight. The proximity is evaluated by the weight
moving cost function Cmv . Intuitively, Cadd encourages Ŵj,k to be sparse in the binary format while
Cmv keeps it close to the current weight Wj,k. The best balance is determined by choice of � and
Cmv . The proximal weight Ŵ will be sparser in binary representation when � is large.

In the main paper, we choose to use �(l) = 1.0 for all layers (Tab.3). We choose this value without
careful parameter search (e.g., by evaluating the test accuracy) but by simply looking at the loss
landscape of Figure 11. We consider it will induce sparsity as its local minimum is mainly composed
of one nonzero element (except two nonzeroes at 96 and all zero at 0). To see the results when �(l)

is small where there are more local minimums (Figure 11-(b)), we conducted an experiment using a
smaller value of �(l) = 0.1 for all layers.

Figure 14 shows the result from using smaller value of �(l) (�(l) = 0.1). We observe the opposite
results from the main experiment; the accuracy/energy tradeoff of Bit-Pruning is worse than that of
Weight-Pruning.

The degenerated tradeoff may be attributed to the too-conservative proximal weight, or it may come
from the difficulty in training using the loss function that has too many local minima (Figure 11-(b)).

20

Published as a conference paper at ICLR 2023

Figure 14: Ablation result from using smaller � (� = 0.1, left) compared with the results using larger �
(� = 1.0) (right, same as Figure 4-(b)). Results using ResNet18 model with 8-bit activation on CIFAR10.

E.3 FINE TUNING VS. TRAINING FROM SCRATCH

In the main paper, we trained the ResNet18 network from scratch for CIFAR10/100 and fine-tuned
the ConvNeXt network from a pre-trained network for ImageNet. We trained the network from
scratch because we wanted to compare Weight-Pruning and Bit-Pruning in a fair and straightforward
setting as possible. We were concerned the results may be affected by the pre-trained network. (We
use a pre-trained network for ConvNeXt because we could not run large-scale training using of
larger dataset such as ImageNet-22K.)

Nonetheless, it is noteworthy to see which performs better to consider the application scenario of
Bit-Pruning (and also Weight-Pruning). For this, we conducted experiments to compare the fine-
tuning and the train-from-scratch. For the pre-trained network, we used the network trained as
⌘ = 0 for both Weight-Pruning and Bit-Pruning. We employed the training procedure used in
train-from-scratch.

Figure 15: Ablation result of fine-tuning using pre-trained network (left) compared with the results by training
from scratch (right, same as Figure 4-(b)). Results using ResNet18 model with 8-bit activation on CIFAR10.

Figure 15 compares the results from fine-tuning and train-from-scratch (same results from the Fig-
ure 4-(b) in the main paper). The results are almost the same on the high-accuracy regime, but we
observe faster convergence in the case of fine-tuning. We observe the instability in the low energy
regime (large ⌘). This instability might be attributed to the learning-rate scheduler (e.g., warm-up,
etc.) designed for the train-from-scratch scenario.

Bit-Pruning (and Weight-Pruning) could be used for both scenarios (fine-tuning and train-from-
scratch). But given the similar results (at least on the high-accuracy regime) and faster convergence,
it may be beneficial to use a pre-trained network when available.

21

Published as a conference paper at ICLR 2023

E.4 UNIFORM WEIGHT MOVING COST Cmv WITH p = 1.0

The proximal weight Ŵ is computed by finding the best balance between the gain from reducing
the bit cost Cbit and proximity from the current weight evaluated by the weight moving cost function
Cmv . Intuitively, Cadd encourages Ŵj,k to be sparse in the binary format while Cmv keeps it close
to the current weight Wj,k. The best balance is determined by choice of � and Cmv . In section E.2,
we ablate the balancing parameter �(l); here, we ablate the choice of the weight moving cost Cmv .

In the main experiments, we use p = 1/2 because we consider the changes in weight value when
its norm is small to have more effect on the accuracy than when it is large. For example, changes
of 2 when the weight was 1 (200% change) may have a more significant impact on accuracy than
the weight was 200 (1%). When p = 1/2, Cmv changes a lot when its norm is small and does not
change much when its magnitude is significant.

Figure 16: Ablation result of using uniform weight moving cost (left, Cmv with p = 1.0) compared with norm
dependant weight moving cost (right, Cmv with p = 1/2, same as Figure 4-(b)). Results using ResNet18 model
with 8-bit activation on CIFAR10.

We conducted the ablation experiments using the moving cost Cmv with p = 1.0; this choice as-
sumes the change in weight will equally affect the accuracy regardless of the norm of the current
weight. Figure 17 visualizes the loss landscape of the bit-sparsity regularization when p = 1.0
which is significantly different from the case when p = 1/2 shown in Figure 11.

Figure 16 shows the results when p = 1.0. We observe a degradation in the accuracy/energy tradeoff.
We suspect this is because the Lbit with p = 1.0 does not reflect the tradeoff of changing the value
of w to the accuracy. This result suggests that we could expect a better tradeoff by using smarter
Cmv , e.g., by learning from data (as we discussed in future work in Sec.6).

22

Published as a conference paper at ICLR 2023

(a) Loss landscape of bit-sparsity regularization Lbit (� = 1.0)

(b) Loss landscape of bit-sparsity regularization Lbit (� = 2.0)

(c) Loss landscape of bit-sparsity regularization Lbit (� = 4.0)

(d) Loss landscape of bit-sparsity regularization Lbit (� = 8.0)

(e) Loss landscape of bit-sparsity regularization Lbit (� = 16.0)

(f) Loss landscape of bit-sparsity regularization Lbit (� = 32.0)

Figure 17: Loss landscape of bit-sparsity regularization Lbit := Cmv(w, ŵ)+Cadd(ŵ) for Cmv with p = 1.0

23

Published as a conference paper at ICLR 2023

F COMPARISON WITH THE BIT-SLICE LOSS

Inducing group-wise bit sparsity (bit-slice sparsity) is explored to realize efficient DNN for emerging
resistive random-access memory (ReRAM)-based DNN accelerators Zhang et al. (2019). In the
ReRAM-based accelerators, each crossbar can not hold the whole 8-bit weight; therefore, a single
weight element is distributed into the different crossbars, each having a 2-bit which they call a bit-
sliced representation. In this hardware restriction, their goal is to sparsify each slice. The sparsity
within each slice is induced by minimizing the bit-slice l1 loss, defined as a l1 norm of each sliced
weight value (in their case, each slice has 2bit). By reducing the l1 norm for each slice, the weight
as a whole is also expected to have fewer nonzero elements in binary representation.

Ours and Zhang et al. (2019) are different in motivation; therefore, their technique for inducing bit-
sparsity is also different. Their goal is to induce the sparsity within the slice; on the hand, our goal
is to induce the sparsity in add of the proposed add-shift-add formulations. They induce the
sparsity by minimizing the l1 loss within each slice and do not consider the continuity of weight as
a whole; on the hand, we consider the continuity of the whole weight when inducing the sparsity to
keep the change of weight value minimum to prevent the accuracy deterioration by the significant
change in the weight value.

Although the motivation is different, Bit-Pruning and bit-slice sparsification of Zhang et al. (2019)
share some similarities in the scene in that both aim at realizing the sparse representation of weight
in binary format. Therefore, we conducted additional experiments by comparing them in terms of
their ability to induce sparsity.

Figure 18 visualize the loss landscape of their bit-slice regularization Lbitslice. Because the l1 loss
is computed inside the slice, it can not take the state of other bits into account; therefore, it can not
take the continuity of the weight into account. When the number of slices is 1 (Figure 18-(d)), the
bit-slice l1 loss reduces to the l1 regularization for the weight value; therefore, we can not expect
the sparsity as it simply reduces the norm of the weight. When the number of slices equals the bit
width M (Figure 18-(a)), it guides each bit to zero, ignoring the weight value’s continuity. When
the number of slices is 2 (Figure 18-(c)), which is their experimental setup), it only considers the
continuity in the slice and ignores the continuity as weight as a whole.

For example, consider the case when w = 63 (6 nonzero bit), then our proximal weight is w = 64
(1 nonzero bit). Both weights are guided toward the proximal value, which differs only 1 in the
weight value. Still, nonzero bits are reduced significantly (from 6 to 1). On the other hand in case
of the bit-slice l1 loss it guides the weight towards 6310 = (00|11|11|11)2 7! 42 = (00|10|10|10).
The corresponding weight value changes drastically; therefore, we’ll expect a significant drop in
accuracy. Worse still, the gain for the bit sparsity is small (from 6 to 3). Our bit-sparsity loss
guides the weight that maximizes the gain while preventing the weight from changing a lot by
simultaneously considering the proximity of the weight value and the number of bits.

We conducted experiments to compare the result of our bit-sparsity regularization and their bit-slice
l1 regulation. We modified their loss function calc_l1_and_zero_ratio from their provided
code8 to be used in our Bit-Pruning framework. We also use l1 loss (instead of Hoyer-Square loss)
for our bit-sparsity regularization for a fair comparison.

Figure 19 compare their performance. Our bit-sparsity regularization (l1 version) shows a better
tradeoff than the bit-slice l1 regulation.

8http://github.com/zjysteven/bitslice_sparsity

24

http://github.com/zjysteven/bitslice_sparsity

Published as a conference paper at ICLR 2023

(a) Loss landscape of bit-slice l1 regularization Lbitslice (slice=8)

(b) Loss landscape of bit-slice l1 regularization Lbitslice (slice=4), same setting as Zhang et al. (2019)

(c) Loss landscape of bit-slice l1 regularization Lbitslice (slice=2)

(d) Loss landscape of bit-slice l1 regularization Lbitslice (slice=1)

Figure 18: Loss landscape of bit-slice regularization Lbitslice Zhang et al. (2019). When the number of slices
is 1, it reduces to the l1 regularization. When the number of slices is a number of bit M, it simply guides each
bit to zero; this is equivalent to � = 0 in our bit-slice l1 regularization.

Figure 19: Ablation result using bit-slice l1 regularization (left) compared with our bit-sparsity regularization
(right, using l1 loss instead of square-Hoyer). Results using ResNet18 model with 8-bit activation on CIFAR10.

25

Published as a conference paper at ICLR 2023

G WEIGHTED BIT-PRUNING REGULARIZATION

Our Bit-Pruning loss is defined as the difference (in Hoyer-Square sense) between the proximal
weight Ŵ and current weight W . The proximal weight takes both bit-cost and proximity to the
current weight into account (8). It is a compromised point (found by solving the optimization of
(8)) that reduces the bit-cost while keeping the change from the current weight small as possible.
The bit-cost Cbit of the computed proximal weight is always less than or equal to the current weight
regardless of the choice of the moving cost Cmv; therefore, sparsity always induces. However, the
bit-sparsity regularization does NOT consider the possible reduction of the bit-cost Cbit once the
proximal weight is determined.

Let’s consider a case when w = 63 and w = 65. They would have the same proximal ŵ = 64.
Obviously, w = 63 has more nonzero bits than w = 65. Using the bit-sparsity regularization of
(7), both w = 63 and w = 65 are guided toward w = 64; therefore, both weights are directed
toward the sparse in binary representation having only one nonzero bit. But we’ll expect more gain
when w = 63 becomes w = 64 (6 7! 1) than w = 65 becomes w = 64 (2 7! 1). The bit-
sparsity regularization of (7) does not consider this for computing the gradient. Instead, they are
treated equally, ignoring their different gain in bit-cost. To incorporate these gains into account, we
consider using weight to reflect the gain; the weighted version of the bit sparsity regularization is
defined as follows:

Lbit(W) =
LX

l=1

���X(l) � (W (l) � Ŵ
(l))

���
0
,

Lbit_weighted(W) =
LX

l=1

���X(l) � (W (l) � Ŵ
(l))(Cadd(W

(l))� Cadd(Ŵ
(l)))

���
0
, (10)

Figure 20: Ablation result of using weighted bit sparsify regularization of (10) (left) compared with the normal
bit sparsify regularization of (7). Results using ResNet18 model with 8-bit activation on CIFAR10.

Figure 20 shows the results. Opposed to our expectation, we could not observe a noticeable im-
provement in the accuracy-energy tradeoff. We have not found the reason yet; we may observe
some improvement using a different optimizer, model designs, or datasets. In this work, we focused
on comparing Bit-Pruning and Weight-Pruning in a simple and fair setup; therefore, we left the
explanation of more advanced Bit-Pruning regularization for future work.

26

Published as a conference paper at ICLR 2023

H ADDITIONAL DISCUSSION WITH RELATED WORKS

H.1 LOW-RANK FACTORIZATION

Low-rank factorization of matrix multiplication is often utilized to reduce the number of mult
(Howard et al., 2019). The factorization can be realized as depthwise or 1x1 convolution; they are
utilized in a computationally efficient network such as MobileNet (Howard et al., 2017) or Con-
vNeXt (which we evaluate in our experiment). Recent research demonstrates that the low-rank form
could be learned by optimization (Idelbayev & Carreira-Perpinán, 2020). Our approach is orthogo-
nal to this approach, and it can be combined, c.f., applying Bit-Pruning for the learnable low-rank
network to reduce the computation cost further.

H.2 BSQ

BSQ Yang et al. (2021) proposed a novel method for realizing gradient-based optimization of the
layer-wise precision, targeting the hardware supporting the mixed precision. They formulate the
optimization of layer-wise precision as the bit-wise optimization by reformulating the weight using
the sum of the PoT basis (same as our binary representation of (4). Then they directly optimize each
bit using a straight-through estimator (STE).

Ours and BSQ differ in their motivation and technique for inducing bit-level sparsity. The goal of
BSQ is to learn the layer-wise precision targeting the hardware supporting the dense mixed-precision
operation (e.g., GPUs); on the other hand, our goal is to realize an efficient mult-free network based
on the proposed add-shift-add with sparse add targeting the hardware supporting the unstructured
sparsity (e.g., data-flow processors, CPUs, FPGAs, etc.). Due to the difference in their goal, BSQ
applies the sparsification for groups of weights (e.g., each layer), while we apply the sparsification
for each individual weight element. In BSQ, sparsity is induced by optimizing each bit independently
using STE, which may suffer from severe quantization error. In contrast, ours optimize in the quasi-
continuous weight space using the proximal weight by utilizing the equivalent of the add-shift-add
and mult-add.

27

