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A APPENDIX

A.1 ALGORITHM

Algorithm 1: The PromptST Learning Algorithm
Input: The spatial-temporal graph G, the maximum epoch number E, the learning rate η;
Output: Traffic flow or crime rate H and trained parameters in Θf of Prompt neural network

and Θg of GNN-based neural network;
1 Initialize all parameters in Θg and Θf ;
2 Train the framework PromptST by Equation 3
3 for epoch = 1, 2, ..., E do
4 Split the date into train, test and prompt;
5 Train the GNN-based pretrain model via train dataset;
6 for θg ∈ Θg do
7 θg = θg − η · ∂L

∂θg

8 end
9 end

10 for epoch = 1, 2, ..., E do
11 Freeze parameters of GNN-baed pretrain model and update the prompt neural network via

Equation 3 via prompt dataset;
12 Compute the MAE loss L following Equation 3;
13 Minimize the loss L by Equation 6 using gradient decent with learning rate η;
14 for θf ∈ Θf do
15 θf = θf − η · ∂L

∂θf

16 end
17 end
18 Return H and all parameters Θg and Θf ;

The Algorithm 1 section of our framework PromptST presents specific algorithmic specifics. The
initialization of all the parameters is the first step, as seen in Algorithm 1. After then, the GNN-based
model is trained until it is proficient via updating parameters of Θg. We train the prompt tuning
neural network iteratively and fix the GNN-based model. To improve the performance of the prompt
tuning neural network, we employ the MAE loss Wu et al. in accordance with earlier studies that
are mentioned in the traffic prediction task. With this approach, the MAE loss is determined after
E 3. We tune the prompt tuning neural network 6 until it converges. Following all these steps, the
procedure ends and returns all Θg and Θf parameters.

A.2 EVALUATION METRICS AND EVALUATION PLATFORM

Following existing studies of traffic flow prediction Bai et al. (2020); Li & Zhu (2021); Fang et al.
(2021); Chen et al. (2021a;b); Rao et al. (2022); Lan et al. (2022), we adopt three widely utilized
metrics namely Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Root
Mean Squared Error (RMSE) as evaluation metrics for traffic prediction of 5 point-based datasets,
namely PeMSD04, PeMSD08, PeMSD03, PeMSD07 and PeMSD-Bay in Table 1, and 3 grid-based
datasets, namely NYCTaxi, T-Drive and CHIBike. For crime prediction task, we follow the settings
in Xia et al. (2022) in terms of Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) metrics on NYC crime and Chicago crime datasets. All methods are implemented in
Python 3.9 and PyTorch 1.12.0. The experiments are conducted on a server with 10-cores of Intel(R)
Core(TM) i9-9820X CPU @ 3.30GHz 64.0GB RAM and 4 Nvidia GeForce RTX 3090 GPU.

A.3 EFFECTIVENESS

We conducted experiments on grid-based datasets, specifically NYCTaxi, T-Drive, and CHIBike, to
evaluate the performance of our model, PromptST, in terms of inflow and outflow predictions. The
results are summarized in Table 8. Upon analysis, we observe that our model consistently achieves
the best performance across most cases and demonstrates superior performance in the remaining
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Table 7: Data Description of 10 Datasets
Traffci Data Point-based Datasets Grid-based Datasets

Datasets PeMSD04 PeMSD08 PeMSD03 PeMSD07 PeMS-Bay NYTaxi CHIBike TDrive
Sensors 307 170 358 883 325 75 (15 × 5) 270 (15 × 18) 1024 (32 × 32)

Data 16,992 17,856 26,208 28,224 52,116 17,520 4,416 3,600
Interval 5 minutes 5 minutes 5 minutes 5 minutes 5 minutes 30 minutes 30 minutes 60 minutes

Crime Data NYC-Crimes Chicago-Crimes
Time Span Jan, 2014 to Dec, 2015 Jan, 2016 to Dec, 2017
Category Burglary Robbery Theft Battery

Cases 31,779 33,453 124,630 99,389
Categoty Assult Larceny Damage Assult

Cases 40,429 85,899 59,886 37,972

Table 8: Overall performance of Grid-based Datasets of Traffic Prediction
Datasets NYCTaxi T-Drive CHIBike
Metrics inflow outflow inflow outflow inflow outflow
Models MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

STResNet 14.492 14.543 24.050 12.798 14.368 20.633 19.636 17.831 34.890 19.616 18.502 34.597 4.767 31.382 6.703 4.627 30.571 6.559
DMVSTNet 14.377 14.314 23.734 12.566 14.318 20.409 19.599 17.683 34.478 19.531 17.621 34.303 4.687 32.113 6.635 4.594 31.313 6.455

DSAN 14.287 14.208 23.585 12.462 14.272 20.294 19.384 17.465 34.314 19.290 17.379 34.267 4.612 31.621 6.695 4.495 31.256 6.367
DCRNN 14.421 14.353 23.876 12.828 14.344 20.067 22.121 17.750 38.654 21.755 17.382 38.168 4.236 31.264 5.992 4.211 30.822 5.824
STGCN 14.377 14.217 23.860 12.547 14.095 19.962 21.373 17.539 38.052 20.913 16.984 37.619 4.212 31.224 5.954 4.148 30.782 5.779
GWN 14.310 14.198 23.799 12.282 13.685 19.616 19.556 17.187 36.159 19.550 15.933 36.198 4.151 31.153 5.917 4.101 30.690 5.694

STSGCN 15.604 15.203 26.191 13.233 14.698 21.653 23.825 18.547 41.188 24.287 19.041 42.255 4.256 32.991 5.941 4.265 32.612 5.879
STFGNN 15.336 14.869 26.112 13.178 14.584 21.627 22.144 18.094 40.071 22.876 18.987 41.037 4.234 32.222 5.933 4.264 32.321 5.875
STGODE 14.621 14.793 25.444 12.834 14.398 20.205 21.515 17.579 38.215 22.703 18.509 40.282 4.169 31.165 5.921 4.125 30.726 5.698

STGNCDE 14.281 14.171 23.742 12.276 13.681 19.608 19.347 17.134 36.093 19.230 15.873 36.143 4.123 31.151 5.913 4.094 30.595 5.678
STTN 14.359 14.206 23.841 12.373 13.762 19.827 20.583 17.327 37.220 20.443 15.992 37.067 4.160 31.208 5.932 4.118 30.704 5.723

GMAN 14.267 14.114 23.728 12.273 13.672 19.594 19.244 17.110 35.986 18.964 15.788 36.120 4.115 31.150 5.910 4.090 30.662 5.675
TFormer 13.995 13.912 23.487 12.211 13.611 19.522 18.823 16.910 34.470 18.883 15.674 35.219 4.071 31.141 5.878 4.037 30.647 5.638

ASTGNN 13.844 13.692 23.177 12.112 13.602 19.201 18.798 16.101 33.870 18.790 15.584 33.998 4.068 31.131 5.818 3.981 30.617 5.609
PromptST 14.123 13.762 23.569 12.103 13.316 19.462 18.173 15.456 32.417 18.342 15.407 32.293 4.021 31.103 5.875 3.745 29.017 5.398

cases as well. We attribute this success to the following factors: (1) The integration of a prompt tuning
neural network, which incorporates Temporal Convolutional Networks (TCN), proves beneficial in
capturing temporal features. This ability to capture and leverage temporal information plays a crucial
role in accurately predicting traffic flows. (2) Our model utilizes a residual paradigm, where the
initial data is added to the model. This approach ensures that our model maintains the same data
distribution as the input of the pre-trained model. This helps to preserve the integrity of the data and
contributes to the improved performance of our model. By leveraging these strategies, our model
PromptST demonstrates superior performance in traffic flow predictions. The incorporation of the
prompt tuning neural network and the residual paradigm effectively capture temporal features and
maintain data distribution, respectively, resulting in enhanced prediction accuracy.

A.4 HYPERPARAMETER STUDY

We conducted a hyperparameter study on four datasets: PeMSD04, PeMSD08, Chicago and NYC
crime datasets. The study aimed to investigate the impact of two hyperparameters on model per-
formance: the dimension, ranging from 16 to 128, and the kernel size, ranging from 5 to 11. The
evaluation metric used was Mean Absolute Percentage Error (MAPE), and the results are illustrated
in Figure 5. Upon analysis, we observed that our model achieved the best performance when the
dimension was set to 32 and the kernel size was set to 7. It is worth noting that setting a larger
dimension may lead to oversmoothing in the GNN-based backbone model, which can subsequently
degrade the performance of the prompt neural network. On the other hand, a larger kernel size may
introduce more noise from the traffic data, ultimately reducing the overall performance. By carefully
selecting the hyperparameters, we are able to optimize the performance of our model. The findings
provide valuable insights for achieving better results in traffic flow predictions.

A.5 HYPERPARAMETER SETTINGS

For fair comparison, all compared algorithms have hidden dimensionality modified from the range
[8,16,32,64] to achieve their best performance as reported results at 32. The learning rate η is
initialized as 0.003 with weight decay 0.3. For GNN-based models, the number of GCN layer is 3.
For prompt tuning network, the number of the TCN Layer is 2 and the number of MLP layer is set as
2. The kernel size of the TCN Layer is set as 7 during which our framework PromptST obtains the
best performance from the range of [5,7,9,11]. Following existing settings of traffic prediction, we
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Table 9: Comparison of Time of Different Methods (One Week) (Minutes)
Datasets PeMSD04 PeMSD07
Models ASTGCN STGCN MTGNN AGCRN STSGCN ASTGCN STGCN MTGNN AGCRN STSGCN

Time for Training Scratch 73.183 20.564 13.913 28.235 37.899 270.531 60.341 30.905 46.031 127.651
Time for Finetune 57.232 17.886 14.620 17.894 34.167 243.172 52.114 40.865 30.303 115.901

Time for Prompt Tuning 50.818 13.675 9.327 12.013 24.733 216.587 37.187 17.220 20.125 70.851
Faster x than Scratch 30.560% 33.500% 32.962% 57.454% 34.740% 19.940% 38.372% 44.281% 56.280% 44.496%
Faster x than Prompt 11.207% 23.543% 36.204% 32.866% 27.611% 10.933% 28.643% 57.861% 33.587% 38.869%
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Figure 5: Hyperparameter study on traffic prediction and crime prediction

utilize historical 12 time steps with 5 minutes a step to predict future 12 time steps on point-based
datasets (PeMSD04, PeMSD08, PeMSD03, PeMSD07 and PeMS-Bay). And we use historical 6
time steps to predict future 1 time step on grid-based datasets (NYCTaxi, CHIBike and TDrive). All
baseline methods follow their predefined settings as their papers.

A.6 EFFICIENCY OF PROMPT TUNING ON CRIME PREDICTION AND TRAFFIC PREDICTION

To evaluate the model’s ability to operate independently, we conducted efficiency experiments on
traffic predictions using several state-of-the-art baselines. The results are presented in Table 9. From
the results, we observed that our prompt tuning neural network significantly improved the efficiency
of different baselines, reducing the time cost by approximately 10% to 57%. This finding further
validates the advantage of the graph-based passing mechanism in terms of saving time. Additionally,
we evaluated the efficiency of crime prediction, as shown in Figure 6. We compared our method’s
speed in crime prediction to the fine-tuning of a GNN-based model on the New York City and
Chicago datasets. The results indicate that our method achieved a speed improvement of 23% to
28% compared to fine-tuning the GNN-based model on the New York City dataset. In the case of
the Chicago dataset, our method outperformed fine-tuning by 3% to 10%. These findings highlight
the advantage of our PromptST approach in real-life applications, particularly in the field of urban
planning. Overall, results demonstrate that our PromptST framework offers improved efficiency
across various tasks, making it highly suitable for real-life applications where efficiency is crucial.

A.7 DESCRIPTION OF BASELINES

We compare 30 baselines including many state-of-art traffic flow prediction methods and crime
prediction baselines, where are displayed as following:

• Traffic prediction methods. DSANet Huang et al. (2019): It is a method which adopts CNN for
capturing temporal correlations and utilizes self-attention mechanism for capturing dynamic spatial
information. DCRNN Li et al. (2018): To simulate spatial-temporal dependencies, a diffusion
convolutional RNN with fusion process is used. STGCN Yu et al. (2018): To represent spatial-
temporal coupling, it combines a gated temporal convolution module with a graph neural network.
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Figure 6: Time-consuming of crime prediction.

GWN Shleifer et al. (2019): It is a technique that combines 1D dilated convolutions and diffusion
graph convolutions to capture spatial and temporal changes, enhancing the effectiveness of traffic
prediction. ASTGCN Zhu et al.: It is an attention-based GCN model that additionally incorporates
STGCN for capturing dynamic spatial and temporal information with spatial-temporal attention.
LSGCN Han & Gong (2022): To capture spatial dynamics, it combines a graph attention network
with a graph convolution network. And to capture temporal dynamics, it uses a temporal convolution
network. STSGCN Song et al. (2020): By stacking numerous localized GCN layers with an
adjacent matrix on the time dimension, it captures spatial-temporal correlations. AGCRN Bai
et al. (2020): In order to capture spatial-temporal correlations, it uses learnt node embeddings in
graph convolutions. STFGNN Li & Zhu (2021): The performance of traffic prediction is improved
by using a spatial-temporal fusion graph neural network to capture spatial-temporal correlations.
STG-ODE Fang et al. (2021): To address the limitiation caused by the neural networks’ lack
of depth, it uses differential equations. Shallow GNNs are unable to capture long-range spatial
dynamics, and they ignore temporal dynamics, which are crucial for the task of traffic prediction.
Z-GCNETs Chen et al. (2021a): For predicting traffic flow, it uses zigzag persistence along with a
temporal-aware graph convolution network. TAMP Chen et al. (2021b): To capture dynamic spatial
dependencies, it employs multiple persistence to collect temporal features, which are subsequently
fed into graph convolutional networks. DSTAGNN Lan et al. (2022): The pre-defined static graph
that is typically utilized in classic graph convolution is proposed to be replaced with a new dynamic
spatial-temporal aware graph in this study that is based on a data-driven technique. Then, using an
improved multi-head attention mechanism, it designs a novel graph neural network architecture
that can not only represent dynamic spatial relevance between nodes but also acquire a wide range
of dynamic temporal dependency from multiple receptive field features using multi-scale gated
convolution. FOGS Rao et al. (2022): It is a technique that builds the association graph using the
nodes’ spatial-temporal dynamics. STResNet Zhang et al. (2017): It creates a complete STResNet
structure based on the particular characteristics of spatial-temporal data. To describe the temporal
closeness, period, and trend characteristics of crowd traffic, it specially uses the residual neural
network framework. Based on data, STResNet learns to dynamically aggregate the output of
the three residual neural networks. DMVSTNet Yao et al. (2018): To model both spatial and
temporal relations, it suggests using a Deep Multi-View Spatial-Temporal Network (DMVSTNet)
framework. This method specifically consists of three views: temporal, spatial, and semantic. The
temporal view models correlations between future demand values with nearby time points using
LSTM; the spatial view models local spatial correlation using local CNN. STGNCDE Choi et al.
(2022): It explains how to use the STGNCDE method, which stands for spatio-temporal graph
neural controlled differential equation. The concept of neural controlled differential equations
(NCDEs) for processing sequential data is revolutionary. The idea is expanded, and two NCDEs
are created: one for spatial processing and the other for temporal processing. STTN Xu et al.
(2020): To increase the precision of long-term traffic flow forecasting, it suggests a unique paradigm
of Spatial-Temporal Transformer Networks (STTNs) that concurrently use dynamical directed
spatial dependencies and long-range temporal dependencies. TFormer Jin et al. (2023a): It
suggests a brand-new model called Trafformer that combines temporal and spatial data into a single
transformer-style model. In the spatial-temporal correlation matrix, TFformer enables each node at
each timestamp to interact with each other node at each other timestamp in a single step. TFformer
can detect intricate spatial-temporal relationships thanks to this design. ASTGNN Guo et al. (2021):
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It creates a unique self-attention mechanism in the temporal dimension. In addition to enjoying
global receptive fields that are advantageous for long-term forecast, it enables the prediction model
to catch the temporal dynamics of traffic data. It creates a dynamic graph convolution module for
the spatial dimension, using self-attention to capture the spatial correlations.

• Crime prediction methods. STrans Wu et al. (2020): By stacking two layers of Transformer to
represent spatial-temporal links across spaces and time, it investigates the sparse crimes. For the
aggregation of spatial and temporal information, self-attention with query/key transformations is
used.. DeepCrime Huang et al. (2018): It is a representative baseline for crime prediction that
first encodes the temporal embeddings of crime occurrences through time using a recurrent neural
network. The next step is to further aggregate temporal representations with the attentional weights
using the attention mechanism. STDN Yao et al.: A flow gating approach is introduced in this
framework to capture the time-aware reliance between areas, and a periodic shifting attention is
suggested to learn the temporal patterns between various time periods. ST-MetaNet Xu et al.
(2018): This model is a meta-learning strategy that uses a GNN-based sequence-to-sequence
paradigm to capture various spatial correlations and extract meta information relevant to a given
location. STSHN Xia et al. (2022): This technique uses hypergraph connections between regions
to carry out spatial message transfer between various geographic regions. A stationary approach
is taken in building the region hypergraph. Two spatial path aggregation layers are chosen as the
number. DMSTGCN Han et al. (2021): With the help of this method, the graph convolutional
network is enhanced with dynamic and complex geographical and temporal data. The time-aware
graph constructor is used to capture relationships between road segments.
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