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A. Theoretical Analysis
The objective function of the imitation learning problem can
be represented using (1),

min
π
−H(π) + ψ∗(ρπ − ρπE

), (1)

And the distance measure in the GAIL framework is de-
fined as (2).5

ψ∗(ρπ−ρπE
) = max

D
Eπ[logD(s, a)]+EπE

[log(1−D(s, a))]

(2)
Our proof is based on the GAIL framework, and the ob-

jective function of the cost-constrained imitation learning
problem is formulated in (3).

L(ω, λ, θ) ≜ min
θ

max
ω,λ

Eπθ
[logDω(s, a)] +

EπE
[log(1−Dω(s, a))] +

λ (Eπθ
[d(s, a)]− EπE

[d(s, a)])− βH(πθ), (3)

However, it is important to note that the form of the dis-
tance measure will differ from that of (2), as will be ex-10

plained in the following theory.

Theorem 1 The objective function of the cost-constrained
imitation learning problem is:

min
π∈Π
−H(π) + ψ∗(ρπ − ρπE

), (4)

where ψ∗(ρπ − ρπE
) = max

D,λ
Eπ[log(D(s, a))] +

EπE
[log(1−D(s, a))] + λ(Eπ[d(s, a)]− EπE

[d(s, a)])15

There are broadly two steps to the proof :
Step 1: Typically, optimal policy in an imitation learning

setting is obtained by first solving the Inverse Reinforce-
ment Learning (IRL) problem to get the optimal reward
function r∗ and then running an RL algorithm on the ob-20

tained reward function. In GAIL, these two steps were
compressed into optimizing a ψ−regularized objective.
Our first step is to show this can be also done for
Cost Constrained Imitation Learning problems, al-
beit with an altered ψ− regularized objective.25

Step 2: Our second step is to derive the specific form of ψ∗

for CCIL problems.

Step 1
Constrained Markov Decision Process (CMDP) is com-
monly solved by utilizing the Lagrangian relaxation tech- 30

nique (Tessler, Mankowitz, and Mannor 2018). Then CMDP
is transformed into an equivalent unconstrained problem by
incorporating the cost constraint into the objective function:

max
λ≥0

min
π∈Π

Eπ[−r(s, a)] + λ(Eπ[d(s, a)]− d0) (5)

In the aforementioned equation, our objective is to find
the saddle point of the minimax problem. Since the reward 35

function r(s, a) is not provided, our goal is to determine
the optimal policy by utilizing the expert policy πE and the
given cost functions d(s, a). To accomplish this, we utilize
the maximum casual entropy Inverse Reinforcement Learn-
ing (IRL) method (Ziebart, Bagnell, and Dey 2010)(Ziebart 40

et al. 2008) to solve the following optimization problem:

max
r∈R
λ≥0

(
min
π∈Π
−H(π) + Eπ[−r(s, a)] + λ(Eπ[d(s, a)]− d0)

)
− (EπE

[−r(s, a)] + λ(EπE
[d(s, a)]− d0))

(6)
Where R is a set of reward functions. Maximum casual

entropy IRL aims to find a reward function r ∈ R that gives
low rewards to the learner’s policy while giving high rewards
to the expert policy. The optimal policy can be found via a 45

reinforcement learning procedure:

RL(r, λ) = argmin
π∈Π

−H(π)+Eπ[λd(s, a)−r(s, a)]−λd0
(7)

We study policies generated through reinforcement learn-
ing, utilizing rewards learned through IRL on the most ex-
tensive set of reward functions, denoted as R in Eq.(6),
which encompasses all functions mapping from RS×A to 50

R. However, as the use of a large R can lead to overfitting
in the IRL process, we employ a concave reward function
regularizer (Finn, Levine, and Abbeel 2016), denoted as ψ,
to define the IRL procedure:
IRLψ(πE , d) =

argmax
r∈RS×A

λ≥0

(
min
π∈Π
−H(π) + Eπ[λd(s, a)− r(s, a)]

)
− EπE

[λd(s, a)− r(s, a)] + ψ(r)

(8)



Given (r̃, λ̃) ∈ IRLψ(πE , d), our objective is to learn a55

policy defined by RL(r̃, λ̃). To characterize RL(r̃, λ̃), it is
commonly beneficial to convert optimization problems in-
volving policies into convex problems. We use occupancy
measure ρπ to accomplish this. After which we express the
expected value of the reward and the expected value of60

the constraint as: Eπ[r(s, a)] =
∑
s,a ρπ(s, a)r(s, a) and

Eπ[d(s, a)] =
∑
s,a ρπ(s, a)d(s, a) as described in (Altman

1999). IRL can be reformulated as:

IRLψ(πE , d) = argmax
r∈RS×A

λ≥0

min
π∈Π
−H(π) + ψ(r)+

∑
s,a

(ρπ(s, a)− ρπE
(s, a))[λd(s, a)− r(s, a)]

(9)

We then characterize RL(r̃, λ̃), the policy learned by RL
on the reward recovered by IRL as the optimal solution of65

Eq.(4).

Proposition 1 (Theorem 2 of (Syed, Bowling, and Schapire
2008)) If ρ ∈ D, then ρ is the occupancy measure for
πρ(a|s) ≜ ρ(s, a)/

∑′
a ρ(s, a

′), and πρ is the only policy
whose occupancy measure is ρ.70

Proposition 2 (Lemma 3.1 of (Ho and Ermon 2016)) Let
H̄(ρ) = −

∑
s,a ρ(s, a) log(ρ(s, a)/

∑
a′ ρ(s, a

′)). Then,
H̄ is strictly concave, and for all π ∈ Π and ρ ∈ D, we
have H(π) = H̄(ρπ) and H̄(ρ) = H(πρ)

Proposition 3 Let (r̃, λ̃) ∈ IRLψ(πE , d), π̃ ∈ RL(r̃, λ̃),75

and

πA ∈ argmin
π

−H(π) + ψ∗(ρπ − ρπE
)

= argmin
π

max
r,λ
−H(π) + ψ(r)+∑

s,a

(ρπ(s, a)− ρπE
(s, a))[λd(s, a)− r(s, a)]

(10)

Then πA = π̃.

Proof. Let ρA be the occupancy measure of πA and ρ̃ be
the occupancy measure of π̃. By using Proposition 1, we
define L̄ : D × RS×A × R→ R by80

L̄(ρ, (r, λ)) = −H̄(ρ) + ψ(r)+∑
s,a

(ρπ(s, a)− ρπE
(s, a))[λd(s, a)− r(s, a)] (11)

The following relationship then holds:

ρA ∈ argmin
ρ∈D

max
r,λ

L̄(ρ, (r, λ)) (12)

(r̃, λ̃) ∈ argmax
r,λ

min
ρ∈D

L̄(ρ, (r, λ)) (13)

ρ̃ ∈ argmin
ρ∈D

L̄(ρ, (r̃, λ̃)) (14)

D is compact and convex, RS×A is convex. Due to con-
vexity of −H̄ ,it follows that L̄(ρ, ·) is convex for all ρ.
L̄(·, (r, λ)) is concave for all (r, λ) (see proof in ).

Therefore, we can use minimax duality (Millar 1983): 85

min
ρ∈D

max
r∈R

λ

L̄(ρ, (c, λ)) = max
r∈R

λ

min
ρ∈D

L̄(ρ, (c, λ)) (15)

Hence,from Eqs.(12) and (13), (ρA, (r̃, λ̃)) is a saddle
point of L̄, which implies that:

ρA ∈ argmin
ρ∈D

L̄(ρ, (r̃, λ̃)) (16)

Because L̃(·, (r, λ)) is strictly concave for all (r, λ),
Eqs.(14) and (16) imply ρA = ρ̃. Since policies whose cor-
responding occupancy measure are unique(Proposition 2), 90

finally we get πA = π̃
Proposition 3 illustrates the process of IRL in finding the

optimal reward function and Lagrangian multiplier, repre-
sented by (r∗, λ∗). By utilizing the output of IRL, reinforce-
ment learning can be executed to obtain the optimal policy, 95

represented by π∗. And we prove that π∗ is the same as by
directly solving the ψ-regularized imitation learning prob-
lem L̃. Furthermore, ψ-regularized imitation learning aims
to identify a policy whose occupancy measure is similar to
that of an expert, as measured by the convex function ψ∗. 100

Subsequently, we deduce the form of ψ∗.

Step 2
In the GAIL paper (Ho and Ermon 2016), the authors present
a cost regularizer, ψGA, that leads to an imitation learning al-
gorithm, as outlined in Eq.(1), which aims to minimize the 105

Jensen-Shannon divergence between the occupancy mea-
sures. Specifically, they convert a surrogate loss function, ϕ,
which is used for binary classification of state-action pairs
drawn from the occupancy measures ρπ and ρπE

, into cost
function regularizers ϕ, such that ϕ∗(ρπ − ρπE

) represents 110

the minimum expected risk,Rϕ(ρπ, ρπE
), for the function ϕ

(Ho and Ermon 2016).

Rϕ(ρπ, ρπE
) =

∑
s,a

max
γ∈R

ρπ(s, a)ϕ(γ) + ρπE
(s, a)ϕ(−γ)

(17)
Here we use the same formula of surrogate loss func-

tion ϕ as in GAIL paper: ψϕ(c) =
∑
ρπE

gϕ(c(s, a)), where
gϕ(x) = −x+ϕ(−ϕ−1(−x)), ϕ is a strictly decreasing con- 115

vex function (Proposition A.1 from (Ho and Ermon 2016)).
Noted that in GAIL paper they adopt cost function c(s, a)
not reward function r(s, a), then we write in this form:
ψϕ(−r) =

∑
ρπE

gϕ(−r(s, a)).
Then formulation of ψ∗

ϕ(ρπ − ρπE
) is represented as fol- 120

lows(see proof in ):

ψ∗
ϕ(ρπ − ρπE

)

= −Rϕ(ρπ, ρπE
) + max

λ

∑
s,a

λ(ρπ(s, a)− ρπE
(s, a))d(s, a)

Using the logistic loss ϕ(γ) = log(1 + e−γ), the
same form in GAIL paper, then −Rϕ(ρπ, ρπE

) =
max

D∈(0,1)S×A

∑
s,a ρπ(s, a) logD(s, a) + ρπE

(s, a) log(1 −



D(s, a)). Therefore, we obtain the final form of ψ∗(ρπ −125

ρπE
) as follows:

ψ∗(ρπ − ρπE
) = max

D∈(0,1)S×A
λ

∑
s,a

ρπ(s, a) logD(s, a)+

ρπE
(s, a) log(1−D(s, a)) + λ(ρπ(s, a)− ρπE

(s, a))d(s, a)

= max
D∈(0,1)S×A

λ

Eπ[logD(s, a)] + EπE
[log(1−D(s, a))]

+ λ(Eπ[d(s, a)]− EπE
[d(s, a)])

Other Proofs
Prove concavity of L̄ L̄(·, (r, λ)) is concave for all (r, λ).
Proof We known that ψ(r) is concave, suppose α ∈ [0, 1].

L̄(·, (αr1 + (1− α)r2, αλ1 + (1− α)λ2)) = −H̄(ρ)+

ψ(αr1 + (1− α)r2)+∑
s,a

(ρπ − ρπE
)[d(αλ1 + (1− α)λ2)− (αr1 + (1− α)r2)]

≥ αψ(r1) + (1− α)ψ(r2) + α
∑
s,a

(ρπ − ρπE
)(λ1d− r1)

+ (1− α)
∑
s,a

(ρπ − ρπE
)(λ2d− r2)

Therefore, L̄(·, (αr1 + (1 − α)r2, αλ1 + (1 − α)λ2)) ≥130

L̄(·, (αr1, αλ1) + L̄(·, ((1− α)r2, (1− α)λ2)), L̄(·, (r, λ))
is concave for all (r, λ).

Proof of ψ∗
ϕ(ρπ − ρπE

) We deduce the form of ψ∗
ϕ(ρπ −

ρπE
) as:

ψ∗
ϕ(ρπ − ρπE

) =

−Rϕ(ρπ, ρπE
) + max

λ
λ
∑
s,a

(ρπ(s, a)− ρπE
(s, a))d(s, a)

We will simplify notation by using the symbols ρπ , ρπE
,135

r, and d to represent ρπ(s, a),ρπE
(s, a),r(s, a) and d(s, a),

respectively.

ψ∗
ϕ(ρπ − ρπE

) = max
r∈R

λ

∑
s,a

(ρπ − ρπE
)(λd− r)− ψϕ(−r)

= max
r∈R

λ

∑
s,a

(ρπ − ρπE
)(λd− r)−

∑
s,a

ρπE
gϕ(−r)

= max
r∈R

∑
s,a

(ρπ − ρπE
)(−r)−

∑
s,a

ρπE
(r + ϕ(−ϕ−1(r)))

+ max
λ

∑
s,a

λ(ρπ − ρπE
)d

= max
r∈R

∑
s,a

ρπ(−r)−
∑
s,a

ρπE
ϕ(−ϕ−1(r))

+ max
λ

∑
s,a

λ(ρπ − ρπE
)d

Then we make the change of variables r → ϕ(γ), the

above equation becomes:

ψ∗
ϕ(ρπ − ρπE

) =∑
s,a

max
γ∈R

ρπ(−ϕ(γ))− ρπE
ϕ(−γ) + max

λ
λ
∑
s,a

(ρπ − ρπE
)d

= −Rϕ(ρπ, ρπE
) + max

λ
λ
∑
s,a

(ρπ − ρπE
)d

Therefore, we prove Theorem 1 and the objective function 140

of cost-constrained imitation learning is Eq.(3).

B. Algorithms for MALM and CVAG
Algorithm 1 and 2 are pseudocodes for Meta-Gradients for
Lagrangian multipliers(MALM) and Cost Violation based
Alternating Gradient(CVAG) methods. 145

C. Experiment Figures
C.1 Experiments results
Figure 1 and figure 2 are experiment results of Mujoco tasks
and PointButton1 tasks.

Table 1: Hyper-parameters in experiments

hyperparameter value

Policy and Value network size (100,100)
Actor and Critic network size (for IQ-Learn) (256,256)

Activation Tanh
Batch Size 2000

Generator network update times 3
Discriminator network update times 1

Generalized Advantange Estimation γ 0.995
Generalized Advantange Estimation λ 0.97

Maximum KL 0.01
Learning rate( Value network) 1 × 10−3

Learning rate( Discriminator network) 3 × 10−4

Policy entropy 0.0
Discriminator entropy 1 × 10−3

Initial Lagrangian penalty 0.01
Lagrangian penalty learning rate 0.05

Meta learning rate 0.05

C.2 Experiment Hyperparameters 150

Table 1 is the illustration of experiment hyper-parameters:
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Figure 1: Performance of mujoco environments. The x-axes indicate the number of iterations, and the y-axes indicate the
performance of the agent, including average rewards/costs/cost rates with standard deviations.

Figure 2: Performance of Humanoid and DoggoButton tasks The x-axes indicate the number of iterations, and the y-axes
indicate the performance of the agent, including average rewards/costs/cost rates with standard deviations.



Algorithm 1: Meta-Gradients for Lagrangian Multipliers
Input: initial parameters of policy θ, reward value network
ϕr, cost value network ϕd, discriminator network ω, batch
size K, a set of expert trajectories ΦE = {τE ∼ πE}, initial
Lagrangian multipliers λ, entropy parameter β,learning rates
αr, αd, αω, αλ
Output: Optimal policy πθ

1: Compute the average cost of expert trajectories: JE =
1

|Φk|
∑
τ∈ΦE

∑T
t=1 dt

2: for k = 1, 2, ... do
3: Collect set of learner’s trajectories Φk = {τi} by run-

ning policy πθk for K time steps.
4: Collect the reward rt of K time steps by using the

discriminator output:rt = − log(Dω(st, at))
5: Compute V rϕr

(st) and V dϕd
(st) of K time steps.

6: Compute the reward and cost advantage Ar(st, at)
and Ad(st, at), reward to go R̂rt and cost to go R̂dt
of K time steps by using GAE.

7: Compute the average episode cost of learner’s trajec-
tories: Jk = 1

|Φk|
∑
τ∈Φk

∑T
t=1 dt

8: Split the data of K time steps into training and vali-
dation sets Ktr,Kva

9: Inner loss:
10: Update policy by using TRPO rule:

θ′ = argmax
θ

∑Ktr

t=1
πθ(at|st)
πθk

(at|st) (A
r(st, at)− λAd(st, at)) + βH(πθk)

11: Update reward value network:
ϕ′r ← ϕr − 1

Ktr

∑Ktr

t=1 αr ▽ϕr
(V rϕr

(st)− R̂rt )2
12: Update cost value network:

ϕ′d ← ϕd − 1
Ktr

∑Ktr

t=1 αdαr ▽ϕd
(V dϕd

(st)− R̂dt )2
13: Update discriminator network:

ω′ ← ω + 1
K

∑K
t=1 αω(▽ω[log(Dω(st, at))]+

▽ω[log(1−Dω(st, at)])
14: Update Lagrangian multipliers:

λ′ ← λ+ αλ(Jk − JE)
15: Outer loss:
16: Meta-parameter update:

λ′′ ← λ′ − 1
Kva

∑Kva

t=1 ▽λ′(Ar(st, at)− λ′dt)2
17: θ ← θ′, ϕr ← ϕ′r, ϕd ← ϕ′d, ω ← ω′, λ← λ′′.
18: end for
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Algorithm 2: Cost Violation based Alternating Gradient
Input: initial parameters of policy θ, reward value network
ϕr, cost value network ϕd, discriminator network ω, batch
size K, a set of expert trajectories ΦE = {τE ∼ πE}, en-
tropy parameter β, learning rates αr, αd, αω .
Output: Optimal policy πθ

1: Compute the average cost of expert trajectories: JE =
1

|Φk|
∑
τ∈ΦE

∑T
t=1 dt

2: for k = 1, 2, ... do
3: Collect set of learner’s trajectories Φk = {τi} by run-

ning policy πθk for K time steps.
4: Collect the reward rt of K time steps by using the

discriminator output:rt = − log(Dω(st, at))
5: Compute V rϕr

(st) and V dϕd
(st) of K time steps.

6: Compute the reward and cost advantage Ar(st, at)
and Ad(st, at), reward to go R̂rt and cost to go R̂dt
of K time steps by using GAE.

7: Compute the average episode cost of learner’s trajec-
tories: Jk = 1

|Φk|
∑
τ∈Φk

∑T
t=1 dt

8: if Jk ≤ JE then
9: Update policy towards maximizing the return:

θ′ = argmax
θ

∑K
t=1

πθ(at|st)
πθk

(at|st)A
r(st, at) + βH(πθk)

10: else
11: Update policy towards minimizing the cost:

θ′ = argmin
θ

∑K
t=1

πθ(at|st)
πθk

(at|st)A
d(st, at)− βH(πθk)

12: end if
13: Update reward value network:

ϕ′r ← ϕr − 1
K

∑K
t=1 αr ▽ϕr

(V rϕr
(st)− R̂rt )2

14: Update cost value network:
ϕ′d ← ϕd − 1

K

∑K
t=1 αd ▽ϕd

(V dϕd
(st)− R̂dt )2

15: Update discriminator network:
ω′ ← ω + 1

K

∑K
t=1 αω(▽ω[log(Dω(st, at))]+

▽ω[log(1−Dω(st, at)])
16: θ ← θ′, ϕr ← ϕ′r, ϕd ← ϕ′d, ω ← ω′.
17: end for
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