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Abstract

We study first-order optimization algorithms for computing the barycenter of
Gaussian distributions with respect to the optimal transport metric. Although
the objective is geodesically non-convex, Riemannian GD empirically converges
rapidly, in fact faster than off-the-shelf methods such as Euclidean GD and SDP
solvers. This stands in stark contrast to the best-known theoretical results for
Riemannian GD, which depend exponentially on the dimension. In this work,
we prove new geodesic convexity results on auxiliary functionals; this provides
strong control of the Riemannian GD iterates, ultimately yielding a dimension-free
convergence rate. Our techniques also enable the analysis of two related notions
of averaging, the entropically-regularized barycenter and the geometric median,
providing the first convergence guarantees for Riemannian GD for these problems.

1 Introduction

Averaging multiple data sources is among the most classical and fundamental subroutines in data
science. However, a modern challenge is that data is often more complicated than points in Rd. In
this paper, we study the task of averaging probability distributions on Rd, a setting that commonly
arises in machine learning and statistics [CD14; Ho+17; SLD18; Dog+19], computer vision and
graphics [Rab+11; Sol+15], probability theory [KS94; RU02], and signal processing [Elv+20]; see
also the surveys [PC+19; PZ19] and the references within.

The Wasserstein barycenter [AC11; Rab+11] has emerged as a particularly canonical notion of
average. Formally, let P2(Rd) denote the space of probability measures on Rd with finite second
moment, let P be a probability measure over P2(Rd), and let W2 denote the 2-Wasserstein distance
(i.e. the standard optimal transport distance). Then, the Wasserstein barycenter of P is a solution of

minimize
b∈P2(Rd)

∫
W 2

2 (b, ·) dP . (1)

A related notion of average is the entropically-regularized Wasserstein barycenter of P , which is
defined to be a solution of

minimize
b∈P2(Rd)

∫
W 2

2 (b, ·) dP + ent(b) , (2)

where ent is an entropic penalty which allows for incorporating prior knowledge into the average.
Lastly, a third related notion of average with better robustness properties (e.g., with a breakdown
point of 50% [FVJ09]) is the Wasserstein geometric median of P , which is defined to be a solution of

minimize
b∈P2(Rd)

∫
W2(b, ·) dP . (3)
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Importantly, while these three notions of average can be defined using other metrics in lieu of W2, the
Wasserstein distance is critical for many applications since it enables capturing geometric features of
the distributions [CD14].

The many applications of Wasserstein barycenters and geometric medians (see e.g., [CE10; Rab+11;
CD14; GPC15; RP15; Sol+15; BPC16; SLD18; LLR20]) have inspired significant research into their
mathematical and statistical properties since their introduction roughly a decade ago [AC11; Rab+11].
For instance, on the mathematical side it is known that under mild conditions, the barycenter and
geometric median exist, are unique, and admit dual formulations related to multimarginal optimal
transport problems [CE10; AC11; COO15]. And on the statistical side, [PZ16; AC17; LL17; Big+18;
FLF19; ALP20; Le +21; KSS21] provide finite-sample and asymptotic statistical guarantees for
estimating the Wasserstein barycenter from samples.

However, computing these objects is challenging because of two fundamental obstacles. The first is
that in general, barycenters and geometric medians can be complicated distributions which are much
harder to represent (even approximately) than the input distributions. The second is that generically,
these problems are computationally hard in high dimensions. For instance, Wasserstein barycenters
and geometric medians of discrete distributions are NP-hard to compute (even approximately) in high
dimension [AB21b].

Algorithms for averaging on the Bures-Wasserstein manifold. Nevertheless, these computa-
tional obstacles can be potentially averted in parametric settings. This paper as well as most of the
literature [Álv+16; Bac+18; ZP19; Che+20] on parametric settings focuses on the commonly arising
setting where P is supported on Gaussian distributions.1 As noted in [Álv+16], the Gaussian case
also encompasses general location-scatter families.

There are two natural families of approaches for designing averaging algorithms in this setting. Both
exploit the fact that modulo a simple re-centering of all distributions, the relevant space of probability
distributions is isometric to the Bures-Wasserstein manifold, i.e. the cone of positive semidefinite
matrices equipped with the Bures-Wasserstein metric (background is given in Section 2).

The first approach is simply to recognize the (regularized) Wasserstein barycenter problem as a
convex optimization problem over the space of positive semidefinite matrices and apply off-the-shelf
methods such as Euclidean GD or semidefinite programming solvers. However, these methods have
received little prior attention for good reason: they suffer from severe scalability and parameter-tuning
issues (see Section 3.3 for numerics). Briefly, the underlying issue is that these algorithms operate in
the standard Euclidean geometry rather than the natural geometry of optimal transport. Moreover,
this approach does not apply to the Wasserstein geometric median problem because even in one
dimension, it is non-convex in the Euclidean geometry.

A much more effective approach in practice (see Section 3.3 for numerics) is to exploit the geometry
of the Bures-Wasserstein manifold via geodesic optimization. Prior work has extensively pursued this
direction, investigating the effectiveness of (stochastic) Riemannian GD for computing Wasserstein
barycenters, see e.g., [Álv+16; Bac+18; ZP19; Che+20].

Challenges for geodesic optimization over the Bures-Wasserstein manifold. Although geodesic
optimization is natural for this problem, it comes with several important obstacles: the non-negative
curvature of the Bures-Wasserstein manifold necessitates new tools for analysis, and moreover both
the barycenter and geometric median problems are non-convex in the Bures-Wasserstein geometry.
(These two issues are in fact intimately related, see Appendix A.4.) This prevents applying standard
results in the geodesic optimization literature (see e.g., [ZS16; Bou20]) since in general it is only
possible to prove local convergence guarantees for non-convex problems.

For the Wasserstein barycenter problem, it is possible to interpret Riemannian GD (with step size
one) as a fixed-point iteration, and through this lens establish asymptotic convergence [Álv+16;
Bac+18; ZP19]. Obtaining non-asymptotic rates of convergence is more challenging because it
requires developing quantitative proxies for the standard convexity inequalities needed to analyze
GD. The first such result was achieved by [Che+20], showing that Riemannian GD converges to
the Wasserstein barycenter at a linear rate. Yet their convergence rate depends exponentially on the

1In the setting of Gaussians, the Wasserstein barycenter was first studied in the 1990s [OR93; KS94].
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Figure 1: Passes until convergence error 10−r to the barycenter, for r ∈ {3, 5}. This is dimension
independent for Riemannian GD and SGD—consistent with our main results. Details in Section 3.

dimension d, and also their work does not extend to the Wasserstein geometric median or regularized
Wasserstein barycenter.

1.1 Contributions

In this paper, we analyze first-order optimization algorithms on the Bures-Wasserstein manifold. We
summarize our main results here and overview our techniques in the next section.

From exponential dimension dependence to dimension-free rates. In Section 3, we show that
for the Wasserstein barycenter problem, Riemannian GD enjoys dimension-free convergence rates
(Theorem 2). We make several comments to contextualize this result. First, our result eliminates
the exponential dimension dependence of state-of-the-art convergence rates [Che+20], which aligns
with the empirical performance of this algorithm (see Figure 1). Second, our result stands in sharp
contrast to the setting of discrete distributions in which there are computational complexity barriers to
achieving even polynomial dimension dependence [AB21b]. Third, our result closes the gap between
computation and statistical estimation for the Bures-Wasserstein barycenter, since dimension-free
sample complexity bounds were recently proven in [FLF19].

Moreover, in Theorem 3, we further refine this result by replacing the worst-case assumption of
uniform bounds on the matrices’ eigenvalues with a significantly weaker average-case assumption.

Beyond barycenters. In Sections 4 and 5, we show how our analysis techniques also enable
proving fast convergence of Riemannian GD for computing regularized barycenters (Theorem 4)
and geometric medians (Theorem 5). To the best of our knowledge, these are the first guarantees for
Riemannian GD for notions of averaging on the Bures-Wasserstein manifold beyond the barycenter.

1.2 Techniques

Here we briefly sketch the specific technical challenges we face and how we address them to
analyze Riemannian GD for the three notions of Bures-Wasserstein average: barycenter, regularized
barycenter, and geometric median. Although each analysis necessarily exploits particularities of its
own objective, the common structure of our overarching analysis framework may be of interest for
studying other geodesically non-convex optimization problems.

Overcoming non-convexity. As we discuss in Appendix A.4, there is a close connection between
the second-order behavior of these objective functionals and the non-negative curvature of the Bures-
Wasserstein manifold. In particular, while non-negative curvature is used to prove smoothness
properties for the three functionals, it also leads to them all being geodesically non-convex. To
circumvent this issue, we establish gradient domination conditions known as Polyak-Łojasiewicz
inequalities [Pol64; Loj63], which intuitively are quantitative proxies for strong convexity in non-
convex settings (see e.g., [KNS16; Bol+17]). Proving such inequalities requires synthesizing general
optimization principles with specialized arguments based on optimal transport theory. We ultimately
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show that these inequalities hold with constants depending on the conditioning of the iterates, i.e., the
ratio between the maximum and minimum eigenvalues of the corresponding covariance matrices.

Overcoming ill-conditioned iterates. So long as smoothness and gradient domination inequalities
hold at the current iterate, standard optimization results guarantee that the next iterate of GD makes
progress. However, the amount of progress degrades if the iterates are poorly conditioned, since then
our PL inequality degrades. Thus the second major obstacle is to control the regularity of the iterates.
Here, the primary technical tool is shared across the analyses. Informally, it states that if the objective
is a sum of functions, each of whose gradients point towards well-conditioned matrices, then the
GD iterates remain well-conditioned. Formally, this is captured by the following geodesic convexity
result, which may be of independent interest. Below, Sd++ denotes the set of d× d positive definite
matrices. See Appendix A.2 for a review of the relevant geometric concepts, and see Appendix B for
the proof, discussion of tightness, and complementary results.

Theorem 1. The functions −
√
λmin,

√
λmax : Sd++ → R are convex along generalized geodesics.

Using this theorem in conjunction with careful analysis of the objective functions, we establish global
convergence guarantees for first-order geodesic optimization.

1.3 Other related work

Averages such as barycenters and medians on general curved spaces have become popular due to
far-ranging applications in domains such as machine learning, computer vision, analysis, radar signal
processing [ABY13], and brain-computer interfaces [YBL16; CBB17]. While their mathematical
properties such as existence and uniqueness are fairly well-understood [Afs11], their computation is
an active area of research [Wei37; VZ00; Stu03; Yan10; BI13; Bac14; OP15].

For the Wasserstein barycenter problem in particular, there have been many approaches. These
approaches vary significantly depending on if the setting is discrete or continuous. In the discrete
setting, the problem is NP-hard in high dimension [AB21b]. In low dimension (or more precisely
fixed dimension), reasonable approximations can be obtained using fixed-support approximations
which reduce the problem to a large linear program [CD14; Ben+15; COO15; Kro+19; Lin+19;
Lin+20; Dvi21; Gum+21; Haa+21], and it was recently shown that high-precision (or even exact)
solutions can be computed in polynomial time using computational geometry techniques [AB21a].

In the continuous setting, the problem is in general intractable since the optimal barycenter is
intractable even to represent, let alone to compute. Nevertheless, in certain settings it has been
empirically effective to parameterize and solve using neural networks [CAD20; FTC21; Kor+21],
stochastic gradient descent [Li+20], or Riemannian optimization [Álv+16; Bac+18; ZP19; Che+20].

However, for continuous settings, the theory currently lags far behind the empirics. This is true even in
the seemingly simple setting of Gaussians, in which case the barycenter has a concise representation
since it is also Gaussian. Riemmanian GD for this problem was first proposed and demonstrated to
be empirically effective in [Álv+16], where it was introduced as a fixed-point algorithm. Asymptotic
convergence was proved in [Álv+16], and then extended to non-population and stochastic settings
in [Bac+18; ZP19]. Non-asymptotic convergence rates were first shown in [Che+20], but there is a
large gap between these theoretical rates and what is observed in practice. It particular, previous rates
depend exponentially on the dimension. The present paper improves this to dimension-free.

For the other two problems we study, Bures-Wasserstein geometric medians and entropically-
regularized barycenters, no convergence guarantees were previously known for the natural Rie-
mannian GD algorithm.

Our work is in the midst of a flurry of exciting recent developments about entropically regularized
barycenters. Several recent works have, simultaneously with each other, extensively studied these
objects in the particular setting of Gaussians, leading to the establishment of fundamental results such
as the fact that the regularized barycenter of Gaussians is itself Gaussian [BL20; Jan+20; MGM21].
Another recent and related line of work has established fundamental mathematical and statistical
results for entropically regularized barycenters in the setting of general distributions, although with
slightly different penalties than the KL divergence studied here, typically the differential entropy∫
b ln b [Kro18; BCP19; CEK21] and sometimes even broader classes of regularizations [BCP19].

4



1.4 Organization

Section 2 briefly recalls relevant preliminaries. We analyze Riemannian GD for computing Bures-
Wasserstein barycenters, regularized barycenters, and geometric medians in Sections 3, 4, and 5,
respectively. We conclude in Section 6. We provide proofs as well as additional background and
numerical results in the Appendix. Code reproducing all experiments in this paper can be found at
https://github.com/PatrikGerber/Bures-Barycenters.

2 Preliminaries

Given probability measures µ and ν on Rd with finite second moment, the 2-Wasserstein distance
between µ and ν is defined as

W 2
2 (µ, ν) := inf

π∈Π(µ,ν)

∫
‖x− y‖2 dπ(x, y) , (4)

where Π(µ, ν) denotes the set of couplings of µ and ν, i.e., the probability measures on Rd×Rd whose
marginals are respectively µ and ν. If µ and ν admit densities with respect to the Lebesgue measure
on Rd, then the infimum is attained, and the optimal coupling is supported on the graph of a map,
i.e., there exists a map T : Rd → Rd such that for π-a.e. (x, y) ∈ Rd × Rd, it holds that y = T (x).
The map T is called the optimal transport map from µ to ν. We refer readers to [Vil03; San15] for
an introduction to optimal transport, and to [Car92] for background on Riemannian geometry. The
Riemannian structure of optimal transport was introduced in the seminal work [Ott01]—detailed
treatments are in [AGS08; Vil09]; for completeness we also provide a quick overview in Appendix A.

In this paper, we mainly work with centered Gaussians, which can be identified with their covariance
matrices. (Extensions to the non-centered case are also discussed below.) We abuse notation via
this identification: given Σ,Σ′ ∈ Sd++, we write W2(Σ,Σ′) for the 2-Wasserstein distance between
centered Gaussians with covariance matrices Σ, Σ′ respectively. Here, Sd denotes the space of
symmetric d × d matrices, and Sd++ denotes the open subset of Sd consisting of positive definite
matrices. Throughout, all Gaussians are non-degenerate; that is, their covariances are non-singular.

The Wasserstein distance has a closed-form expression for Gaussians:

W 2
2 (Σ,Σ′) = tr

[
Σ + Σ′ − 2 (Σ1/2Σ′Σ1/2)

1/2]
. (5)

Also, the optimal transport map from Σ to Σ′ is the symmetric matrix

TΣ→Σ′ = Σ−1/2 (Σ1/2Σ′Σ1/2)
1/2

Σ−1/2 = GM(Σ−1,Σ′). (6)

Above, GM(A,B) := A1/2 (A−1/2BA−1/2)
1/2
A1/2 denotes the matrix geometric mean between

two positive semidefinite matrices [Bha07, Ch. 4]. The Wasserstein distance on Sd++ in fact arises
from a Riemannian metric, which was first introduced by Bures in [Bur69]. Hence, the Riemannian
manifold Sd++ endowed with this Wasserstein distance is referred to as the Bures-Wasserstein space.
The geometry of this space is studied in detail in [Mod17; BJL19]. For completeness, we provide
additional background on the Bures-Wasserstein manifold in Appendix A.

3 Barycenters

In this section, we consider the Bures-Wasserstein barycenter

Σ? ∈ arg min
Σ∈Sd++

∫
W 2

2 (Σ, ·) dP .

We refer to the introduction for a discussion of the past work on the Bures-Wasserstein barycenter.
We also remark that the case when P is supported on possibly non-centered Gaussians is easily
reduced to the centered case; see the discussion in [Che+20, §4].
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3.1 Algorithms

We consider both Riemannian gradient descent (GD) and Riemannian stochastic gradient descent
(SGD) algorithms for computing the Bures-Wasserstein barycenter, which are given as Algorithm 1
and Algorithm 2 respectively. GD is useful for computing high-precision solutions due to its linear
convergence (Theorem 2), and SGD is useful for large-scale or online settings because of its cheaper
updates. We refer to [ZP19; Che+20] for the derivation of the updates. Here, Σ0 is the initialization,
which can be taken to be any matrix in the support of P . For SGD, we also require a sequence (ηt)

T
t=1

of step sizes and a sequence (Kt)
T
t=1 of i.i.d. samples from P . Note that whereas SGD requires

choosing step sizes, GD simply uses step size 1, as justified in [ZP19].

Algorithm 1 GD for Barycenters

1: procedure BARY-GD(Σ0, P, T )
2: for t = 1, . . . , T do
3: St ←

∫
GM(Σ−1

t−1,Σ) dP (Σ)
4: Σt ← StΣt−1St
5: return ΣT

Algorithm 2 SGD for Barycenters

1: procedure BARY-SGD(Σ0, (ηt)
T
t=1, (Kt)

T
t=1)

2: for t = 1, . . . , T do
3: Ŝt ← (1− ηt)Id + ηt GM(Σ−1

t−1,Kt)

4: Σt ← ŜtΣt−1Ŝt
5: return ΣT

3.2 Convergence guarantees

Denote the barycenter functional by F (Σ) := 1
2

∫
W 2

2 (Σ, ·) dP , and denote the variance of P by
varP := 2F (Σ?). We assume that P is supported on matrices whose eigenvalues lie in the range
[λmin, λmax], and we let κ := λmax/λmin denote the condition number. Whereas the previous
state-of-the-art convergence analysis for Algorithms 1 and 2 in [Che+20] suffered a dependence of
κd, we show that the rates of convergence are in fact independent of the dimension d.

Theorem 2. Assume that P is supported on covariance matrices whose eigenvalues lie in the range
[λmin, λmax], 0 < λmin ≤ λmax <∞. Let κ := λmax/λmin denote the condition number. Assume
that we initialize at Σ0 ∈ suppP .

1. (GD) Let ΣGD
T denote the T -th iterate of GD (Algorithm 1). Then,

1

2
√
κ
W 2

2 (ΣGD
T ,Σ?) ≤ F (ΣGD

T )− F (Σ?) ≤ exp
(
− T

4κ3/2

)
{F (Σ0)− F (Σ?)} .

2. (SGD) Let ΣSGD
T denote the T -th iterate of SGD (Algorithm 2), where (Kt)

T
t=1 are i.i.d.

from P . Then, with an appropriate choice of step sizes2,

1

2
√
κ
EW 2

2 (ΣSGD
T ,Σ?) ≤ EF (ΣSGD

T )− F (Σ?) ≤ 48κ3 varP

T
.

In fact, using our new geodesic convexity results we can also relax the conditioning assumption from
requiring all matrices be uniformly well-conditioned, to being individually well-conditioned. This is
a significant improvement when the eigenvalue ranges differ significantly between matrices.

Theorem 3. Let κ? := supΣ∈supp(P ) λmax(Σ)/λmin(Σ). The conclusions of Theorem 2 hold when
replacing κ with κ? everywhere.

Actually, we deduce this from an even stronger statement: in Theorem 2, κ can be replaced ev-
erywhere by an average-case notion of conditioning, namely κ := λmax/λmin where λmin

1/2
:=∫

λmin(Σ)
1/2

dP (Σ) and λmax
1/2

:=
∫
λmax(Σ)

1/2
dP (Σ).

We give the proofs of these results in Appendix C.1.

2Namely, ηt = 1

4κ3/2

(
1−

√
1− 16κ3 (2 (t+t0)+1)

(t+t0+1)2

)
suffices, where t0 = 32κ3 − 1.
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3.3 Numerical experiments

There are two natural competitors of Riemannian GD when minimizing the barycenter functional:
(i) solving an SDP (see Appendix C.3 for the SDP reformulation), and (ii) Euclidean GD (see
Appendix C.2 for a description and analysis of Euclidean GD).

Figure 2: Riemannian vs. Euclidean GD. Figure 3: Riemannian vs. Euclidean SGD.

In Figure 2 we compare Riemannian and Euclidean GD on a dataset consisting of n = 50 covariance
matrices of dimension d = 50, each with condition number κ = 1000. Their eigenspaces are
independent Haar distributed, and their eigenvalues are equally spaced in the interval [λmin, λmax] =
[0.03, 30]. Qualitatively similar results are observed for other inputs; see Appendix F. We run 50
experiments and plot the average accuracy cut off at 10−12; X? denotes the best iterate. We omit
SDP solvers from the plot because their runtime is orders of magnitude slower: using the Splitting
Cone Solver (SCS) [ODo+16; ODo+19], the problem takes ∼15 seconds to solve, and MOSEK
[MOS21] is even slower. For completeness, we also compare GD to the Riemannian Frank-Wolfe
algorithm [WS17] in Appendix F, and conclude that GD is superior. We observe that Euclidean GD’s
convergence rate is quite sensitive to its step size, which depends heavily on the conditioning of the
problem. Riemannian GD was the clear winner in our experiments, as its step size requires no tuning
and it always performed no worse (in fact, often significantly better) than Euclidean GD.

In Figure 3 we observe that Riemannian SGD typically outperforms Euclidean SGD, sometimes
substantially. We average 300× 300 covariance matrices drawn from a distribution whose barycenter
is known to be the identity, see Appendix F for details. As Figure 3 shows, in practice it can be
helpful to tune the step sizes beyond the guidance given by our worst-case theoretical guarantees. In
our experiments, Riemannian SGD was competitive on a wide range of problems with η = 1/t.

We comment on Figure 1, which illustrates the dimension independence of the two Riemannian
algorithms, a main result of this paper. It plots the number of passes until convergenceW 2

2 (Xt, X
?) ≤

10−r varP to the barycenter X?, for r ∈ {3, 5}. To compare algorithms on equal footing, the y-axis
measures “passes” over the n = 50 matrices: a pass constitutes one GD iteration, or n SGD iterations.
The input is generated as in Figure 2. Observe also the tradeoff between GD and SGD: SGD converges
rapidly to low-precision solutions, but takes longer to converge to high-precision solutions.

4 Entropically-regularized barycenters

In this section, we consider the entropically-regularized barycenter b?reg which minimizes

Fγ(b) :=
1

2

∫
W 2

2 (b, ·) dP + γKL
(
b
∥∥ N (0, Id)

)
,

where KL denotes the Kullback-Leibler divergence, and γ > 0 is a given regularization parameter. It
suffices to consider the case when all measures are centered, see Remark 6. The following proposition
justifies considering this problem on the Bures-Wasserstein space; proof in Appendix D.3.
Proposition 1. Suppose P is supported on centered Gaussians whose covariance matrices have
eigenvalues lying in the range [1/

√
κ,
√
κ], for some κ ≥ 1. Then there exists a unique minimizer

b?reg of Fγ over P2(Rd), and this minimizer is a centered Gaussian distribution whose covariance
matrix Σ? also has eigenvalues in the range [1/

√
κ,
√
κ].
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As described in the introduction, prior work on the Wasserstein barycenter typically focuses on a
slightly different entropic penalty, the differential entropy

∫
b ln b. Note that the differential entropy

penalty encourages b to be diffuse over all of Rd (the minimizer blows up as γ → ∞). Here, we
focus on a KL divergence penalty which has the advantage of interpolating between two well-studied
problems: the Wasserstein barycenter problem (γ = 0) and minimization of the KL divergence
(γ =∞). We take the standard Gaussian as a canonical choice of reference distribution, and note
that our method of analysis can be extended to other reference measures at the cost of significant
additional technical complexity. We thus choose to exclusively focus on the standard Gaussian case.

4.1 Algorithm

Algorithm 3 is Riemannian GD for minimizing Fγ . A derivation of the update rule is in Appendix D .

Algorithm 3 GD for Regularized Barycenters

1: procedure RBARY-GD(Σ0, P, T, γ, η)
2: for t = 1, . . . , T do
3: St ← η

∫
GM(Σ−1

t−1,Σ) dP (Σ) + ηγΣ−1
t−1 + (1− η (1 + γ))Id

4: Σt ← StΣt−1St
5: return ΣT

4.2 Convergence guarantees

We provide two convergence guarantees for Algorithm 3. The first holds for all choices of the regu-
larization parameter γ. However, this rate deteriorates with larger γ, and intuitively the optimization
problem should become somewhat easier with larger regularization; hence, we prove a second rate
of convergence to capture this behavior. We emphasize that as in §3, our convergence rates are
dimension-independent. The proof of each rate appears in Appendix D.
Theorem 4. Fix γ > 0 and suppose that P is supported on covariance matrices with eigenvalues
in [1/

√
κ,
√
κ]. If Algorithm 3 is initialized at a point in suppP and run with step size η =

1/(1 + 2γ
√
κ), then the following hold.

1. For any choice of regularization parameter γ > 0 and any T ≥ 1,

Fγ(ΣT )− Fγ(Σ?) ≤ exp
(
− T

κ4 (1 + 2γ
√
κ)

)
{Fγ(Σ0)− Fγ(Σ?)} .

2. If γ ≥ 14κ4 is sufficiently large, then the following improved rate holds: for T ≥ 1,

Fγ(ΣT )− Fγ(Σ?) ≤ exp
(
− T

6
√
κ

)
{Fγ(Σ0)− Fγ(Σ?)} .

For brevity, we omit guarantees in terms of the distance W2(Σt,Σ
?) to the minimizer.

4.3 Numerical experiments

In Figure 4, we investigate the use of the regu-
larization term γKL(·

∥∥ N (0, Id)) to encode a
prior belief of isotropy. In Figure 4, we gener-
ate n = 100 i.i.d. 20 × 20 covariance matrices
from a distribution whose barycenter is the iden-
tity (see Appendix F). Then, for ρ ∈ [0, 10] we
compute the barycenter of a perturbed dataset
obtained by adding ρe1e

T
1 to each matrix for dif-

ferent choices of γ. We see that for γ = 0 the
barycenter quickly departs from isotropy, while
for larger γ the regularization yields averages
which are more consistent with our prior belief.

Figure 4: Effect of regularization for varying γ.
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5 Geometric medians

In this section, we consider the Wasserstein geometric median

b?median ∈ arg min
b∈P2(Rd)

∫
W2(b, ·) dP . (7)

See the introduction for a discussion of the literature on this problem. Observe that, in contrast to the
barycenter (1), here we are minimizing the average unsquared Wasserstein distance.

The following basic result justifies the consideration of the geometric median problem on the Bures-
Wasserstein space. It is proved in Appendix E.1.

Proposition 2. Suppose that P is supported on centered non-degenerate Gaussians whose covariance
matrices have eigenvalues lying in the range [λmin, λmax], where 0 ≤ λmin ≤ λmax < ∞. Then,
there exists a solution to (7) which is also a centered non-degenerate Gaussian distribution; moreover,
its covariance matrix Σ?median can be taken to have eigenvalues in [λmin, λmax].

Remark 1. Suppose now that P is supported on non-degenerate Gaussian distributions which are not
necessarily centered. Then, the proof of Proposition 2 applies with minor modifications to show that
the minimizer of the median functional is still attained at a Gaussian distribution. However, unlike the
barycenter and entropically regularized barycenter, it is not the case that the mean of the Wasserstein
geometric median is the Euclidean geometric median of the means, thus it is not as straightforward to
reduce to the centered case for this problem. Nevertheless, in Appendix E.2, we describe a reduction
which allows the algorithm described in the next section to be applied in a black box manner to the
non-centered case, with corresponding convergence guarantees.

5.1 Algorithm

Since the Wasserstein distance W2(Σ, ·) is neither geodesically convex nor geodesically smooth, nor
Euclidean convex nor Euclidean smooth (see Remark 7), it poses challenges for optimization. We
therefore smooth the objective before optimization. Given a desired target accuracy ε > 0, let

W2,ε :=
√
W 2

2 + ε2 , Fε(b) :=

∫
W2,ε(b, ·) dP .

Algorithm 4 provides pseudocode for running Riemannian GD on the smoothed functional Fε. See
Appendix E for a derivation of the update rule.

Algorithm 4 Smoothed GD for Median

1: procedure MEDIAN-GD(Σ0, P, T, ε)
2: for t = 1, . . . , T do
3: St ← Id + ε

∫
{GM(Σ−1

t−1,Σ)− Id}W2,ε(Σt−1,Σ)
−1

dP (Σ)
4: Σt ← StΣt−1St
5: return ΣT

5.2 Convergence guarantees

We show that Algorithm 4 finds an O(ε)-approximate minimizer for the geometric median functional
in O(κ/ε4) iterations. We emphasize that as in our other results, this convergence is dimension-
independent. Below, let F := F0 denote the unregularized functional. Note that since F typically does
not have a unique minimizer, we only guarantee a small suboptimality. The proof is in Appendix E.1.

Theorem 5. Assume that P is supported on covariance matrices whose eigenvalues lie in
[λmin, λmax], 0 < λmin ≤ λmax < ∞. Let κ := λmax/λmin denote the condition number, and let
0 < ε < 1 denote a target accuracy. Assume that we initialize Algorithm 4 at Σ0 ∈ suppP . Then,
Algorithm 4 outputs ΣT satisfying F (ΣT )− F (Σ?median) ≤ 3ε if

T ≥ 32κFε(Σ0)
4

ε4
.
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Figure 5: Evolution of median objective for vary-
ing ε. X? denotes the best iterate. Figure 6: Robustness of the Wasserstein median.

5.3 Numerical experiments

In Figure 5 we plot the suboptimality gap for the unregularized objective F =
∫
W2(·,Σ) dP as

we optimize Fε using Algorithm 4 for various ε. The regularization parameter ε has a natural
trade-off: smaller ε results in better approximation to the (unregularized) geometric median, but
slower convergence. The covariance matrices are generated as in Figure 2, with n = d = 30 and
[λmin, λmax] = [0.01, 10]. The promising empirics in Figure 5 suggest that our algorithm performs
even better in practice than our worst-case theoretical results guarantee: few iterations may suffice
for convergence, and also moderate regularization may suffice for high-precision approximations.

In Figure 6 we illustrate the robustness of the Wasserstein geometric median up to its breakdown point
of 50% [FVJ09]. We take random input matrices as above, with n = d = 20 and [λmin, λmax] =
[1, 10], and compute their barycenter and approximate median (ε = 1). We then perturb a fraction
(20%, 45%, and 55% for our figure) of the matrices by multiplying them by a constant greater than 1.
The x-axis of the plot shows the size of the perturbation while the y-axis gives the distance of the
original barycenter and median to the barycenter and median of this new, perturbed dataset.

We also implemented Euclidean GD for this geometric median problem; plots are omitted for brevity
since the results are similar to those for the barycenter (c.f. Section 3.3) in that Euclidean GD
depends much more heavily on parameter tuning. Note also that Euclidean GD does not come with
convergence guarantees for this problem since it is non-convex in the Euclidean geometry.

6 Discussion

In this paper we revisited the problem of computing Bures-Wasserstein barycenters and explained the
empirical efficacy of Riemannian (S)GD by proving convergence rates that improve from exponential
dimension dependence to dimension-free. An attractive feature of our analysis framework was that
our tools were sufficiently general to prove similar dimension-free guarantees for related problems of
interest, namely Bures-Wasserstein geometric medians and entropically-regularized barycenters.

Our results suggest several interesting directions for future research. The focus of this paper was
dimension-dependence, and while we also improved the dependence on other parameters along the
way, it is unclear if these other dependencies are optimal. Can the dependence on κ be improved via
stronger PL inequalities? Is the dependence on ε improvable via alternate methods of smoothing in
the case of geometric medians, or via fixed-point acceleration schemes such as Anderson acceleration
in the case of barycenters?

More broadly, conventional wisdom from the now-established field of geodesic optimization tells
us that whenever possible, one should recast a non-convex optimization problem as a convex one
by changing the geometry. However, as demonstrated empirically in Section 3, for computing
Bures-Wasserstein barycenters, it is significantly better to run GD in the non-convex geometry of
optimal transport than in the convex geometry of Euclidean space. A full understanding of why and
when non-convex geometry can be helpful in general optimization problems is an intriguing direction
with potentially significant implications for both the theory and practice of non-convex optimization.
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A Background on the Bures-Wasserstein manifold

In this section, we collect relevant background about Bures-Wasserstein geometry to make the paper
more self-contained.

A.1 Geometry

We begin by describing the geometry of optimal transport, and then explain how to specialize the
general concepts to the Bures-Wasserstein manifold. The books [AGS08; Vil09] are definitive
references for the Riemannian structure of optimal transport. We attempt to convey the main relevant
ideas, and in doing so do not attempt to be fully rigorous here.

Let P2,ac(Rd) denote the space of all probability measures on Rd which are absolutely continuous (i.e.
admit a density w.r.t. the Lebesgue measure) and which have a finite second moment. When equipped
with the 2-Wasserstein distance W2, it becomes a metric space. In fact, more is true: (P2,ac(Rd),W2)
admits a formal Riemannian structure which we now describe. Given µ0, µ1 ∈ P2,ac(Rd), let T
denote the optimal transport map from µ0 to µ1; thus, T : Rd → Rd is a map satisfying T#µ0 = µ1.
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Here, # denotes the pushforward operation, i.e. if X ∼ µ0, then T (X) ∼ µ1. The constant-speed
geodesic (µt)t∈[0,1] joining µ0 to µ1 is described via

µt = [(1− t) id + tT ]#µ0 , t ∈ [0, 1] .

This geodesic has the following interpretation: draw a “particle” X0 ∼ µ0, and move X0 to T (X0)
with constant speed for one unit of time along the Euclidean geodesic (i.e. straight line) joining these
endpoints; thus, at time t, the particle is at position Xt = (1− t)X0 + tT (X0). Then, µt is simply
the law of Xt.

We take the tangent vector of the geodesic (µt)t∈[0,1] at time 0 to be the mapping T − id; note that in
the particle view, T (X0)−X0 represents the velocity of the particle at time 0. The tangent space
Tµ0P2,ac(Rd) to P2,ac(Rd) at µ0 is then defined to consist of all possible tangent vectors to geodesics
emanating from µ0. Actually, in order to make Tµ0

P2,ac(Rd) formally into a (closed subset of a)
Hilbert space, the definition is modified to read ([AGS08, Theorem 8.5.1])

Tµ0
P2,ac(Rd) := {λ (Tµ0→ν − id) : λ > 0, ν ∈ P2,ac(Rd)}

L2(µ0)
, (8)

where the overline denotes the L2(µ0) closure; we equip this tangent space with the L2(µ0) norm.
Thus, for instance, we have W 2

2 (µ0, µ1) = E[‖X0 − Tµ0→µ1
(X0)‖2] = ‖Tµ0→µ1

− id‖2L2(µ0),
which says that the squared norm of the tangent vector of the geodesic (µt)t∈[0,1] equals the squared
Wasserstein distance. We may write ‖·‖µ0

as a shorthand for ‖·‖L2(µ0).

The Riemannian exponential map expµ is the mapping TµP2,ac(Rd) → P2,ac(Rd) which maps a
tangent vector v to the constant-speed geodesic emanating from µ with velocity v, evaluated at time
1.3 From our description above, we see that expµ v = (id + v)#µ, since the tangent vector joining
µ to T#µ is v = T − id (when T is an optimal transport map). It is also convenient to define the
Riemannian logarithmic map logµ : P2,ac(Rd)→ TµP2,ac(Rd) to be the inverse of the exponential
map expµ; in our context, logµ ν = Tµ→ν − id.

In Riemannian geometry, it is common to localize the argument around a measure µ, which loosely
means replacing a measure ν with its image logµ ν in the tangent space at µ. This is convenient
because the tangent space at µ is embedded in the Hilbert space L2(µ), and we can leverage Hilbert
space arguments (e.g. computing inner products). In order to do this one must quantify the distortion
introduced by the map logµ, which is morally related to the curvature of the manifold.

We now specialize the above concepts to the Bures-Wasserstein manifold, in which non-degenerate
centered Gaussians are identified with their covariance matrices; thus, the Bures-Wasserstein manifold
is the space Sd++ of positive-definite symmetric matrices equipped with a certain Riemannian metric.

The optimal transport problem between Gaussians is discussed in many places, e.g. [BJL19]. Given
two covariance matrices Σ,Σ′ ∈ Sd++, the optimal transport map between the corresponding centered
Gaussians is the linear map Rd → Rd given by

TΣ→Σ′ = Σ−1/2 (Σ1/2Σ′Σ1/2)
1/2

Σ−1/2 .

Note that this is a symmetric matrix. Since AX ∼ N (0, AΣAT) for X ∼ N (0,Σ), the fact that
TΣ→Σ′X ∼ N (0,Σ′) reduces to the matrix identity TΣ→Σ′ΣTΣ→Σ′ = Σ′, which can be verified by
hand. The above formula yields

W 2
2 (Σ,Σ′) = E[‖X − TΣ→Σ′X‖2] = E[‖X‖2 + ‖TΣ→Σ′X‖2 − 2 〈X,TΣ→Σ′X〉]

= tr(Σ + Σ′ − 2ΣTΣ→Σ′) .
(9)

From the general description of Wasserstein geodesics, the constant-speed geodesic (Σt)t∈[0,1]

joining Σ to Σ′ is given by

Σt =
(
(1− t)Id + tTΣ→Σ′

)
Σ
(
(1− t)Id + tTΣ→Σ′

)
, t ∈ [0, 1] . (10)

3Generally, in Riemannian geometry, the exponential map is not defined on the entire tangent space but rather
a subset of it; this is also the case for Wasserstein space.

17



The tangent space TΣSd++ is identified with the space Sd of symmetric d× d matrices. Given S ∈
TΣSd++, the tangent space norm of S is given by ‖S‖L2(N (0,Σ)) =

√
E[‖SX‖2] =

√
〈S2,Σ〉, which

we simply denote as ‖S‖Σ. More generally, given matrices A, B, we write 〈A,B〉Σ := tr(ATΣB).
The exponential map4 is expΣ S = (Id + S) Σ (Id + S), so that expΣ(TΣ→Σ′ − Id) = Σ′. The
inverse of the exponential map is then logΣ Σ′ = TΣ→Σ′ − Id.

The description of the Bures-Wasserstein tangent space is in accordance with the general Riemannian
structure of Wasserstein space (see [AGS08]) and agrees with the convention in [Che+20]. We now
elaborate on other possible conventions, in order to dispel possible confusion.

The space Sd++ is often studied as a manifold in other contexts, and the tangent space at any point
is usually identified with Sd. It is crucial to realize, however, that a tangent space is not simply
a vector space (or inner product space); a tangent space also has the interpretation of describing
velocities of curves. In other words, for each tangent vector S, we also need to prescribe which curves
have velocity S. In the usual way of describing the manifold structure of Sd++, this prescription is
given as follows. Given a curve (Σt)t∈R ⊆ Sd++, if Σ̇0 denotes the ordinary time derivative of this
curve at time 0, then we declare Σ̇0 to be the tangent vector of the curve at time 0. Although this
prescription is natural, observe that it conflicts with our description of the tangent space structure of
the Bures-Wasserstein manifold; in particular, for the curve in (10), we have described the tangent
vector to this curve (at time 0) to be TΣ→Σ′ − Id, but the ordinary time derivative of this curve is
(TΣ→Σ′ − Id)Σ + Σ(TΣ→Σ′ − Id).

To summarize the discussion in the preceding paragraph: although the usual description of the tangent
space of Sd++ at Σ and our description of the tangent space are formally the same, in that they are both
identified with Sd, they differ in that tangent vectors from the two descriptions give rise to different
curves. Note that if we were to adopt the usual description of the tangent space of Sd++, then we
would have to define the tangent space norm ‖·‖Σ differently from above. In this paper, we adopt
the convention described earlier in this section in order to preserve the connection with the general
setting of optimal transport.

A.2 Geodesic convexity and generalized geodesic convexity

Once we have geodesics, we can then define convex functions. A function f : P2,ac(Rd) → R is
said to be geodesically convex if for all constant-speed geodesics (µt)t∈[0,1] (i.e., curves described
by (8)), it holds that

f(µt) ≤ (1− t) f(µ0) + t f(µ1) , t ∈ [0, 1] . (11)

It turns out, however, that many natural examples of geodesically convex functions on Wasserstein
space are convex in a stronger sense, in that they satisfy the inequality (11) for a larger class of curves
than geodesics. A generalized geodesic from µ0 to µ1, with basepoint ν ∈ P2,ac(Rd), is defined to
be the curve (µνt )t∈[0,1] defined by

µνt := [(1− t)Tν→µ0
+ tTν→µ1

]#ν , t ∈ [0, 1] .

A function f : P2,ac(Rd) → R is said to be convex along generalized geodesics if for every
generalized geodesic (µνt )t∈[0,1], it holds that

f(µνt ) ≤ (1− t) f(µ0) + t f(µ1) , t ∈ [0, 1] .

Note that the geodesic (µt)t∈[0,1] joining µ0 to µ1 coincides with the generalized geodesic
(µµ0

t )t∈[0,1], so that convexity along generalized geodesics is indeed stronger than geodesic convexity.

Generalized geodesics were studied in [AGS08] in order to rigorously study gradient flows on
Wasserstein space. The added flexibility of generalized geodesics is sometimes important for
applications [AC20]; in our work, as well as in [Che+20], generalized geodesics are needed to study
the iterates of Riemannian GD.

The interpretation of generalized geodesics is that we linearize P2,ac(Rd) on the tangent space
TνP2,ac(Rd). This means that we replace µ0 with its image logν µ0 = Tν→µ0

− id in the tangent
4Technically the exponential map is only defined if S + Id � 0; this is because if S + Id is not positive

semidefinite, then S + Id is not an optimal transport map due to Brenier’s theorem.
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space, and similarly for µ1. Since the tangent space is a subset of a Hilbert space, geodesics in the
tangent space are described by straight lines, i.e.,

t 7→ (1− t)Tν→µ0 + tTν→µ1 − id .

If we translate back to P2,ac(Rd), we end up with the curve

t 7→ expν
(
(1− t)Tν→µ0 + tTν→µ1 − id

)
= [(1− t)Tν→µ0 + tTν→µ1 ]#ν = µνt .

Thus, the property of being convex along generalized geodesics can be reformulated as requiring that

f ◦ expν : TνP2,ac(Rd)→ R is convex for every ν ∈ P2,ac(Rd) . (12)

In Euclidean space, convexity of a function f : Rd → R is equivalent, via Jensen’s inequality,
to the following statement: for every probability measure P on Rd, it holds that f(

∫
xdP (x)) ≤∫

f(x) dP (x). Since the Wasserstein barycenter is the Wasserstein analogue of the mean, we can
write a similar definition on Wasserstein space. Given a probability measure P on P2,ac(Rd), let bP
denote its Wasserstein barycenter. We say that f : P2,ac(Rd)→ R is convex along barycenters if

f(bP ) ≤
∫
f(µ) dP (µ) , for all P ∈ P2

(
P2,ac(Rd)

)
.

Similarly, via (12), we can define f : P2,ac(Rd)→ R to be convex along generalized barycenters if

f ◦ expν

(∫
v dP (v)

)
≤
∫
f ◦ expν(v) dP (v)

for all ν ∈ P2,ac(Rd) and P ∈ P2

(
TνP2,ac(Rd)

)
.

(13)

However, since the tangent space is embedded in a Hilbert space, there is no difference between (12)
and (13).

To summarize the relationship between these four concepts:

convex along generalized barycenters ⇐⇒ convex along generalized geodesics
=⇒ convex along barycenters =⇒ geodesically convex .

For a justification of these facts and further discussion, see [AC11].

A.3 Geodesic optimization

Given a functional F : P2,ac(Rd)→ R, we can define its Wasserstein gradient formally as follows.
For any constant-speed geodesic (µt)t∈[0,1], the gradient of F at µ0 is the element ∇F (µ0) ∈
Tµ0P2,ac(Rd) satisfying

∂t|t=0F (µt) = 〈∇F (µ0), Tµ0→µ1 − id〉µ0 .

The Riemannian GD update for F with step size η starting at µ is

µ+ := expµ
(
−η∇F (µ)

)
= [id− η∇F (µ)]#µ .

Note that the step size η should be chosen small enough that −η∇F (µ) lies in the domain of the
exponential map. From the general description of the tangent space of Wasserstein space,∇F (µ) is
the gradient of a mapping ψ : Rd → R; then, −η∇F (µ) belongs to the domain of the exponential
map if ‖·‖2/2− ηψ is convex.

We say that F is α-strongly convex if

F (µ1) ≥ F (µ0) + 〈∇F (µ0), logµ0
µ1〉µ0

+
α

2
W 2

2 (µ0, µ1) , for all µ0, µ1 ∈ P2,ac(Rd) ,

and β-smooth if

F (µ1) ≤ F (µ0) + 〈∇F (µ0), logµ0
µ1〉µ0

+
β

2
W 2

2 (µ0, µ1) , for all µ0, µ1 ∈ P2,ac(Rd) .

These two properties are formally equivalent to the following statements: for any constant-speed
geodesic (µt)t∈[0,1], one has

∂2
t |t=0F (µt) ≥ αW 2

2 (µ0, µ1) or ∂2
t |t=0F (µt) ≤ βW 2

2 (µ0, µ1),

respectively.
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A.4 Curvature and the barycenter functional

One of the interesting features of the barycenter problem is that, because it is defined in terms of the
squared distance function, it captures key geometric features of the underlying space; in fact, this is
arguably the reason for the success of the barycenter for geometric applications. To further discuss
this connection, it is insightful to abstract the situation to computing barycenters on a metric space.

Given a metric space (X, d) and a probability measure P on X , a barycenter of P is a solution of

minimize
b∈X

FP (b) :=
1

2

∫
d2(b, ·) dP .

The basic structure required on X in order to study first-order optimization methods is the presence of
geodesics. This is formalized by the notion of a geodesic space, which is studied in metric geometry;
see [BBI01]. Then, we may define a function F : X → R to be α-strongly convex if for all geodesics
(xt)t∈[0,1] in X , it holds that

F (xt) ≤ (1− t)F (x0) + t F (x1)− α t (1− t)
2

d2(x0, x1) , for all t ∈ [0, 1] .

It is known that the convexity properties of the barycenter functional FP are related to the curvature
of the space. Here, curvature is interpreted as the Alexandrov curvature, which is the generalization
of sectional curvature to geodesic spaces, see [BBI01]. Then, the result is that FP is 1-strongly
convex for every probability measure P on X if and only if X has non-positive curvature; see [Stu03]
for precise statements. In fact, the 1-strong convexity of barycenter functionals is essentially the
definition of non-positive curvature in this context.

Consequently, much stronger results are known for barycenters in non-positively curved spaces, rang-
ing from basic properties such as existence and uniqueness, to statistical estimation and optimization;
for details see the nice article [Stu03].

In contrast, it is well-known that Wasserstein space P2,ac(Rd) (and hence, the Bures-Wasserstein
space) is non-negatively curved [AGS08, Theorem 7.3.2]. This means, for instance, that convexity
and properties related to convexity (such as the PL inequality employed in Appendix C.1) are not
automatic for the barycenter functional in Wasserstein space. On the other hand, as emphasized
in [Che+20], this non-negative curvature is related to the smoothness of the barycenter functional.

A.5 Additional facts about the Wasserstein metric

Here we collect various facts about the Wasserstein metric for easy reference in the sequel.

1. Euclidean gradient vs. Bures-Wasserstein gradient.
Let F : Sd++ → R be a function. Throughout this paper, we denote by DF the usual
Euclidean gradient of F , and we reserve ∇F for the gradient with respect to the Bures-
Wasserstein geometry. In fact, under our tangent space convention, these two quantities are
related as follows: let (Σt)t∈R denote a curve in Sd++. We temporarily denote the Euclidean
tangent vector (i.e., ordinary time derivative) to this curve via Σ̇E, and the Bures-Wasserstein
tangent vector via Σ̇BW, which are related via Σ̇E = Σ̇BWΣ + ΣΣ̇BW (see the discussion
in Appendix A.1). We can compute the time derivative of F in two ways:

〈∇F (Σ0), Σ̇BW
0 〉Σ0

= ∂t|t=0F (Σt) = 〈DF (Σ0), Σ̇E
0 〉 = 〈DF (Σ0), Σ̇BW

0 Σ0 + Σ0Σ̇BW
0 〉

= 2 〈DF (Σ0), Σ̇BW
0 〉Σ0 .

From this we can conclude that

∇F (Σ0) = 2 DF (Σ0) .

2. Gradient of the squared Wasserstein distance.
For any ν ∈ P2,ac(Rd), the gradient of the functional W 2

2 (·, ν) at µ is given by

∇W 2
2 (·, ν)(µ) = −2 (Tµ→ν − id) = −2 logµ ν .

This is derived in, e.g. [ZP19]. In the Bures-Wasserstein setting, it can be proven via matrix
calculus; see the proof of Theorem 3.
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3. Inverse of the transport map.
If Σ,Σ′ ∈ Sd++, then the transport map TΣ→Σ′ is the inverse matrix for the transport map
TΣ′→Σ. This can be verified from the formula (6) using the symmetry of the geometric
mean. More generally, it is a special case of the convex conjugacy relation between optimal
Kantorovich potentials.

4. Diagonal case.

If Σ0,Σ1 ∈ Sd++ are diagonal matrices, then W 2
2 (Σ0,Σ1) = ‖Σ1/2

0 − Σ
1/2
1 ‖2F is the

squared Frobenius norm between the square roots. This can be verified, e.g. from the explicit
formula (5) using the fact that Σ0 and Σ1 commute. Note that in one dimension, all matrices
are diagonal. More generally, these observations extend to when Σ0 and Σ1 commute.
Similarly, it can be seen from (10) that the geodesic is given by

Σ
1/2
t = (1− t) Σ

1/2
0 + tΣ

1/2
1 , t ∈ [0, 1] ,

which says that the Bures-Wasserstein geodesic between diagonal (or commuting matrices)
is simply the Euclidean geodesic after applying the square root map.

5. The case of non-zero means.
For any µ, ν ∈ P2(Rd), suppose that the means of these distributions are mµ and mν ,
respectively. Let µ̄, ν̄ denote the centered versions of these distributions. Then, it holds that

W 2
2 (µ, ν) = ‖mµ −mν‖2 +W 2

2 (µ̄, ν̄) .

This can be proven directly from the definition (4).
6. A lower bound on the Wasserstein distance.

Let µ, ν ∈ P2(Rd). If µ̃ and ν̃ are Gaussian measures with the same moments up to order
two as µ and ν, respectively, then W2(µ, ν) ≥W2(µ̃, ν̃) [CMT96].

B Proofs for the geodesic convexity results

B.1 Proof of Theorem 1

See Appendix A.1 and A.2 for background on the relevant geometric concepts.

Proof of Theorem 1. We begin by proving that −
√
λmin is convex (equivalently,

√
λmin is concave)

along generalized geodesics. Let Q be any finitely supported probability measure on Sd++, and let
Σ0 ∈ Sd++ denote the basepoint. It is equivalent to show that if Σ? is the generalized barycenter of Q
at Σ0, then

√
λmin(Σ?) ≥

∫ √
λmin(Σ) dQ(Σ).

The generalized barycenter by definition is the matrix Σ? = expΣ0
(
∫
TΣ0→Σ dQ(Σ) − Id). If

we write T̄ :=
∫
TΣ0→Σ dQ(Σ) for the average transport map, the statement we want to show is

T̄Σ0T̄ � αId where α := (
∫ √

λmin(Σ) dQ(Σ))2. We observe that

T̄Σ0T̄ � αId ⇐⇒ T̄−1Σ−1
0 T̄−1 � α−1Id ⇐⇒ T̄−1 � GM(Σ0, α

−1Id) ,

where the first equivalence follows from the order preservation of inversion [BL06, Exercise 3.3.2]
and the second from [LL01, Corollary 3.5]. In turn, this is equivalent to T̄ � α1/2Σ

−1/2
0 .

Since T̄ =
∫

Σ
−1/2
0 (Σ

1/2
0 ΣΣ

1/2
0 )

1/2
Σ
−1/2
0 dQ(Σ), we want to prove

∫
(Σ

1/2
0 ΣΣ

1/2
0 )

1/2
dQ(Σ) �

α1/2Σ
1/2
0 . To prove this, observe that Σ � λmin(Σ) Id, so Σ

1/2
0 ΣΣ

1/2
0 � λmin(Σ) Σ0. Since taking

square roots preserves the PSD ordering (c.f. [BL06, Exercise 1.2.5]), upon taking square roots and
integrating we deduce∫

(Σ
1/2
0 ΣΣ

1/2
0 )

1/2
dQ(Σ) �

(∫ √
λmin(Σ) dQ(Σ)

)
Σ

1/2
0 = αΣ

1/2
0 .

Hence −
√
λmin is convex along generalized geodesics.

The proof of convexity of
√
λmax is similar. By [LL01, Corollary 3.5],

T̄Σ0T̄ � βId ⇐⇒ T̄ � GM(Σ−1
0 , βId) .
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Since T̄ =
∫

Σ
−1/2
0 (Σ

1/2
0 ΣΣ

1/2
0 )

1/2
Σ
−1/2
0 dQ(Σ), it thus suffices to

show
∫

(Σ
1/2
0 ΣΣ

1/2
0 )

1/2
dQ(Σ) � β1/2Σ

1/2
0 where β := (

∫ √
λmax(Σ) dQ(Σ))

2
as desired.

Noting that Σ
1/2
0 ΣΣ

1/2
0 � λmax(Σ) Σ0, taking square roots and integrating yields∫

(Σ
1/2
0 ΣΣ

1/2
0 )

1/2
dQ(Σ) �

(∫ √
λmax(Σ) dQ(Σ)

)
Σ

1/2
0 = βΣ

1/2
0 .

Hence the result.

Remark 2. This result implies for instance that the set of PSD matrices with eigenvalues lying in a
certain range is convex along generalized geodesics.
Remark 3. There is a short proof of the weaker statement that the functionals −

√
λmin and

√
λmax

are geodesically convex. The following argument is implicit in the proofs of [AC11, Theorem 6.1]
and [BJL19, Theorem 8]. Let Q be a finitely supported probability measure on Sd++. The barycenter
Σ? of Q satisfies the fixed-point equation

Σ? =

∫
(Σ? 1/2ΣΣ? 1/2)

1/2
dQ(Σ) ,

see [AC11, Theorem 6.1]. This implies

λmin(Σ?) ≥
∫ √

λmin(Σ? 1/2ΣΣ? 1/2) dQ(Σ) ≥
√
λmin(Σ?)

∫ √
λmin(Σ) dQ(Σ) .

A similar argument applies for
√
λmax.

B.2 Sharpness of Theorem 1

We investigate the sharpness of this result in the following sense: for what exponents p ≥ 0 is it true
that the functionals −λpmin, λpmax are geodesically convex? For instance, the functional λmax was
shown to be geodesically convex in [Che+20, Lemma 13].

In the following theorem, we show that the exponent p = 1/2 in Theorem 1 is optimal, in the sense
that all possible geodesic convexity statements involving powers of λmin and λmax (except the trivial
case p = 0) can be deduced from our result for p = 1/2.
Theorem 6. The following diagrams depict the exponents p ∈ R for which λpmin and λpmax are
concave or convex.

p

convex

concave

λpmin

0 1
2

p

convex

concave

λpmax

0 1
2

The diagram is to be interpreted as follows. If part of the diagram is filled in with a solid black line,
then the corresponding functional is concave/convex along generalized geodesics (and hence it is
geodesically concave/convex). If part of the diagram is not filled in, then there exist counterexamples
showing that the functional is not geodesically concave/convex.

Proof. First, we establish the positive results, which follow from composition rules:

• For 0 ≤ p ≤ 1/2, λpmin is the composition of the increasing concave function (·)2p with the
concave function

√
λmin, so it is concave.

• For p ≤ 0, λpmin is the composition of the decreasing convex function (·)2p with the concave
function

√
λmin, so it is convex.
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• For p ≥ 1/2, λpmax is the composition of the increasing convex function (·)2p with the
convex function

√
λmax, so it is convex.

Next, we turn towards the negative results. First, recall from Fact 4 in Appendix A.5 that if Σ0 and
Σ1 are one-dimensional, i.e., they are positive numbers, then the Bures-Wasserstein geodesic is

Σt =
(
(1− t)Σ1/2

0 + tΣ
1/2
1

)2
, t ∈ [0, 1] .

Also, in this case, λmin and λmax coincide and equal the identity; we thus abuse notation slightly in
this paragraph by writing λ for both to handle the two cases simultaneously. Once we reparametrize
by the square roots, it is seen that asking for concavity/convexity of λp is equivalent to asking for
usual convexity of (·)2p on R+. This example rules out: (1) the concavity of λp for p < 0; (2) the
convexity of λp for 0 < p < 1/2; and (3) the concavity of λp for p > 1/2.

To rule out convexity of λpmin for p > 0, consider Σ = diag(ε, 1/ε) for small ε > 0. The
transport map from Σ−1 to Σ is Σ, so from (10) the midpoint of this geodesic is M := (Σ +
Σ−1 + 2I2)/4 = (ε + ε−1 + 2)I2/4. In particular, this implies that λmin(M) ≥ 1/(4ε) � ε =
max{λmin(Σ), λmin(Σ−1)}. Thus λpmin is not convex for any p > 0.

To rule out concavity of λpmax for p > 0, note that for ε sufficiently small, in the previous example
λmax(M) ≈ 1/(4ε)� 1/ε = max{λmax(Σ), λmax(Σ−1)}. Also, for any p < 0, the convexity of
λpmax would imply the concavity of λ−pmax due to the composition rules, hence λpmax is not convex.

This covers all cases.

B.3 Eigenvalue clipping is a Bures-Wasserstein contraction

Convex sets play an important role in Euclidean optimization because projection onto a convex set is
a contraction (c.f. [Bub15, Lemma 3.1]), and hence projected GD can be used to solve constrained
optimization. Unfortunately, as the Bures-Wasserstein space is positively curved, we cannot au-
tomatically conclude that projection onto a geodesically convex set is a projection. Nevertheless,
we can verify by hand the following result. In what follows, define for 0 < β < ∞ the operator
clipβ : Sd++ → Sd++ in the following way: if Σ =

∑d
i=1 λiuiu

T
i is an eigenvalue decomposition of

Σ, then

clipβ Σ :=

d∑
i=1

(λi ∧ β)uiu
T
i .

Proposition 3. The operator clipβ is a contraction w.r.t. the Bures-Wasserstein metric, i.e.,
W2(clipβ Σ, clipβ Σ′) ≤W2(Σ,Σ′).

To prove this proposition, we first extend the clipping operation to an operator Rd×d → Rd×d
via the singular values; namely, given a singular value decomposition A =

∑d
i=1 siuiv

T
i , we let

clipβ A :=
∑d
i=1(si ∧ β)uiv

T
i .

Proof of Proposition 3. Fix X,Y ∈ Sd++. It is known (see e.g. [BJL19]) that

W2(X,Y ) = min
A,B∈Rd×d
AAT=X
BBT=Y

‖A−B‖F .

Let (Ā, B̄) be a minimizing pair in the above expression. We aim to show

W2(clipβ X, clipβ Y ) ≤ ‖clip
√
β Ā− clip

√
β B̄‖F

?
≤ ‖Ā− B̄‖F = W2(X,Y ) .

We only have to show the second inequality, and we do so by showing that the operator clipM :
Rd×d → Rd×d satisfies

clipM A = arg min
Ã∈Rd×d, ‖Ã‖≤M

‖A− Ã‖F , A ∈ Rd×d . (14)
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This will prove that clipM is the Euclidean projection onto the closed convex set {‖·‖ ≤M}, and
such a projection is automatically 1-Lipschitz.

Indeed, showing (14) is standard. Write A = UΣV T for its singular value decomposition.

arg min
Ã∈Rd×d, ‖Ã‖≤M

‖Ã−A‖2F = arg min
Ã∈Rd×d, ‖Ã‖≤M

‖Ã− UΣV T‖2F = arg min
Ã∈Rd×d, ‖Ã‖≤M

‖UTÃV − Σ‖2F

= arg min
Ã∈Rd×d, ‖Ã‖≤M

{ d∑
i=1

{Σ[i, i]− (UTÃV )[i, i]}2 +
∑
i,j∈[d]
i 6=j

(UTÃV )[i, j]
2
}
.

On the other hand,

min
Ã∈Rd×d, ‖Ã‖≤M

{ d∑
i=1

{Σ[i, i]− (UTÃV )[i, i]}2 +
∑

i,j∈[d], i 6=j

(UTÃV )[i, j]
2
}

≥
d∑
i=1

{(Σ[i, i]−M)+}
2
,

with equality attained at the unique minimizer Ã satisfying UTÃV = clipM Σ, i.e., Ã = clipM A.

C Proofs for barycenters

C.1 Riemannian gradient descent

In this section, we detail the obstacles faced by previous analyses and then show how our geodesic
convexity result, Theorem 1, enables us to overcome the prior exponential dependence on dimension
and obtain the dimension-free rates in Theorems 2 and 3.

We begin by recalling the proof strategy of [Che+20]. Let F denote the barycenter functional,

F (Σ) :=
1

2

∫
W 2

2 (Σ, ·) dP . (15)

Standard optimization guarantees are often proven under the assumption that the objective function
F is smooth and convex. Since we are considering Riemannian descent, this should be interpreted as
convex and smooth along geodesics, as in [ZS16]. Unfortunately, the functional F is not geodesically
convex (see [Che+20, Appendix B.2]), and so we must look for weaker conditions which still
imply convergence of GD/SGD. A gradient domination condition known as the Polyak-Łojasiewicz
inequality (henceforth PL inequality) was introduced in the non-convex optimization literature as
an appropriate substitute for strong convexity [Pol64; Loj63], see also e.g., [KNS16; Bol+17]).
Establishing a PL inequality in the present setting plays a key role in the analysis.

The following properties of the barycenter functional were proven in [Che+20].

Theorem 7. Let 0 < λmin ≤ λmax <∞ and write κ := λmax/λmin.

1. ([Che+20, Theorem 7]) The barycenter functional F is 1-geodesically smooth.

2. ([Che+20, Theorem 17]) Assume that the covariance matrices in the support of P have
eigenvalues in the range [λmin, λmax]. Then, F satisfies a variance inequality,

F (Σ)− F (Σ?) ≥ 1

2κ
W 2

2 (Σ,Σ?) , for all Σ ∈ Sd++ .

3. ([Che+20, Theorem 19]) Assume that the covariance matrices in the support of P , as well
as Σ itself, have eigenvalues in the range [λmin, λmax]. Then, F satisfies a PL inequality at
the matrix Σ:

F (Σ)− F (Σ?) ≤ 2κ2 ‖∇F (Σ)‖2Σ .
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Geodesic smoothness together with a PL inequality at every iterate are enough to obtain convergence
guarantees for GD/SGD in objective value (i.e., the quantity F (Σ)−F (Σ?)), c.f. [Che+20, Theorems
4-5]. The variance inequality is then used to deduce convergence of the iterate to Σ?.

The main difficulty when applying these results is the assumption required for the third point: it
requires a priori control over the eigenvalues of the iterates of GD/SGD.

This difficulty is addressed in [Che+20] via the following strategy: identify a geodesically convex
subset S of the Bures-Wasserstein manifold for which we can prove uniform bounds on the eigenval-
ues of matrices in S. Since the iterates of SGD travel along geodesics, if P is supported in S and
the algorithm is initialized in S, it follows that all iterates of SGD will remain in S. The situation is
similar for GD, except that “geodesics” must be replaced by “generalized geodesics”.

We can now describe the source of the exponential dependence on dimension in the result of [Che+20]:
if the covariance matrices in the support of P have eigenvalues in [λmin, λmax], then the subset S
used in the analysis of Chewi et al. is substantially larger than the support of P , and in particular the
eigenvalues of matrices in S can only be proven to lie in the range [λmin/κ

d−1, λmax]. The main
improvement in the present analysis is to use our geodesic convexity result (Theorem 1) to prove the
following result.
Lemma 1. Suppose that the covariance matrices in the support of P have eigenvalues in the range
[λmin, λmax], and that we initialize GD (respectively SGD) at a point in suppP . Then, the iterates of
GD (respectively SGD) also have eigenvalues in the range [λmin, λmax].

Proof. From Theorem 1, the set of matrices with eigenvalues in [λmin, λmax] is closed under gener-
alized geodesics. Since the update of GD (respectively SGD) moves along generalized geodesics
(respectively geodesics), the result follows.

This combined with the arguments below is enough to alleviate the exponential dimension dependence.
However, before continuing to the main argument, we prove sharper bounds for the last two statements
of Theorem 7. This allows us to also improve our convergence rates’ dependence on the conditioning.

This improved version of Theorem 7 rests on the following observation. [Che+20, Lemma 16] shows
that if Σ, Σ′ have eigenvalues which lie in the range [λmin, λmax], then the eigenvalues of the transport
map TΣ→Σ′ lie in [κ−1, κ]. However, these bounds are loose, as following lemma shows.

Lemma 2. Suppose that Σ,Σ′ ∈ Sd++ have eigenvalues which lie in the range [λmin, λmax], and let
κ := λmax/λmin denote the condition number. Then, the eigenvalues of the transport map TΣ→Σ′ lie
in the range [1/

√
κ,
√
κ].

Proof. The transport map TΣ→Σ′ is explicitly given in (6), and it can be recognized as the matrix
geometric mean of Σ−1 and Σ′. Applying a norm bound for the matrix geometric mean [BG12,
Theorem 3], we deduce that

λmax(TΣ→Σ′) ≤ λmax(Σ
′ 1/4Σ−1/2Σ

′ 1/4) ≤
√
κ .

The symmetry of Σ and Σ′ together with Fact 3 in Appendex A.5 yields λmin(TΣ→Σ′) ≥ 1/
√
κ.

Using this lemma, we now state and prove the refinement of Theorem 7.
Theorem 8. Let 0 < λmin ≤ λmax <∞ and write κ := λmax/λmin.

1. ([Che+20, Theorem 7]) The barycenter functional F is 1-geodesically smooth.

2. Assume that the covariance matrices in the support of P have eigenvalues in the range
[λmin, λmax]. Then, F satisfies a variance inequality,

F (Σ)− F (Σ?) ≥ 1

2
√
κ
W 2

2 (Σ,Σ?) , for all Σ ∈ Sd++ .

3. Assume that the covariance matrices in the support of P , as well as Σ itself, have eigenvalues
in the range [λmin, λmax]. Then, F satisfies a PL inequality at the matrix Σ:

F (Σ)− F (Σ?) ≤ 2κ3/2 ‖∇F (Σ)‖2Σ .
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Proof. The second statement follows from the general variance inequality ([Che+20, Theorem 6])
together with Lemma 2. Similarly, the third statement follows from the proof of [Che+20, Theorem
19] using the improved variance inequality.

The proof of Theorem 2 now follows from the analysis of [Che+20, §4.2] by adapting their Theorems
4 and 5. We now sketch the modifications required to prove Theorem 3.

Proof of Theorem 3. We prove the stronger result that this holds for κ, as this implies the result for
κ? because

κ =
λmax

λmin

=
(∫ λmax(Σ)1/2 dP (Σ)∫

λmin(Σ)1/2 dP (Σ)

)2

≤ sup
Σ∈supp(P )

λmax(Σ)

λmin(Σ)
= κ? .

Above, the inequality follows from rearranging
∫ √

λmax(Σ) dP (Σ) ≤
√
κ?
∫ √

λmin(Σ) dP (Σ).

We begin by checking that the variance inequality and PL inequality from Theorem 7 continue to
hold under these assumptions.

Variance inequality. From the geodesic convexity of −
√
λmin and

√
λmax, the barycenter Σ?

of P has eigenvalues in [λmin, λmax]. By modifying the proof of Lemma 2 and using Fact 3 in
Appendix A.5, the transport map TΣ?→Σ has eigenvalues bounded below as

λmin(TΣ?→Σ) =
1

λmax(TΣ→Σ?)
≥ 1

λmax(Σ? 1/4Σ−1/2Σ? 1/4)
≥ λmin(Σ)

1/2

λmax
1/2

.

From [Che+20, Theorem 6], we can deduce that the variance inequality holds for P with constant∫
λmin(TΣ?→Σ) dP (Σ) ≥ λmin

1/2

λmax
1/2

=
1

κ1/2
.

PL inequality. Similarly, a modification of the proof of [Che+20, Theorem 19] using the improved
variance inequality shows that a PL inequality holds at Σ:

F (Σ)− F (Σ?) ≤ 2κ1/2 λmax

λmin(Σ)
‖∇F (Σ)‖2Σ .

Putting it together. From Corollary 1, the iterates of either GD or SGD all have eigenvalues in
the range [λmin, λmax]. Hence, the PL inequality in (3) of Theorem 8 holds at every iterate with κ
replacing κ. The convergence rates now follow as before.

C.2 Euclidean gradient descent approach

We now present our results for the Euclidean geometry. [BJL19] prove that the barycenter functional
is strictly convex on the positive semidefinite cone (w.r.t. the standard Euclidean geometry). We
extend their results by showing that it is in fact strongly convex and smooth (again w.r.t. the standard
Euclidean geometry). Besides yielding an analysis of Euclidean projected GD and SGD, these results
also aid our analysis of the regularized barycenter problem in the sequel.

Fix 0 < α ≤ β and denote by Kα,β the subset of covariance matrices whose spectrum lies within
[α, β]. Let F denote the barycenter functional, defined in (15).

Lemma 3. For all Σ ∈ Kα,β and non-zero Y ∈ Sd,

α3

4β4
≤ 〈Y,D

2 F (Σ)[Y ]〉F
‖Y ‖2F

≤ β3

4α4
. (16)

Proof. It suffices to consider the case where P = 1
N

∑N
i=1 δΣi for some Σi ∈ Kα,β , i ∈ [N ], as the

case of general P supported on Kα,β follows by compactness. Fix Σ ∈ Kα,β . Standard calculations
as in [BJL19] show that the first derivative satisfies

2 DF (Σ) = Id −
1

N

N∑
i=1

GM(Σi,Σ
−1) .
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We now compute the second derivative. Define the functions
inv(Σ) := Σ−1 ,

conjA(Σ) := AΣA ,

sqrt(Σ) := Σ1/2 .

For Y ∈ Sd, the above maps have derivatives
D inv(Σ)[Y ] = −Σ−1Y Σ−1 ,

D conjA(Σ)[Y ] = AY A ,

D sqrt(Σ)[Y ] =

∫ ∞
0

e−tΣ
1/2

Y e−tΣ
1/2

dt .

With these definitions in hand, we can write

2 DF (Σ) = Id −
1

N

N∑
i=1

conj
Σ

1/2
i
◦ sqrt ◦ conj

Σ
−1/2
i
◦ inv(Σ).

Taking the derivative in a symmetric direction Y ∈ Sd and applying the chain rule repeatedly,

2 D2 F (Σ)[Y ]

=
1

N

N∑
i=1

∫ ∞
0

Σ
1/2
i e−t (Σ

1/2
i ΣΣ

1/2
i )

−1/2

Σ
−1/2
i Σ−1Y Σ−1Σ

−1/2
i e−t (Σ

1/2
i ΣΣ

1/2
i )

−1/2

Σ
1/2
i dt .

Let g(t, x) = exp(−t/
√
x)x−1 on (t, x) ∈ (0,∞)× (0,∞) and Zi = Σ

1/2
i ΣΣ

1/2
i . Since g(t, ·) is

analytic on its domain, the Riesz-Dunford calculus (see [DS88]) applies and we may write

2 〈Y,D2 F (Σ)[Y ]〉F =
1

N

N∑
i=1

∫ ∞
0

tr
(
g(t, Zi)Σ

1/2
i Y Σ

1/2
i g(t, Zi)Σ

1/2
i Y Σ

1/2
i

)
dt .

Using the spectral mapping theorem and Lemma 5 below we further write

≤ ‖Y ‖
2
F

N

N∑
i=1

λmax(Σi)
2
∫ ∞

0

max
λ∈spec(Zi)

g(t, λ)
2

dt .

An analogous argument gives the lower bound

2 〈Y,D2 F (Σ)[Y ]〉F ≥
‖Y ‖2F
N

N∑
i=1

λmin(Σi)
2
∫ ∞

0

min
λ∈spec(Zi)

g(t, λ)
2

dt .

To bound the integral, we note that

e−t/
√
λmin(Zi) λmax(Zi)

−1 ≤ g(t, λ) ≤ e−t/
√
λmax(Zi) λmin(Zi)

−1

for all λ ∈ spec(Zi). Since we assume αId � Σi,Σ � βId, then α2Id � Zi � β2Id, so

2 〈Y,D2 F (Σ)[Y ]〉F ≤ β2

∫ ∞
0

exp
(
−2t

β

) 1

α4
dt =

β3

2α4
.

An analogous calculation for the lower bound finishes the proof.

Remark 4. Similar to Theorem 3, one can obtain improved strong convexity and smoothness parame-
ters for F based on non-uniform notions of conditioning.

We can now describe the projected GD and projected SGD updates. Let Πα,β : Sd → Kα,β denote the
Euclidean projection onto Kα,β and let η = 4λ4

min/λ
3
max. Given a starting matrix Σ0, the projected

GD scheme to minimize the barycenter functional of a measure P supported on Kλmin,λmax
is given

by
ΣEGD
t+1 := Πλmin,λmax

(
Σt − ηDF (ΣEGD

t )
)
, t ≥ 0 . (17)

Also, suppose that Σ1, . . . ,Σt are i.i.d. samples from P . Then, the projected stochastic gradient
scheme is

ΣESGD
t+1 := Πλmin,λmax

(
ΣESGD
t − ηt+1

{
Id − Σt+1#(ΣESGD

t )
−1})

, t ≥ 0 , (18)

where following [LSB12] we take the step size to be ηt = 8λ4
max/(λ

3
min (t+ 1)).

We now state the convergence guarantees for these two algorithms.
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Theorem 9 (guarantees for Euclidean GD/SGD). Assume that P is supported on covariance matrices
whose eigenvalues lie in the range [λmin, λmax], 0 < λmin ≤ λmax < ∞. Let κ := λmax/λmin

denote the condition number. Assume that we initialize at Σ0 ∈ suppP .

1. (EGD) Let ΣEGD
T denote the T -th iterate of projected Euclidean GD (17). Then,

‖ΣEGD
T − Σ?‖2F ≤ exp

(
− T
κ7

)
‖Σ0 − Σ?‖2F . (19)

2. (ESGD) Let ΣESGD
T denote the T -th iterate of Euclidean projected SGD (18). Then,

E[‖ΣESGD
T − Σ?‖2F] ≤ 64dλ2

maxκ
6.5

T
.

Proof. (1) The preceding lemma shows that the barycenter functional F is strongly convex and
smooth with condition number κ7. By [Bub15, Theorem 3.10], projected GD (17) converges at the
stated rate.

(2) For ESGD, we must compute a bound on the Euclidean variance of the stochastic gradient. Using
Lemma 2, we get the two-sided control

1√
κ
Id � Σt+1#(ΣESGD

t )
−1 �

√
κ Id

and thus ∥∥Id − Σt+1#(ΣESGD
t )

−1∥∥2

F
≤ d (

√
κ− 1) ≤ d

√
κ .

The result now follows from the preceding lemma and [LSB12].

Remark 5. To compare the guarantees of Theorems 2 and 9, first we have
1

2
‖Σ1/2

T − Σ? 1/2‖2F ≤W 2
2 (ΣT ,Σ

?) ≤ ‖Σ1/2
T − Σ? 1/2‖2F

as a consequence of [CV21, Lemma 3.5]. Moreover, under our assumptions,
1

4λmax
‖ΣT − Σ?‖2F ≤ ‖Σ

1/2
T − Σ? 1/2‖2F ≤

1

4λmin
‖ΣT − Σ?‖2F ,

where the first inequality is elementary and follows from

A−B = A1/2 (A1/2 −B1/2) + (A1/2 −B1/2)B1/2 ,

whereas the second inequality uses [Bha97, (X.46)].

For the iterations given by (17) and (18) to be practical, we need the projection step to be imple-
mentable. The following lemma takes care of this.
Lemma 4. Let Πα,β : Sd → Kα,β be the projection with respect to the Frobenius norm. Then

Πα,β(Y ) =

d∑
i=1

[(λi ∧ β) ∨ α] viv
T
i

where Y =
∑d
i=1 λiviv

T
i is an orthogonal eigendecomposition of Y .

Proof. Let Y = QΛQT be an orthogonal eigendecomposition of Y . Since the Frobenius norm is
unitarily invariant, we have

Πα,β(Y ) = arg min
X∈Kα,β

‖X −QΛQT‖2F = arg min
X∈Kα,β

‖QTXQ− Λ‖2F = Q
(
arg min
X∈Kα,β

‖X − Λ‖2F
)
QT

and the result follows.

Finally, we state and prove the elementary lemma we used in the proof of Lemma 3.
Lemma 5. Let A,B ∈ Sd++ and Y ∈ Sd. Then

λmin(A)λmin(B) ‖Y ‖2F ≤ tr(AY BY ) ≤ λmax(A)λmax(B) ‖Y ‖2F .

Proof. The result follows immediately from tr(AY BY ) = ‖A1/2Y B1/2‖2F and λmin(A1/2) =

λmin(A)
1/2 (similarly for B).
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C.3 SDP formulation

The SDP formulation of the Bures-Wasserstein barycenter is as follows. Suppose that P is a discrete
distribution, P =

∑k
i=1 piδΣi . The Wasserstein distance between Σ0,Σ1 ∈ Sd++ can be expressed as

W 2
2 (Σ0,Σ1) = min

S∈Rd×d

{
tr(Σ0 + Σ1 − 2S) such that

[
Σ0 S
ST Σ1

]
� 0

}
.

It follows that the barycenter Σ? of P solves the optimization problem

min
Σ?∈Sd++

S1,...,Sk∈Rd×d

{
tr
(

Σ? − 2

k∑
i=1

piSi

)
such that

[
Σi Si
ST
i Σ?

]
� 0 , ∀i ∈ [k]

}
.

D Proofs for entropically-regularized barycenters

We begin by remarking how the non-centered case can be reduced to the centered case.
Remark 6. For a probability measure µ, let mµ denote its mean and let µ̄ denote the centered version
of µ. Using Fact 5 in Appendix A.5, one can verify that

1

2

∫
W 2

2 (b, µ) dP (µ) + γKL
(
b
∥∥ N (0, Id)

)
=

1

2

∫
‖mb −mµ‖2 dP (µ) +

γ

2
‖mb‖2 +

1

2

∫
W 2

2 (b̄, µ̄) dP (µ) + γKL
(
b̄
∥∥ N (0, Id)

)
.

This shows that the objective of the entropically-regularized barycenter decouples into two parts, one
involving the mean of b and the other involving the centered version of b. Explicitly, we can compute

m? :=
1

1 + γ

∫
mµ dP (µ)

and the entropically-regularized barycenter b̄? of the centered versions of the distributions in P .
Then, if τ : Rd → Rd denotes the translation x 7→ x+m?, the solution to the original entropically-
regularized barycenter problem is τ#b̄?.

We now overview the proof strategy; proofs are then provided in the subsequent subsections. Through-
out this section let P be supported on K1/

√
κ,
√
κ, the subset of matrices in Sd++ with eigenvalues in

the range [1/
√
κ,
√
κ].

An important observation driving our analysis is that the gradient of the KL divergence at Σ has the
following form:

∇KL(· ‖ Id)(Σ) = Id − Σ−1 = Id − TΣ→Σ−1 = − logΣ(Σ−1) . (20)

This can be shown by observing that

KL(Σ ‖ Id) =
1

2
tr Σ− 1

2
ln det Σ− d

2
,

computing the Euclidean gradient, and appealing to Fact 1 in Appendix A.5. This gradient identity
is convenient for applying our generalized geodesic convexity results and allows us to prove the
following Lemma in Subsection D.1. Put Σ+ := expΣ(−η∇Fγ(Σ)).
Lemma 6. If Σ ∈ K1/

√
κ,
√
κ, then so is Σ+.

We also establish a couple of properties of our objective function in Subsection D.2.
Proposition 4. Define G : K1/

√
κ,
√
κ → R to take Σ 7→ KL(Σ ‖ Id). Then, the following hold:

1. G is 2
√
κ-smooth with respect to Wasserstein geodesics.

2. Fγ is 1/(4κ7/2)-strongly convex with respect to Euclidean geodesics on K1/
√
κ,
√
κ.

3. Fγ is strictly convex on all of Sd++.
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With these facts, we can establish existence and uniqueness of Σ? and prove Proposition 1 in
Subsection D.3.

Next we prove smoothness and PL inequalities in Subsection D.4.
Lemma 7 (Smoothness). If Σ ∈ K1/

√
κ,
√
κ and we take the step size η = 1/(1 + 2γ

√
κ), then

Fγ(Σ+)− Fγ(Σ) ≤ − 1

2 (1 + 2γ
√
κ)
‖∇Fγ(Σ)‖2Σ .

Lemma 8 (PL inequality). If Σ ∈ K1/
√
κ,
√
κ, then

Fγ(Σ)− Fγ(Σ?) ≤ κ4

2
‖∇Fγ(Σ)‖2Σ .

When the regularization parameter γ is large, we can instead use a different argument to improve the
PL constant.
Lemma 9 (PL inequality, large regularization). If Σ ∈ K1/

√
κ,
√
κ and γ ≥ 14κ4, then

Fγ(Σ)− Fγ(Σ?) ≤ 1

γ
‖∇Fγ(Σ)‖2Σ .

The main theorem now follows by combining these lemmas.

Proof of Theorem 4. By Lemma 6, the Lemmas 7, 8, and 9 hold throughout the optimization trajec-
tory. Let C = 2/κ4 if we apply Lemma 8, and let C = γ if we apply Lemma 9. Then,

Fγ(Σt+1)− Fγ(Σ?) = Fγ(Σt+1)− Fγ(Σt) + Fγ(Σt)− Fγ(Σ?)

≤ − 1

2 (1 + 2γ
√
κ)
‖∇Fγ(Σt)‖2Σt + Fγ(Σt)− Fγ(Σ?)

≤
(

1− C

2 (1 + 2γ
√
κ)

)
{Fγ(Σt)− Fγ(Σ?)} .

Iterating yields the result.

D.1 Trapping the iterates

Proof of Lemma 6. Combining (20) with the formula for the gradient of the squared Bures-
Wasserstein distance (Fact 2 in Appendix A.5), we see that in fact

−∇Fγ(Σ) =

∫
logΣ(Σ′) dP (Σ′) + γ logΣ(Σ−1) .

We then apply Theorem 1 (see also the discussion in Appendix A.2) and the fact that that η (1+γ) ≤ 1
to yield√
λmin(Σ+) =

√
λmin ◦ expΣ

(
η

∫
logΣ(Σ′) dP (Σ′) + ηγ logΣ(Σ−1) + (1− η − ηγ) logΣ(Σ)︸ ︷︷ ︸

=0

)
≥ η

∫ √
λmin(Σ′) dP (Σ′) + ηγ

√
λmin(Σ−1) + [1− η (1 + γ)]

√
λmin(Σ)

≥ 1

κ1/4
.

The analogous argument shows that
√
λmax(Σ+) ≤ κ1/4, hence the result.

D.2 Properties of the KL divergence

Proof of Proposition 4. For the first claim, fix Σ0,Σ1 ∈ K1/
√
κ,
√
κ and let T denote the transport

map from Σ0 to Σ1. Then put

Σs :=
(
(1− s)Id + sT

)
Σ0

(
(1− s)Id + sT

)
= (1− s)2

Σ0 + s2 Σ1 + s (1− s) (Σ0T + TΣ0) .
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In other words, (Σs)s∈[0,1] is the Bures-Wasserstein geodesic between Σ0 and Σ1 (see (10)). It
suffices to show (see Appendix A.3) that

∂2
s KL(Σs ‖ Id)|s=0 ≤ 2

√
κW 2

2 (Σ0,Σ1).

Since KL(Σs ‖ Id) = 1
2 (tr(Σs)− ln det Σs + constant), we analyze the first two terms separately.

First, we note that

∂2
s tr(Σs)|s=0 = 2 tr(Σ0 + Σ1 − 2Σ0T ) = 2W 2

2 (Σ0,Σ1) ,

where the equality follows from (9). For the second term we start by observing that

− ln det Σs = − ln det Σ0 − 2 ln det
(
(1− s)Id + sT

)
.

Using this identity we see that

−∂2
s

(1

2
ln det(Σs)

)∣∣
s=0

= tr
(
(T − Id)2) ≤ √κ ‖T − Id‖2Σ0

=
√
κW 2

2 (Σ0,Σ1) .

Putting these bounds together yields the result.

For the second claim, using the convexity of − ln det, it follows that the Euclidean Hessian of Fγ
satisfies D2 Fγ � D2 F , where F is the barycenter functional. It follows from Lemma 3 that

D2 Fγ �
1

4κ7/2
Id

on the set K1/
√
κ,
√
κ.

Finally, for the third claim we can use the convexity of F and the strict convexity of− ln det (together
with γ > 0) to argue that D2 Fγ � 0 on Sd++.

D.3 Existence and uniqueness of the minimizer

Proof of Proposition 1. First, we prove that when restricted to Sd++, the functional Fγ has a unique
minimizer. Let H : K1/

√
κ,
√
κ → Sd++ take

Σ 7→ expΣ

(
− 1

1 + γ
∇Fγ(Σ)

)
.

Then by an analogous calculation to the proof of Lemma 6,H must map intoK1/
√
κ,
√
κ. We may thus

apply Brouwer’s fixed point theorem to guarantee a fixed point of H in K1/
√
κ,
√
κ, call it Σ?. Note

that this means precisely that∇Fγ(Σ?) = 0. By the equivalence of Euclidean and Bures-Wasserstein
gradients (Fact 1 in Appendix A.5), we conclude that DFγ(Σ?) = 0 as well. By the strict convexity
of Fγ (the third claim of Proposition 4), we deduce that Σ? is the unique minimizer of Fγ on Sd++

(actually, on all of Sd+, since − ln det blows up if the determinant approaches 0).

Next, let b be a probability measure on Rd which has mean m and covariance matrix Σ. Let b̄ denote
the centered version of b. We now claim that

Fγ(b) ≥ Fγ(b̄) ≥ Fγ
(
N (0,Σ)

)
≥ Fγ

(
N (0,Σ?)

)
.

The first inequality is due to Remark 6 and it is strict unless b = b̄. The second inequality follows
from Fact 6 in Appendix A.5, together with the classical fact that the Gaussian maximizes entropy
among all centered distributions with the same covariance matrix; this latter fact is proven in [CT06,
Theorem 8.6.5], and it also shows that the inequality is strict unless b̄ = N (0,Σ). Finally, the last
inequality is what we have shown above, and it is also strict unless Σ = Σ?.

D.4 PL and smoothness inequalities

Proof of Lemma 7. By Proposition 4 and the 1-geodesic smoothness of the barycenter func-
tional [Che+20, Theorem 7] we deduce that Fγ = F + γG is (1 + 2γ

√
κ)-smooth, i.e.

Fγ(Σ+)− Fγ(Σ) ≤ 〈∇Fγ(Σ), logΣ(Σ+)〉Σ +
1 + 2γ

√
κ

2
W 2

2 (Σ,Σ+) .

Substituting in logΣ(Σ+) = −η∇Fγ(Σ) and the step size η = 1/(1 + 2γ
√
κ) yields the result.
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Proof of Lemma 8. From the second claim in Proposition 4, and since K1/
√
κ,
√
κ is convex with

respect to Euclidean geodesics, we see that for Σ ∈ K1/
√
κ,
√
κ

Fγ(Σ)− Fγ(Σ?) ≤ 〈DFγ(Σ),Σ− Σ?〉 − 1

8κ7/2
‖Σ− Σ?‖2F

=
1

2
〈∇Fγ(Σ),Σ− Σ?〉 − 1

8κ7/2
‖Σ− Σ?‖2F ,

where the last line uses Fact 1 in Appendix A.5. Next we observe that by combining Cauchy-Schwarz
with Young’s inequality we get that for all r > 0,

1

2
〈∇Fγ(Σ),Σ− Σ?〉 ≤ 1

2
‖∇Fγ(Σ)‖Σ ‖Σ− Σ?‖Σ−1 ≤ r

16
‖∇Fγ(Σ)‖2Σ +

1

r
‖Σ− Σ?‖2Σ−1

≤ r

16
‖∇Fγ(Σ)‖2Σ +

√
κ

r
‖Σ− Σ?‖2F .

Putting r = 8κ4 yields the result.

Proof of Lemma 9. From the 1-smoothness of the barycenter functional F [Che+20, Theorem 7],

F (Σ)− F (Σ?) ≤ 〈∇F (Σ?), TΣ?→Σ − Id〉Σ? +
1

2
W 2

2 (Σ,Σ?)

= −〈∇F (Σ?)TΣ→Σ? , TΣ→Σ? − Id〉Σ +
1

2
W 2

2 (Σ,Σ?).

On the other hand, it is a celebrated fact that G is 1-strongly convex w.r.t. the Wasserstein geom-
etry (see [Vil03, §5]; on the Bures-Wasserstein space, it can also be read off from the proof of
Proposition 4). It implies

G(Σ)−G(Σ?) ≤ −〈∇G(Σ), TΣ→Σ? − Id〉Σ −
1

2
W 2

2 (Σ,Σ?) .

Combining these inequalities yields

Fγ(Σ)− Fγ(Σ?) ≤ −〈∇Fγ(Σ), TΣ→Σ? − Id〉Σ

+ 〈∇F (Σ)−∇F (Σ?)TΣ→Σ? , TΣ→Σ? − Id〉Σ −
γ − 1

2
W 2

2 (Σ,Σ?) .

We next bound ‖∇F (Σ)−∇F (Σ?)TΣ→Σ?‖Σ. Write

‖∇F (Σ)−∇F (Σ?)TΣ→Σ?‖Σ =
∥∥∥∫ {TΣ→Σ′ − TΣ?→Σ′TΣ→Σ? + TΣ→Σ? − Id} dP (Σ′)

∥∥∥
Σ

≤
∥∥∥∫ {TΣ→Σ′ − TΣ?→Σ′TΣ→Σ?} dP (Σ′)

∥∥∥
Σ

+W2(Σ,Σ?) .

For the first term, start with the triangle inequality,

‖TΣ→Σ′ − TΣ?→Σ′TΣ→Σ?‖Σ ≤ ‖TΣ→Σ′ − TΣ?→Σ′ + TΣ?→Σ′ − TΣ?→Σ′TΣ→Σ?‖Σ
≤ ‖TΣ→Σ′ − TΣ?→Σ′‖Σ + ‖TΣ?→Σ′ − TΣ?→Σ′TΣ→Σ?‖Σ
≤ ‖TΣ→Σ′ − TΣ?→Σ′‖Σ +

√
κ ‖Id − TΣ→Σ?‖Σ

= ‖TΣ→Σ′ − TΣ?→Σ′‖Σ +
√
κW2(Σ,Σ?) ,

where we use the fact that the eigenvalues of the transport map TΣ?→Σ′ are bounded in magnitude
by
√
κ (Lemma 2). Next, consider the distribution δΣ′ (a point mass on Σ′) and let FΣ′ denote

the barycenter functional for the distribution δΣ′ . Then, the Euclidean smoothness bound for FΣ′

(Lemma 3) yields

‖DFΣ′(Σ)−DFΣ′(Σ?)‖F ≤
κ7/2

4
‖Σ− Σ?‖F .

Hence,

‖TΣ→Σ′ − TΣ?→Σ′‖2Σ = ‖DFΣ′(Σ)−DFΣ′(Σ?)‖2Σ ≤
√
κ ‖DFΣ′(Σ)−DFΣ′(Σ?)‖2F

≤ κ15/2

16
‖Σ− Σ?‖2F ≤

κ8

2
W 2

2 (Σ,Σ?) ,
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where the last inequality follows from Remark 5. Putting these inequalities together,

‖∇F (Σ)−∇F (Σ?)TΣ→Σ?‖Σ ≤ 3κ4W2(Σ,Σ?) .

Continuing from before, we obtain

Fγ(Σ)− Fγ(Σ?) ≤ ‖∇Fγ(Σ)‖ΣW2(Σ,Σ?)

+ ‖∇F (Σ)−∇F (Σ?)TΣ→Σ?‖ΣW2(Σ,Σ?)− γ − 1

2
W 2

2 (Σ,Σ?)

≤ ‖∇Fγ(Σ)‖ΣW2(Σ,Σ?) + 3κ4W 2
2 (Σ,Σ?)− γ − 1

2
W 2

2 (Σ,Σ?)

≤ ‖∇Fγ(Σ)‖ΣW2(Σ,Σ?)− γ

4
W 2

2 (Σ,Σ?)

provided that γ is sufficiently large, γ ≥ 14κ4. For this large regularization, we can then prove

Fγ(Σ)− Fγ(Σ?) ≤ 1

γ
‖∇Fγ(Σ)‖2Σ +

γ

4
W 2

2 (Σ,Σ?)− γ

4
W 2

2 (Σ,Σ?)

≤ 1

γ
‖∇Fγ(Σ)‖2Σ .

This completes the proof.

E Proofs for geometric medians

E.1 Convergence guarantee for smoothed Riemannian gradient descent

We begin with the proof of Proposition 2.

Proof of Proposition 2. Let F : P2(Rd) → R be the geometric median functional, F (b) :=∫
W2(b, ·) dP . If we regard F as a functional over the Bures-Wasserstein space, then by conti-

nuity of F and compactness of the set {‖·‖ ≤ λmax} ⊆ Sd+, there exists a minimizer Σ?median of F
on this set. We will show that the Gaussian b?median with covariance Σ?median minimizes F over all of
Wasserstein space.

First, recall the map clipλmax in Proposition 3, which is a contraction w.r.t. the Bures-Wasserstein
metric. Then, for any Σ ∈ Sd+, it holds that

F (Σ) =

∫
W2(Σ,Σ′) dP (Σ′) ≥

∫
W2(clipλmax Σ,Σ′) dP (Σ′)

≥
∫
W2(Σ?median,Σ

′) dP (Σ′) = F (Σ?median) ,

so that Σ?median minimizes F over Sd+.

Next, using Fact 6 in Appendix A.5, if b ∈ P2(Rd) has covariance matrix Σ, then

F (b) =

∫
W2(b, ·) dP ≥

∫
W2(γ0,Σ, ·) dP ≥

∫
W2(Σ?median, ·) dP = F (b?median) ,

so that b?median minimizes F over P2(Rd).

By definition, Σ?median has eigenvalues upper bounded by λmax. To finish the proof, we must show
that the eigenvalues are also lower bounded by λmin; we defer this part of the proof until the end of
this section.

As the main difficulty in the analysis of the geometric median is the lack of both convexity and
smoothness, we now pause to justify these remarks.
Remark 7. We claim that the unsquared Wasserstein distanceW2(·,Σ′) is neither geodesically convex
nor geodesically smooth. For the former statement, note that the geodesic convexity of W2(·,Σ′)
would imply the geodesic convexity of W 2

2 (·,Σ′), but the squared Wasserstein distance is known
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to not be geodesically convex (in general, it is not even semi-convex, see [AGS08, Example 9.1.5];
for a Gaussian example, see [Che+20, Appendix B.2]). In fact, unsquared metrics are almost never
geodesically smooth; if this were the case, then there would exist a constant β < ∞ for which
W2(Σ,Σ′) ≤ β

2 W
2
2 (Σ,Σ′), which is manifestly false.

Moreover, the function W2(·,Σ′) is neither Euclidean convex nor Euclidean smooth. To see this,
observe that in one dimension we have W2(Σ,Σ′) = |

√
Σ −

√
Σ′| (see Fact 4 in Appendix A.5),

which is neither convex nor smooth. It is notable that for this one-dimensional example, W2(Σ,Σ′)

is convex with respect to the variable
√

Σ, but it appears that reparameterization does not help in
general; numerics indicate that the function A 7→W2(A2,Σ′) is not Euclidean convex on Sd++.

We now proceed with the analysis of the smoothed Riemannian GD algorithm given as Algorithm 4.
Recall that Fε denotes the smoothed geometric median functional. The first step is to show that the
smoothing does not affect the objective significantly.
Lemma 10. For any Σ ∈ Sd++, we have |F (Σ)− Fε(Σ)| ≤ ε.

Proof. This follows from

|W2(Σ,Σ′)−
√
W 2

2 (Σ,Σ′) + ε2| = |
√
W 2

2 (Σ,Σ′)−
√
W 2

2 (Σ,Σ′) + ε2| ≤ ε

and integrating.

Hence, if we can find a point Σ̂ with Fε(Σ̂)− inf Fε ≤ ε, it will then follow that F (Σ̂)− inf F ≤ 3ε.

We next show that replacing W2 by W2,ε indeed yields smoothness.
Lemma 11. The functional Fε is 1/ε-geodesically smooth.

Proof. Recall from Theorem 7 that one-half of the squared Wasserstein distance is 1-smooth. This
means that for any W2 geodesic (Σt)t∈R, the following Hessian bound holds:

1

2
∂2
t |t=0W

2
2 (Σt,Σ

′) ≤ ‖Σ̇0‖2Σ0
.

Here, Σ̇0 denotes the Bures-Wasserstein tangent vector, see the end of Appendix A.1. We use this to
compute the smoothness of Fε. Riemannian calculus yields

∂tFε(Σt) =

∫
∂tW

2
2 (Σt,Σ

′)

2W2,ε(Σt,Σ′)
dP (Σ′) ,

∂2
t |t=0Fε(Σt) =

∫ [∂2
t |t=0W

2
2 (Σt,Σ

′)

2W2,ε(Σ0,Σ′)
− {∂t|t=0W

2
2 (Σt,Σ

′)}2

4W 3
2,ε(Σ0,Σ′)

]
dP (Σ′) .

The second term is non-positive. For the first term,∫
∂2
t |t=0W

2
2 (Σt,Σ

′)

2W2,ε(Σ0,Σ′)
dP (Σ′) =

∫
1

W2,ε(Σ0,Σ′)︸ ︷︷ ︸
≤1/ε

1

2
∂2
t |t=0W

2
2 (Σt,Σ

′)︸ ︷︷ ︸
≤‖Σ̇0‖2Σ0

dP (Σ′) ≤ 1

ε
‖Σ̇0‖2Σ0

.

Hence, Fε is 1/ε-smooth.

The next step is to prove a gradient domination condition for the functional Fε. Let Σ?ε denote a
minimizer of Fε.
Lemma 12. Suppose that the covariance matrices in the support of P , as well as Σ itself, have
eigenvalues which lie in [λmin, λmax]. Let κ := λmax/λmin denote the condition number. Then,

Fε(Σ)− Fε(Σ?ε) ≤ 2κ1/4 Fε(Σ) ‖∇Fε(Σ)‖1/2Σ .

Proof. As the first part of the proof relies on general optimal transport arguments, we use the notation
of general Wasserstein space. Given two measures µ, ν, let ϕµ→ν denote the Kantorovich potential
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from µ to ν, and also denote ψµ→ν := ‖·‖2/2 − ϕµ→ν . Also, let b?ε denote the minimizer of Fε.
Then, from Kantorovich duality,

W2(b, µ) =

√
2

∫
ψµ→b dµ+ 2

∫
ψb→µ db ,

W2(b?ε, µ) ≥

√
max

{
2

∫
ψµ→b dµ+ 2

∫
ψb→µ db?ε, 0

}
.

It follows that

W2,ε(b, µ)−W2,ε(b
?
ε, µ) ≤

√
2 max

{∫
ψb→µ d(b− b?ε), 0

}
.

Integrating,

Fε(b)− Fε(b?ε) ≤
∫ √

2
∣∣∣∫ ψb→µ d(b− b?ε)

∣∣∣dP (µ)

=

∫ √
2W2,ε(b, µ)

∣∣∣∫ ψb→µ
W2,ε(b, µ)

d(b− b?ε)
∣∣∣dP (µ)

≤

√
2

∫
W2,ε(b, µ) dP (µ)

∣∣∣∫∫ ψb→µ
W2,ε(b, µ)

d(b− b?ε) dP (µ)
∣∣∣ .

Following [Che+20], we introduce the constant-speed W2 geodesic (bs)s∈[0,1] from b to b?ε , and
applying [Che+20, Lemma 13] we obtain

Fε(b)− Fε(b?ε) ≤

√
2Fε(b)W2(b, b?ε)

∫ 1

0

‖∇Fε(b)‖L2(bs) ds .

This can be simplified via

Fε(b) =

∫
W2,ε(b, µ) dP (µ) ≥W2,ε(b, b

?
ε)−

∫
W2,ε(b

?
ε, µ) dP (µ) ,

and since b?ε is assumed to be a minimizer of Fε, then

W2(b, b?ε) ≤ 2Fε(b) .

Hence,

Fε(b)− Fε(b?ε) ≤ 2Fε(b)

√∫ 1

0

‖∇Fε(b)‖L2(bs) ds .

Next, we specialize the result to the Bures-Wasserstein space. In this case, using the assumptions
on P and Σ, we can argue as in [Che+20, Theorem 19] that ‖∇Fε(Σ)‖2Σs ≤ κ ‖∇Fε(Σ)‖2Σ, which
completes the proof.

In order to proceed with the analysis, we must study the dynamics of the smoothed Riemannian GD
algorithm to see if we can satisfy the hypotheses of Lemma 12. To study these dynamics, it is helpful
to again adopt the notation and calculus of general Wasserstein space. The Wasserstein gradient of
Fε is

∇Fε(b) = −
∫
Tb→µ − id

W2,ε(b, µ)
dP (µ) ,

and one step of the Riemannian GD iteration with step size ε (which is motivated by Lemma 11) is

b+ := exp
(
−ε∇Fε(b)

)
=
[
id + ε

∫
Tb→µ − id

W2,ε(b, µ)
dP (µ)

]
#
b .
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We will rewrite this in the following way. Define the weight

ρ(µ) :=
W2,ε(b, µ)

−1∫
W2,ε(b, ·)−1

dP
.

Then,

id + ε

∫
Tb→µ − id

W2,ε(b, µ)
dP (µ)

=
(

1− ε
∫
W2,ε(b, ·)−1 dP

)
id +

(
ε

∫
W2,ε(b, ·)−1dP

)∫
Tb→µ ρ(µ) dP (µ) .

Since
∫
W2,ε(b, ·)−1

dP ≤ 1/ε, this is a convex combination of two terms. Let us call the weights
1− λ and λ respectively. If we define the probability measure P̃ := (1− λ)δb + λρP , then this can
also be written as

b+ =
(∫

Tb→µ dP̃ (µ)
)

#
b .

This expression proves the following fact (see also Appendix A.2).
Lemma 13. The next iterate b+ of smoothed Riemannian GD starting at b (with step size ε) is a
generalized barycenter of the distribution P̃ with base b.

Combined with our geodesic convexity result (Theorem 1), we can now conclude the following
important facts about the dynamics of smoothed GD.
Corollary 1. Assume that all of the covariance matrices in the support of P have eigenvalues which
lie in the range [λmin, λmax], and that we initialize Algorithm 4 at an element of suppP . Then, all of
the iterates of Algorithm 4 satisfy the same eigenvalue bounds.

We can now prove Theorem 5.

Proof of Theorem 5. As discussed after Lemma 10, it suffices to find the number of iterations until
we find an ε-approximate minimizer of Fε. Combining the smoothness (Lemma 11) and gradient
domination (Lemma 12), as well as Corollary 1, we obtain

Fε(Σt+1)− Fε(Σt) ≤ −
ε

2
‖∇Fε(Σt)‖2Σt ≤ −

ε

32κFε(Σ0)
4 {Fε(bt)− Fε(b

?)}4 .

Let us write

δt := Fε(Σt)− Fε(Σ?ε) , ζ :=
ε

32κFε(Σ0)
4 .

Then, we can rewrite the recursion as

δt+1 ≤ δt − ζδ4
t .

We solve the recursion via induction; we claim that

δt ≤
1

ζ1/3 (1 + t)
1/3

.

This holds when t = 0 because ζ−1/3 ≥ δ0. Assuming that the inequality holds at some iteration
t, we proceed to verify this for iteration t + 1. If δt ≤ 1/[ζ1/3 (2 + t)

1/3
], then this is immediate

because δt+1 ≤ δt. Otherwise, δt ≥ 1/[ζ1/3 (2 + t)
1/3

], and we obtain

1− ζδ3
t ≤ 1− 1

2 + t
=

1 + t

2 + t
≤
(1 + t

2 + t

)1/3
and hence

δt+1 ≤ δt (1− ζδ3
t ) ≤ 1

ζ1/3 (1 + t)
1/3

(1 + t

2 + t

)1/3
=

1

ζ1/3 (2 + t)
1/3

.

The theorem now follows.
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Finally, we finish the last part of Proposition 2.

Proof of Proposition 2 (Continued). Let (εk)k∈N be a sequence of positive numbers tending to zero.
The guarantee for smoothed GD in Theorem 5, along with the control over the iterates in Corollary 1,
allows us to assert that for each k ∈ N, there is a point Σk ∈ Sd++ with eigenvalues in [λmin, λmax]
(the output of smoothed GD) with suboptimality gap F (Σk) − inf F ≤ εk. By compactness, we
can extract a convergent subsequence of (Σk)k∈N, which must therefore converge to a minimizer of
F (since F is continuous). The limit point must have eigenvalues in the range [λmin, λmax], which
completes the proof.

E.2 Reduction for non-zero means

In this section, we suppose that P is supported on non-degenerate, not necessarily centered Gaussians,
whose covariance matrices have eigenvalues in the range [λmin, λmax]. We begin with the observation
that if b?median denotes a Gaussian minimizer of the median functional for P , then the mean of b?median
is not necessarily the Euclidean geometric median of the means of distributions in suppP . To see
this, consider the case when the Gaussians are one-dimensional. Then, if we identify each Gaussian
µ ∈ suppP with its mean and standard deviation (the square root of the variance) (mµ, σµ), then
the W2 distance between Gaussians is isometric to the standard Euclidean metric on the pairs (m,σ)
in R2 (see Facts 4 and 5 in Appendix A.5). Therefore, the Wasserstein geometric median of P is
equivalent to the Euclidean geometric median of the pairs (m,σ), and the statement whose validity is
being investigated is tantamount to asking: is the first coordinate of the Euclidean geometric median
in R2 equal to the median of the first coordinates? This statement is manifestly false.

Next, we describe the reduction. Let (m,Σ), (m′,Σ′) denote two pairs of means and covariance
matrices in the support of P . Then,

W 2
2

(
(m,Σ), (m′,Σ′)

)
= ‖m−m′‖2 +W 2

2 (Σ,Σ′) ,

where the LHS denotes the squared Wasserstein distance between Gaussians with parameters (m,Σ)
and (m,Σ′) respectively. The idea behind the reduction is that since the Wasserstein metric on
diagonal matrices is the same as the Euclidean metric between the square roots of the matrices (Fact 4
in Appendix A.5), we can embed the mean vectors as diagonal matrices, and take the direct sum
of these diagonal matrices with the covariance matrices to form augmented matrices; then, we can
apply the geometric median algorithm (Algorithm 4) to the augmented matrices. In this reduction,
however, we must take care that when we embed the mean vectors, we embed them into positive
definite diagonal matrices.

Hence, define the augmented matrices

Σ :=

[
diag((m+ C)

2
)

Σ

]
, Σ′ :=

[
diag((m′ + C)

2
)

Σ′

]
,

where the constant C ≥
√
λmin + max{‖m‖∞, ‖m′‖∞} is chosen to ensure that Σ,Σ′ � λminId

(and that m+ C,m′ + C ≥ 0). The Wasserstein distance between the augmented matrices is
W 2

2 (Σ,Σ′) = ‖(m+ C)− (m′ + C)‖2F +W 2
2 (Σ,Σ′) = ‖m−m′‖2 +W 2

2 (Σ,Σ′)

= W 2
2

(
(m,Σ), (m′,Σ′)

)
.

Hence, after preprocessing the mean vectors and covariance matrices to form these augmented
matrices, we may apply Algorithm 4 to the augmented matrices in a black box manner. It is easy to
check that the set of such diagonal block matrices (where the upper block is itself diagonal) is convex
under generalized geodesics. Hence, as long as the Algorithm 4 is initialized at such a matrix every
iterate will remain in that form, and therefore the iterates will, when transformed back through the
augmentation operation described above, indeed approach optimality for the original median problem.
Note that the new value of the condition number will be

κ = max
{
κ,
(
1 +

2B√
λmin

)2}
, B := sup

µ∈suppP
‖mµ‖∞ .

The convergence guarantee of Theorem 5 applies, with κ replacing κ.

Of course, it is likely that analyzing smoothed Riemannian GD directly for the non-centered case could
produce sharper results (in particular, with a dependence on κ rather than κ), but this simple approach
already gives dimension-free convergence rates for the Bures-Wasserstein geometric median.
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Figure 7: Riemannian GD vs Riemannian Frank-Wolfe, for computing Bures-Wasserstein barycenters.

F Further experiments and details

Reproducibility details. Input generation details for Figures 1, 2, 5, and 6 are provided in the main
text. For Figures 3 and 4, recall that we generated matrices from a distribution whose barycenter
is known to be the identity. By [ZP19, Theorem 2], if the mean of the distribution (logId)#P is 0,
then Id is the barycenter of P . In particular, if Q is a mean zero distribution supported on symmetric
matrices that lie in the domain of the exponential map, then P = (expId)#Q has Id as its barycenter.
In our experiments, we defined Q to be the law of a random matrix with Haar eigenbasis and uniform
eigenvalues from the interval [−(1 − δ), 1 − δ] for a parameter δ ∈ (0, 1). At the identity, the
exponential map takes the simple form expId S = (Id + S)2 and we see that P is then supported on
covariance matrices with spectrum in [δ2, (2− δ)2]. Both figures were generated with δ = 0.1. All
experiments were performed using Julia 1.5.1 on a desktop computer running Ubuntu 18.04 with an
Intel i7-10700 CPU.

Riemannian Frank-Wolfe. Here we provide an empirical comparison with the Riemannian Frank-
Wolfe algorithm for computing Bures-Wasserstein barycenters, as described in [WS17, Algorithm 3].
Figure 7 demonstrates the superior practical performance of Riemannian GD, the algorithm studied
in this paper. In this experiment, the input is as in Figure 2, and X? denotes the best iterate.

Further empirical comparisons. Here we further investigate the comparison of Riemannian and
Euclidean GD done in Figure 2 by demonstrating qualitatively similar results for a variety of synthetic
datasets. For each dataset, the measure P is the empirical measure of n matrices of dimension d× d
that are drawn randomly as follows.

1. Haar eigenbasis and linearly spaced eigenvalues in [α, β].

2. Haar eigenbasis and i.i.d. Unif[α, β] eigenvalues.

3. First split the matrices into 3 groups. Each matrix has Haar eigenbasis and i.i.d. Unif[α, β]
eigenvalues where [α, β] = 10i × [1, κ] for i ∈ {−2, 0, 2} depending on its group.

4. Same as method 2 above, except all matrices have the same eigenbasis. (Note that GD
converges in 1 step here since the matrices commute.)

5. Haar eigenbasis and eigenvalues uniform on a set of size m ≤ d, whose elements are i.i.d.
Unif[α, β].

6. Same as method 5 above, except all matrices use the same eigenvalues.

7. Mix of all methods above.

Figures 8a and 8b compare Euclidean and Riemannian GD on the barycenter problem as in Figure 2,
but now with these 7 different input families. We average well-conditioned matrices in Figure 8a, and
ill-conditioned matrices in Figure 8b. The plots are generated using n = d = 50 and m = d/4. For
Method 7, the 50 matrices are divided into 6 groups of roughly equal size. The y-axis measures the
W 2

2 distance to the best iterate; and the x-axis measures time in seconds.
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(a) Here, the matrices are poorly conditioned, namely [α, β] = [0.03, 30] whereby κ = 1000.

(b) Here, the matrices are well-conditioned, namely [α, β] = [1, 2] whereby κ = 2.

Figure 8: Comparison of high-precision barycenter algorithms for various types of synthetic data.

In these figures we had to hand-tune the stepsize for Euclidean GD since the stepsize indicated by
Theorem 9 performs quite poorly. We used the same range of stepsizes (η ∈ {15, 25, 40}) in all plots
to demonstrate that the performance of Euclidean GD is quite sensitive to its stepsize. In contrast,
GD performs well on all inputs with its (untuned) stepsize of 1.
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