
Appendix310

A Implementation Details311

In this section, we describe the implementation details of our algorithm for training on the training312

view and test time training in view generalization settings on the DMControl [30], xArm [7], and313

Adroit [20] environments. We utilize the official implementation of TD-MPC [11] and MoDem [8]314

which are available at github.com/nicklashansen/tdmpc and github.com/facebookresearch/modem as315

the model-based reinforcement learning codebase. During training time, we use the default hyperpa-316

rameters in official implementation of TD-MPC and MoDem. We present relevant hyperparameters317

during both training and test time in Table 10 and Table 11. One seed of our experiments could be318

run on a single 3090 GPU with fewer than 2GB and it takes ∼ 1 hours for test-time training.319

Training time setup. We train visual model-based policies with TD-MPC on DMControl and xArm320

environments, and MoDem on Adroit environments, We employ identical network architecture and321

hyperparameters as original TD-MPC and MoDem during training time.322

The network architecture of the encoder in original TD-MPC is composed of a stack of 4 convolutional323

layers, each with 32 filters, no padding, stride of 2, 7 × 7 kernels for the first one, 5 × 5 kernels for324

the second one and 3 × 3 kernels for all others, yielding a final feature map of dimension 3 × 3 × 32325

(inputs whose framestack is 3 have dimension 84 × 84 × 9). After the convolutional layers, a fully326

connected layer with an input size of 288 performs a linear transformation on the input and generates327

a 50-dimensional vector as the final output.328

The network architecture of the encoder in original Modem is composed of a stack of 6 convolutional329

layers, each with 32 filters, no padding, stride of 2, 7 × 7 kernels for the first one, 5 × 5 kernels for330

the second one and 3 × 3 kernels for all others, yielding a final feature map of dimension 2 × 2 × 32331

(inputs whose framestack is 2 have dimension 224 × 224 × 6). After the convolutional layers, a fully332

connected layer with an input size of 128 performs a linear transformation on the input and generates333

a 50-dimensional vector as the final output.334

Test time training setup. During test time, we train spatial adaptive encoder (SAE) to adapt to view335

changes. We insert STN blocks before and after the first convolutional layer of the original encoders336

in TD-MPC and MoDem. The original encoders are augmented by inserting STN blocks, resulting in337

the formation of SAE. Particularly, for the STN block inserted before the first convolutional layer, the338

input is a single frame. This means that when the frame stack size is N, N individual frames are fed339

into this STN block. This is done to apply different transformations to different frames in cases of340

moving and shaking view.341

To update the SAE, we collect online data using a buffer with a size of 256. For each update, we342

randomly sample 32 (observation, action, next_observation) tuples from the buffer as a batch. The343

optimization objective is to minimize the loss in predicting the dynamics of the latent states, as344

defined in Equation 2.345

During testing on each task, we run 20 consecutive episodes, although typically only a few or even346

less than one episode is needed for the test-time training to converge. To make efficient use of the347

data collected with minimal interactions, we employ a multi-update strategy. After each interaction348

with the environment, the SAE is updated 32 times.349

The following is the network architecture of the first STN block inserted into the encoder of TD-MPC.350

351

STN_Block_0_TDMPC(352

(localization): Sequential(353

By default, each image consists of three channels. Each frame in the354

↪→ observation is treated as an independent input to the STN.355

(0): Conv2d(in_channels=3, out_channels=8, kernel_size=7, stride=1)356

(1): MaxPool2d(kernel_size=4, stride=4, padding=0)357

(2): ReLU()358

(3): Conv2d(in_channels=8, out_channels=10, kernel_size=5, stride=1)359

12

(4): MaxPool2d(kernel_size=4, stride=4, padding=0)360

(5): ReLU()361

)362

(fc_loc): Sequential(363

(0): Linear(in_dim=90, out_dim=32)364

(1): ReLU()365

(2): Linear(in_dim=32, out_dim=6)366

)367

)368

The following is the network architecture of the second STN block inserted into the encoder of369

TD-MPC.370

STN_Block_1_TDMPC(371

(localization): Sequential(372

(0): Conv2d(in_channels=32, out_channels=8, kernel_size=7, stride=1)373

(1): MaxPool2d(kernel_size=3, stride=3, padding=0)374

(2): ReLU()375

(3): Conv2d(in_channels=8, out_channels=10, kernel_size=5, stride=1)376

(4): MaxPool2d(kernel_size=2, stride=2, padding=0)377

(5): ReLU()378

)379

(fc_loc): Sequential(380

(0): Linear(in_dim=90, out_dim=32)381

(1): ReLU()382

(2): Linear(in_dim=32, out_dim=6)383

)384

)385

The following is the network architecture of the first STN block inserted into the encoder of MoDem.386

STN_Block_0_MoDem(387

(localization): Sequential(388

By default, each image consists of three channels. Each frame in the389

↪→ observation is treated as an independent input to the STN.390

(0): Conv2d(in_channels=3, out_channels=5, kernel_size=7, stride=2)391

(1): MaxPool2d(kernel_size=4, stride=4, padding=0)392

(2): ReLU()393

(3): Conv2d(in_channels=5, out_channels=10, kernel_size=5, stride=2)394

(4): MaxPool2d(kernel_size=4, stride=4, padding=0)395

(5): ReLU()396

)397

(fc_loc): Sequential(398

(0): Linear(in_dim=90, out_dim=32)399

(1): ReLU()400

(2): Linear(in_dim=32, out_dim=6)401

)402

)403

The following is the network architecture of the second STN block inserted into the encoder of404

MoDem.405

STN_Block_1_MoDem(406

(localization): Sequential(407

(0): Conv2d(in_channels=32, out_channels=8, kernel_size=7, stride=2)408

(1): MaxPool2d(kernel_size=3, stride=3, padding=0)409

(2): ReLU()410

(3): Conv2d(in_channels=8, out_channels=10, kernel_size=5, stride=2)411

(4): MaxPool2d(kernel_size=2, stride=2, padding=0)412

(5): ReLU()413

)414

(fc_loc): Sequential(415

(0): Linear(in_dim=90, out_dim=32)416

(1): ReLU()417

(2): Linear(in_dim=32, out_dim=6)418

)419

)420

13

Table 10: Hyperparameters for training time.

Hyperparameter Value

Discount factor 0.99
Image size 84 × 84 (TD-MPC)

224 × 224 (MoDem)
Frame stack 3 (TD-MPC)

2 (MoDem)
Action repeat 1 (xArm)

2 (Adroit, Finger, and Walker in DMControl)
4 (otherwise)

Data augmentation ±4 pixel image shifts (TD-MPC)
±10 pixel image shifts (MoDem)

Seed steps 5000
Replay buffer size Unlimited
Sampling technique PER (α = 0.6, β = 0.4)
Planning horizon 5
Latent dimension 50
Learning rate 1e-3 (TD-MPC)

3e-4 (MoDem)
Optimizer (θ) Adam (β1 = 0.9, β2 = 0.999)
Batch size 256
Number of demos 5 (MoDem only)

Table 11: Hyperparameters for test time training.

Hyperparameter Value

Buffer size 256
Batch size 32
Multi-update times 32
Learning rate for encoder 1e-6 (xArm)

1e-7 (otherwise)
Learning rate for STN blocks 1e-5

B Environment Details421

We categorize the view generalization problem into four distinct settings: novel view, moving view,422

shaking view, and novel FOV. In this section, we provide descriptions of the implementation details423

for each setting. The detailed camera settings can be referred to in the code of the environments that424

we are committed to releasing or in the visualization available on our website movie-rl.github.io.425

Novel view. In this setting, for locomotion tasks (cheetah-run, walker-stand, walker-walk, and426

walker-run), the camera always faces the moving agent, while for other tasks, the camera always427

faces a fixed point in the environment. Therefore, as we change the camera position, the camera428

orientation also changes accordingly.429

Moving view. Similar to the previous setting, the camera also always faces the moving agent or a430

fixed point in the environment. The camera position varies continuously.431

Shaking view. To simulate camera shake, we applied Gaussian noise to the camera position (XYZ432

coordinates in meters) at each time step. For DMControl and Adroit, the mean of the distribution433

is 0, the standard deviation is 0.04, and we constrain the noise within the range of -0.07 to +0.07.434

For xArm, the mean of the distribution is 0, the standard deviation is 0.4, and we constrain the noise435

within the range of -0.07 to +0.07.436

14

Novel FOV. We experiment with a larger FOV. For DMControl, we modify the FOV from 45 to 53.437

For xArm, we modify the FOV from 50 to 60. For Adroit, we modify the FOV from 45 to 50. We438

also experiment with a smaller FOV and results are presented in Appendix E.439

C Visualization of Feature Map Transformation440

We visualize the first layer feature map of the image encoder from TD-MPC and MoVie in Figure 7.441

It is observed that the feature map from MoVie on the novel view exhibits a closer resemblance to442

that on the training view.443

Training View

Novel View

TD-MPC Ours

Figure 7: Visualization of the first layer feature maps of the original encoder on the training
view and on the novel view, and the learned SAE on the novel view.

D Extended Description of Baselines444

TD-MPC. We test the agent trained on training view without any adaptation in the view generalization445

settings,446

DM. This is derived from MoVie by removing STN blocks, which just adapts encoder during test447

time.448

IDM+STN. This is derived from MoVie by replacing the dynamics model with the inverse dynamics449

model which predicts the action in between based on the latent states before and after transition. The450

inverse dynamics model is finetuned together with the encoder and STN blocks during testing.451

E Ablation on Different FOVs452

In our main experiments, we consider the novel FOV as a FOV larger than the original. In Table453

12, we present results for both smaller and larger FOV scenarios. Our method demonstrates the454

successful handling of both cases.455

Table 12: Ablation on different FOVs. The best method on each setting is in bold.

Cheetah-run TD-MPC DM IDM+STN MoVie

Small FOV 104.85±4.59 398.75±17.52 75.92±8.76 530.37±12.84

Large FOV 128.55±6.57 379.01±10.90 299.02±88.47 532.94±19.74

F Results of Original Models on Training View456

The performance of the original agents without any adaptation under the training view is reported457

in Table 13, 14, and 15 for reference. In the context of view generalization, it is evident that the458

performance of agents without adaptation significantly deteriorates.459

15

Table 13: Training Result on DMControl.

Task Cheetah, run Walker, walk Walker, stand Walker, run Cup, catch Finger, spin

Reward 658.10±9.98 944.99±21.71 983.53±5.34 697.75±11.35 980.56±4.33 985.20±2.25

Task Finger, turn-easy Finger, turn-hard Pendulum, swingup Reacher, easy Reacher, hard

Reward 756.16±150.76 616.96±149.44 827.26±61.72 983.8±0.34 937.43±54.59

Table 14: Training Result on xArm.

Task Reach Push Peg in box Hammer

Success rate (%) 96±5 90±17 80±10 83±20

Table 15: Training Result on Adroit.

Task Door Hammer Pen

Success rate (%) 96±3 78±7 48±15

16

