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Abstract

The offline reinforcement learning (RL) problem is often motivated by the need to1

learn data-driven decision policies in financial, legal and healthcare applications.2

However, the learned policy could retain sensitive information of individuals in the3

training data (e.g., treatment and outcome of patients), thus susceptible to various4

privacy risks. We design offline RL algorithms with differential privacy guarantees5

which provably prevent such risks. These algorithms also enjoy strong instance-6

dependent learning bounds under both tabular and linear Markov Decision Process7

(MDP) settings. Our theory and simulation suggest that the privacy guarantee8

comes at (almost) no drop in utility comparing to the non-private counterpart for a9

medium-size dataset.10

1 Introduction11

Offline Reinforcement Learning (or batch RL) aims to learn a near-optimal policy in an unknown12

environment1 through a static dataset gathered from some behavior policy µ. Since offline RL13

does not require access to the environment, it can be applied to problems where interaction with14

environment is infeasible, e.g., when collecting new data is costly (trade or finance [Zhang et al.,15

2020]), risky (autonomous driving [Sallab et al., 2017]) or illegal / unethical (healthcare [Raghu16

et al., 2017]). In such practical applications, the data used by an RL agent usually contains sensitive17

information. Take medical history for instance, for each patient, at each time step, the patient reports18

her health condition (age, disease, etc.), then the doctor decides the treatment (which medicine to use,19

the dosage of medicine, etc.), finally there is treatment outcome (whether the patient feels good, etc.)20

and the patient transitions to another health condition. Here, (health condition, treatment, treatment21

outcome) corresponds to (state, action, reward) and the dataset can be considered as n (number of22

patients) trajectories sampled from a MDP with horizon H (number of treatment steps). However,23

learning agents are known to implicitly memorize details of individual training data points verbatim24

[Carlini et al., 2019], even if they are irrelevant for learning [Brown et al., 2021], which makes offline25

RL models vulnerable to various privacy attacks.26

Differential privacy (DP) [Dwork et al., 2006] is a well-established definition of privacy with many27

desirable properties. A differentially private offline RL algorithm will return a decision policy that28

is indistinguishable from a policy trained in an alternative universe any individual user is replaced,29

thereby preventing the aforementioned privacy risks. There is a surge of recent interest in developing30

RL algorithms with DP guarantees, but they focus mostly on the online setting [Vietri et al., 2020,31

Garcelon et al., 2021, Liao et al., 2021, Chowdhury and Zhou, 2021, Luyo et al., 2021].32

Offline RL is arguably more practically relevant than online RL in the applications with sensitive data.33

For example, in the healthcare domain, online RL requires actively running new exploratory policies34

1The environment is usually characterized by a Markov Decision Process (MDP) in this paper.
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(clinical trials) with every new patient, which often involves complex ethical / legal clearances,35

whereas offline RL uses only historical patient records that are often accessible for research purposes.36

Clear communication of the adopted privacy enhancing techniques (e.g., DP) to patients was reported37

to further improve data access [Kim et al., 2017].38

Our contributions. In this paper, we present the first provably efficient algorithms for offline RL39

with differential privacy. Our contributions are twofold.40

• We design two new pessimism-based algorithms DP-APVI (Algorithm 1) and DP-VAPVI41

(Algorithm 2), one for the tabular setting (finite states and actions), the other for the case42

with linear function approximation (under linear MDP assumption). Both algorithms enjoy43

DP guarantees (pure DP or zCDP) and instance-dependent learning bounds where the cost44

of privacy appears as lower order terms.45

• We perform numerical simulations to evaluate and compare the performance of our algorithm46

DP-VAPVI (Algorithm 2) with its non-private counterpart VAPVI [Yin et al., 2022] as well47

as a popular baseline PEVI [Jin et al., 2021]. The results complement the theoretical findings48

by demonstrating the practicality of DP-VAPVI under strong privacy parameters.49

Related work. To our knowledge, differential privacy in offline RL tasks has not been studied before,50

except for much simpler cases where the agent only evaluates a single policy [Balle et al., 2016, Xie51

et al., 2019]. Balle et al. [2016] privatized first-visit Monte Carlo-Ridge Regression estimator by an52

output perturbation mechanism and Xie et al. [2019] used DP-SGD. Neither paper considered offline53

learning (or policy optimization), which is our focus.54

There is a larger body of work on private RL in the online setting, where the goal is to minimize regret55

while satisfying either joint differential privacy [Vietri et al., 2020, Chowdhury and Zhou, 2021, Ngo56

et al., 2022, Luyo et al., 2021] or local differential privacy [Garcelon et al., 2021, Liao et al., 2021,57

Luyo et al., 2021, Chowdhury and Zhou, 2021]. The offline setting introduces new challenges in DP58

as we cannot algorithmically enforce good “exploration”, but have to work with a static dataset and59

privately estimate the uncertainty in addition to the value functions. A private online RL algorithm60

can sometimes be adapted for private offline RL too, but those from existing work yield suboptimal61

and non-adaptive bounds. We give a more detailed technical comparison in Appendix B.62

Among non-private offline RL works, we build directly upon non-private offline RL methods known63

as Adaptive Pessimistic Value Iteration (APVI, for tabular MDPs) [Yin and Wang, 2021b] and64

Variance-Aware Pessimistic Value Iteration (VAPVI, for linear MDPs) [Yin et al., 2022], as they give65

the strongest theoretical guarantees to date. We refer readers to Appendix B for a more extensive66

review of the offline RL literature. Introducing DP to APVI and VAPVI while retaining the same67

sample complexity (modulo lower order terms) require nontrivial modifications to the algorithms.68

A remark on technical novelty. Our algorithms involve substantial technical innovation over69

previous works on online DP-RL with joint DP guarantee2. Different from previous works, our70

DP-APVI (Algorithm 1) operates on Bernstein type pessimism, which requires our algorithm to deal71

with conditional variance using private statistics. Besides, our DP-VAPVI (Algorithm 2) replaces the72

LSVI technique with variance-aware LSVI (also known as weighted ridge regression, first appears73

in [Zhou et al., 2021]). Our DP-VAPVI releases conditional variance privately, and further applies74

weighted ridge regression privately. Both approaches ensure tighter instance-dependent bounds on75

the suboptimality of the learned policy.76

2 Problem Setup77

Markov Decision Process. A finite-horizon Markov Decision Process (MDP) is denoted by a tuple78

M = (S,A, P, r,H, d1) [Sutton and Barto, 2018], where S is state space and A is action space. A79

non-stationary transition kernel Ph : S×A×S 7→ [0, 1] maps each state action (sh, ah) to a probabil-80

ity distribution Ph(·|sh, ah) and Ph can be different across time. Besides, rh : S ×A 7→ R is the ex-81

pected immediate reward satisfying 0 ≤ rh ≤ 1, d1 is the initial state distribution and H is the horizon.82

A policy π = (π1, · · · , πH) assigns each state sh ∈ S a probability distribution over actions accord-83

ing to the map sh 7→ πh(·|sh), ∀h ∈ [H]. A random trajectory s1, a1, r1, · · · , sH , aH , rH , sH+1 is84

generated according to s1 ∼ d1, ah ∼ πh(·|sh), rh ∼ rh(sh, ah), sh+1 ∼ Ph(·|sh, ah),∀h ∈ [H].85

2Here we only compare our techniques (for offline RL) with the works for online RL under joint DP guarantee,
as both settings allow access to the raw data.
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For tabular MDP, we have S ×A is the discrete state-action space and S := |S|, A := |A| are finite.86

In this work, we assume that r is known3. In addition, we denote the per-step marginal state-action87

occupancy dπh(s, a) as: dπh(s, a) := P[sh = s|s1 ∼ d1, π]·πh(a|s), which is the marginal state-action88

probability at time h.89

Value function, Bellman (optimality) equations. The value function V π
h (·) and Q-value func-90

tion Qπ
h(·, ·) for any policy π is defined as: V π

h (s) = Eπ[
∑H

t=h rt|sh = s], Qπ
h(s, a) =91

Eπ[
∑H

t=h rt|sh, ah = s, a], ∀h, s, a ∈ [H] × S × A. The performance is defined as vπ :=92

Ed1 [V
π
1 ] = Eπ,d1

[∑H
t=1 rt

]
. The Bellman (optimality) equations follow ∀h ∈ [H]: Qπ

h =93

rh + PhV
π
h+1, V π

h = Ea∼πh
[Qπ

h], Q⋆
h = rh + PhV

⋆
h+1, V

⋆
h = maxa Q

⋆
h(·, a).94

Linear MDP [Jin et al., 2020b]. An episodic MDP (S,A, H, P, r) is called a linear MDP with95

known feature map ϕ : S ×A → Rd if there exist H unknown signed measures νh ∈ Rd over S and96

H unknown reward vectors θh ∈ Rd such that97

Ph (s
′ | s, a) = ⟨ϕ(s, a), νh (s′)⟩ , rh (s, a) = ⟨ϕ(s, a), θh⟩ , ∀ (h, s, a, s′) ∈ [H]×S ×A×S.

Without loss of generality, we assume ∥ϕ(s, a)∥2 ≤ 1 and max(∥νh(S)∥2, ∥θh∥2) ≤
√
d for all98

h, s, a ∈ [H]× S ×A. An important property of linear MDP is that the value functions are linear in99

the feature map, which is summarized in Lemma F.14.100

Offline setting and the goal. The offline RL requires the agent to find a policy π in order to maximize101

the performance vπ , given only the episodic data D = {(sτh, aτ
h, r

τ
h, s

τ
h+1)}

h∈[H]

τ∈[n]
4 rolled out from some102

fixed and possibly unknown behavior policy µ, which means we cannot change µ and in particular103

we do not assume the functional knowledge of µ. In conclusion, based on the batch data D and a104

targeted accuracy ϵ > 0, the agent seeks to find a policy πalg such that v⋆ − vπalg ≤ ϵ.105

2.1 Assumptions in offline RL106

In order to show that our privacy-preserving algorithms can generate near optimal policy, certain107

coverage assumptions are needed. In this section, we will list the assumptions we use in this paper.108

Assumptions for tabular setting.109

Assumption 2.1 ([Liu et al., 2019]). There exists one optimal policy π⋆, such that π⋆ is fully covered110

by µ, i.e. ∀ sh, ah ∈ S × A, dπ
⋆

h (sh, ah) > 0 only if dµh(sh, ah) > 0. Furthermore, we denote the111

trackable set as Ch := {(sh, ah) : dµh(sh, ah) > 0}.112

Assumption 2.1 is the weakest assumption needed for accurately learning the optimal value v⋆ by113

requiring µ to trace the state-action space of one optimal policy (µ can be agnostic at other locations).114

Similar to [Yin and Wang, 2021b], we will use Assumption 2.1 for the tabular part of this paper,115

which enables comparison between our sample complexity to the conclusion in [Yin and Wang,116

2021b], whose algorithm serves as a non-private baseline.117

Assumptions for linear setting. First, we define the expectation of covariance matrix under the118

behavior policy µ for all time step h ∈ [H] as below:119

Σp
h := Eµ

[
ϕ(sh, ah)ϕ(sh, ah)

⊤] . (1)

As have been shown in [Wang et al., 2021, Yin et al., 2022], learning a near-optimal policy from120

offline data requires coverage assumptions. Here in linear setting, such coverage is characterized by121

the minimum eigenvalue of Σp
h. Similar to [Yin et al., 2022], we apply the following assumption for122

the sake of comparison.123

Assumption 2.2 (Feature Coverage, Assumption 2 in [Wang et al., 2021]). The data distributions124

µ satisfy the minimum eigenvalue condition: ∀h ∈ [H], κh := λmin(Σ
p
h) > 0. Furthermore, we125

denote κ = minh κh.126

2.2 Differential Privacy in offline RL127

In this work, we aim to design privacy-preserving algorithms for offline RL. We apply differential128

privacy as the formal notion of privacy. Below we revisit the definition of differential privacy.129

3This is due to the fact that the uncertainty of reward function is dominated by that of transition kernel in RL.
4For clarity we use n for tabular MDP and K for linear MDP when referring to the sample complexity.
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Definition 2.3 (Differential Privacy [Dwork et al., 2006]). A randomized mechanism M satisfies
(ϵ, δ)-differential privacy ((ϵ, δ)-DP) if for all neighboring datasets U,U ′ that differ by one data
point and for all possible event E in the output range, it holds that

P[M(U) ∈ E] ≤ eϵ · P[M(U ′) ∈ E] + δ.

When δ = 0, we say pure DP, while for δ > 0, we say approximate DP.130

In the problem of offline RL, the dataset consists of several trajectories, therefore one data point in131

Definition 2.3 refers to one single trajectory. Hence the definition of Differential Privacy means that132

the difference in the distribution of the output policy resulting from replacing one trajectory in the133

dataset will be small. In other words, an adversary can not infer much information about any single134

trajectory in the dataset from the output policy of the algorithm. For more discussions about our135

definition of DP, please refer to Appendix C.1.136

During the whole paper, we will use zCDP (defined below) as a surrogate for DP, since it enables137

cleaner analysis for privacy composition and Gaussian mechanism. The properties of zCDP (e.g.,138

composition, conversion formula to DP) are deferred to Appendix F.3.139

Definition 2.4 (zCDP [Dwork and Rothblum, 2016, Bun and Steinke, 2016]). A randomized mecha-
nism M satisfies ρ-Zero-Concentrated Differential Privacy (ρ-zCDP), if for all neighboring datasets
U,U ′ and all α ∈ (1,∞),

Dα(M(U)∥M(U ′)) ≤ ρα,

where Dα is the Renyi-divergence [Van Erven and Harremos, 2014].140

Finally, we go over the definition and privacy guarantee of Gaussian mechanism.141

Definition 2.5 (Gaussian Mechanism [Dwork et al., 2014]). Define the ℓ2 sensitivity of a function142

f : NX 7→ Rd as143

∆2(f) = sup
neighboring U,U ′

∥f(U)− f(U ′)∥2.

The Gaussian mechanism M with noise level σ is then given by144

M(U) = f(U) +N (0, σ2Id).

Lemma 2.6 (Privacy guarantee of Gaussian mechanism [Dwork et al., 2014, Bun and Steinke, 2016]).145

Let f : NX 7→ Rd be an arbitrary d-dimensional function with ℓ2 sensitivity ∆2. Then for any ρ > 0,146

Gaussian Mechanism with parameter σ2 =
∆2

2

2ρ satisfies ρ-zCDP. In addition, for all 0 < δ, ϵ < 1,147

Gaussian Mechanism with parameter σ = ∆2

ϵ

√
2 log 1.25

δ satisfies (ϵ, δ)-DP.148

We emphasize that the privacy guarantee covers any input data. It does not require any distributional149

assumptions on the data. The RL-specific assumptions (e.g., linear MDP and coverage assumptions)150

are only used for establishing provable utility guarantees.151

3 Results under tabular MDP: DP-APVI (Algorithm 1)152

For reinforcement learning, the tabular MDP setting is the most well-studied setting and our first153

result applies to this regime. We begin with the construction of private counts.154

Private Model-based Components. Given data D = {(sτh, aτ
h, r

τ
h, s

τ
h+1)}

h∈[H]

τ∈[n] , we denote nsh,ah
:=155 ∑n

τ=1 1[s
τ
h, a

τ
h = sh, ah] be the total counts that visit (sh, ah) pair at time h and nsh,ah,sh+1

:=156 ∑n
τ=1 1[s

τ
h, a

τ
h, s

τ
h+1 = sh, ah, sh+1] be the total counts that visit (sh, ah, sh+1) pair at time h, then157

given the budget ρ for zCDP, we add independent Gaussian noises to all the counts:158

n′
sh,ah

=
{
nsh,ah +N (0, σ2)

}+
, n′

sh,ah,sh+1
=
{
nsh,ah,sh+1 +N (0, σ2)

}+
, σ2 =

2H

ρ
. (2)

However, after adding noise, the noisy counts n′ may not satisfy n′
sh,ah

=
∑

sh+1∈S n′
sh,ah,sh+1

.159

To address this problem, we choose the private counts of visiting numbers as the solution to the160

following optimization problem (here Eρ = 4

√
H log 4HS2A

δ

ρ is chosen as a high probability uniform161
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bound of the noises we add):162

{ñsh,ah,s′}s′∈S = argmin{xs′}s′∈S
max
s′∈S

∣∣xs′ − n′
sh,ah,s′

∣∣
such that

∣∣∣∣∣∑
s′∈S

xs′ − n′
sh,ah

∣∣∣∣∣ ≤ Eρ

2
and xs′ ≥ 0,∀ s′ ∈ S.

ñsh,ah
=
∑
s′∈S

ñsh,ah,s′ .

(3)

Remark 3.1 (Some explanations). The optimization problem above serves as a post-processing step163

which will not affect the DP guarantee of our algorithm. Briefly speaking, (3) finds a set of noisy164

counts such that ñsh,ah
=
∑

s′∈S ñsh,ah,s′ and the estimation error for each ñsh,ah
and ñsh,ah,s′165

is roughly Eρ.5 In contrast, if we directly take the crude approach that ñsh,ah,sh+1
= n′

sh,ah,sh+1
166

and ñsh,ah
=
∑

sh+1∈S ñsh,ah,sh+1
, we can only derive |ñsh,ah

− nsh,ah
| ≤ Õ(

√
SEρ) through167

concentration on summation of S i.i.d. Gaussian noises. In conclusion, solving the optimization168

problem (3) enables tight analysis for the lower order term (the additional cost of privacy).169

Remark 3.2 (Computational efficiency). The optimization problem (3) can be reformulated as:170

min t, s.t. |xs′ − n′
sh,ah,s′

| ≤ t and xs′ ≥ 0 ∀ s′ ∈ S,

∣∣∣∣∣∑
s′∈S

xs′ − n′
sh,ah

∣∣∣∣∣ ≤ Eρ

2
. (4)

Note that (4) is a Linear Programming problem with S + 1 variables and 2S + 2 linear constraints171

(one constraint on absolute value is equivalent to two linear constraints), which can be solved172

efficiently by the simplex method [Ficken, 2015] or other provably efficient algorithms [Nemhauser173

and Wolsey, 1988]. Therefore, our Algorithm 1 is computationally friendly.174

The private estimation of the transition kernel is defined as:175

P̃h(s
′|sh, ah) =

ñsh,ah,s′

ñsh,ah

, (5)

if ñsh,ah
> Eρ and P̃h(s

′|sh, ah) = 1
S otherwise.176

Remark 3.3. Different from the transition kernel estimate in previous works [Vietri et al., 2020,177

Chowdhury and Zhou, 2021] that may not be a distribution, we have to ensure that ours is a178

probability distribution, because our Bernstein type pessimism (line 5 in Algorithm 1) needs to take179

variance over this transition kernel estimate. The intuition behind the construction of our private180

transition kernel is that, for those state-action pairs with ñsh,ah
≤ Eρ, we can not distinguish181

whether the non-zero private count comes from noise or actual visitation. Therefore we only take the182

empirical estimate of the state-action pairs with sufficiently large ñsh,ah
.183

Algorithm 1 Differentially Private Adaptive Pessimistic Value Iteration (DP-APVI)
1: Input: Offline dataset D = {(sτh, aτ

h, r
τ
h, s

τ
h+1)}n,H

τ,h=1. Reward function r. Constants C1 =
√
2, C2 =

16, C > 1, failure probability δ, budget for zCDP ρ.
2: Initialization: Calculate ñsh,ah , ñsh,ah,sh+1 as (3), P̃h(sh+1|sh, ah) as (5). ṼH+1(·) ← 0. Eρ ←

4

√
H log 4HS2A

δ
ρ

. ι← log(HSA/δ).
3: for h = H,H − 1, . . . , 1 do
4: Q̃h(·, ·)← rh(·, ·) + (P̃h · Ṽh+1)(·, ·)

5: ∀sh, ah, let Γh(sh, ah)← C1

√
Var

P̃sh,ah
(Ṽh+1)·ι

ñsh,ah
−Eρ

+
C2SHEρ·ι
ñsh,ah

if ñsh,ah > Eρ, otherwise CH .

6: Q̂p
h(·, ·)← Q̃h(·, ·)− Γh(·, ·).

7: Qh(·, ·)← min{Q̂p
h(·, ·), H − h+ 1}+.

8: ∀sh, let π̂h(·|sh)← argmaxπh
⟨Qh(sh, ·), πh(·|sh)⟩ and Ṽh(sh)← ⟨Qh(sh, ·), π̂h(·|sh)⟩.

9: end for
10: Output: {π̂h}.

5This conclusion is summarized in Lemma D.3.
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Algorithmic design. Our algorithmic design originates from the idea of pessimism, which holds184

conservative view towards the locations with high uncertainty and prefers the locations we have185

more confidence about. Based on the Bernstein type pessimism in APVI [Yin and Wang, 2021b], we186

design a similar pessimistic algorithm with private counts to ensure differential privacy. If we replace187

ñ and P̃ with n and P̂ 6, then our DP-APVI (Algorithm 1) will degenerate to APVI. Compared to188

the pessimism defined in APVI, our pessimistic penalty has an additional term Õ
(

SHEρ

ñsh,ah

)
, which189

accounts for the additional pessimism due to our application of private statistics.190

We state our main theorem about DP-APVI below, the proof sketch is deferred to Appendix D.1 and191

detailed proof is deferred to Appendix D due to space limit.192

Theorem 3.4. DP-APVI (Algorithm 1) satisfies ρ-zCDP. Furthermore, under Assumption 2.1, denote193

d̄m := minh∈[H]{dµh(sh, ah) : d
µ
h(sh, ah) > 0}. For any 0 < δ < 1, there exists constant c1 > 0,194

such that when n > c1 ·max{H2, Eρ}/d̄m · ι (ι = log(HSA/δ)), with probability 1− δ, the output195

policy π̂ of DP-APVI satisfies196

0 ≤ v⋆−vπ̂ ≤ 4
√
2

H∑
h=1

∑
(sh,ah)∈Ch

dπ
⋆

h (sh, ah)

√
VarPh(·|sh,ah)(V

⋆
h+1(·)) · ι

ndµh(sh, ah)
+Õ

(
H3 + SH2Eρ

n · d̄m

)
,

(6)

where Õ hides constants and Polylog terms, Eρ = 4

√
H log 4HS2A

δ

ρ .197

Comparison to non-private counterpart APVI [Yin and Wang, 2021b]. According to Theorem198

4.1 in [Yin and Wang, 2021b], the sub-optimality bound of APVI is for large enough n, with high199

probability, the output π̂ satisfies:200

0 ≤ v⋆ − vπ̂ ≤ Õ

 H∑
h=1

∑
(sh,ah)∈Ch

dπ
⋆

h (sh, ah)

√
VarPh(·|sh,ah)(V

⋆
h+1(·))

ndµh(sh, ah)

+ Õ

(
H3

n · d̄m

)
. (7)

Compared to our Theorem 3.4, the additional sub-optimality bound due to differential privacy is201

Õ
(

SH2Eρ

n·d̄m

)
= Õ

(
SH

5
2

n·d̄m
√
ρ

)
= Õ

(
SH

5
2

n·d̄mϵ

)
.7 In the most popular regime where the privacy budget202

ρ or ϵ is a constant, the additional term due to differential privacy appears as a lower order term,203

hence becomes negligible as the sample complexity n becomes large.204

Comparison to Hoeffding type pessimism. We can simply revise our algorithm by using Hoeffding205

type pessimism, which replaces the pessimism in line 5 with C1H ·
√

ι
ñsh,ah

−Eρ
+

C2SHEρ·ι
ñsh,ah

. Then206

with a similar proof schedule, we can arrive at a sub-optimality bound that with high probability,207

0 ≤ v⋆ − vπ̂ ≤ Õ

H ·
H∑

h=1

∑
(sh,ah)∈Ch

dπ
⋆

h (sh, ah)

√
1

ndµh(sh, ah)

+ Õ

(
SH2Eρ

n · d̄m

)
. (8)

Compared to our Theorem 3.4, our bound is tighter because we express the dominate term by the208

system quantities instead of explicit dependence on H (and VarPh(·|sh,ah)(V
⋆
h+1(·)) ≤ H2). In209

addition, we highlight that according to Theorem G.1 in [Yin and Wang, 2021b], our main term210

nearly matches the non-private minimax lower bound. For more detailed discussions about our main211

term and how it subsumes other optimal learning bounds, we refer readers to [Yin and Wang, 2021b].212

Apply Laplace Mechanism to achieve pure DP. To achieve Pure DP instead of ρ-zCDP, we can213

simply replace Gaussian Mechanism with Laplace Mechanism (defined as Definition F.19). Given214

privacy budget for Pure DP ϵ, since the ℓ1 sensitivity of {nsh,ah
} ∪ {nsh,ah,sh+1

} is ∆1 = 4H , we215

can add independent Laplace noises Lap( 4Hϵ ) to each count to achieve ϵ-DP due to Lemma F.20.216

Then by using Eϵ = Õ
(
H
ϵ

)
instead of Eρ and keeping everything else ((3), (5) and Algorithm 1) the217

same, we can reach a similar result to Theorem 3.4 with the same proof schedule. The only difference218

is that here the additional learning bound is Õ
(

SH3

n·d̄mϵ

)
, which still appears as a lower order term.219

6The non-private empirical estimate, defined as (15) in Appendix D.
7Here we apply the second part of Lemma 2.6 to achieve (ϵ, δ)-DP, the notation Õ also absorbs log 1

δ
(only

here δ denotes the privacy budget instead of failure probability).
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4 Results under linear MDP: DP-VAPVI(Algorithm 2)220

In large MDPs, to address the computational issues, the technique of function approximation is221

widely applied, and linear MDP is a concrete model to study linear function approximations. Our222

second result applies to the linear MDP setting. Generally speaking, function approximation reduces223

the dimensionality of private releases comparing to the tabular MDPs. We begin with private counts.224

Private Model-based Components. Given the two datasets D and D′ (both from µ) as in Algorithm225

2, we can apply variance-aware pessimistic value iteration to learn a near optimal policy as in226

VAPVI [Yin et al., 2022]. To ensure differential privacy, we add independent Gaussian noises to the227

5H statistics as in DP-VAPVI (Algorithm 2) below. Since there are 5H statistics, by the adaptive228

composition of zCDP (Lemma F.17), it suffices to keep each count ρ0-zCDP, where ρ0 = ρ
5H . In229

DP-VAPVI, we use ϕ1, ϕ2, ϕ3,K1,K2
8 to denote the noises we add. For all ϕi, we directly apply230

Gaussian Mechanism. For Ki, in addition to the noise matrix 1√
2
(Z + Z⊤), we also add E

2 Id to231

ensure that all Ki are positive definite with high probability (The detailed definition of E,L can be232

found in Appendix A).233

Algorithm 2 Differentially Private Variance-Aware Pessimistic Value Iteration (DP-VAPVI)
1: Input: Dataset D = {(sτh, aτ

h, r
τ
h, s

τ
h+1)}K,H

τ,h=1
D′ = {(s̄τh, āτ

h, r̄
τ
h, s̄

τ
h+1)}K,H

τ,h=1
. Budget for zCDP ρ.

Failure probability δ. Universal constant C.
2: Initialization: Set ρ0 ← ρ

5H
, ṼH+1(·) ← 0. Sample ϕ1 ∼ N

(
0, 2H4

ρ0
Id
)

, ϕ2, ϕ3 ∼ N
(
0, 2H2

ρ0
Id
)

,

K1,K2 ← E
2
Id + 1√

2
(Z + Z⊤), where Zi,j ∼ N

(
0, 1

4ρ0

)
(i.i.d.), E = Õ

(√
Hd
ρ

)
. Set D ←

Õ
(

H2L
κ

+ H4E
√

d

κ3/2 +H3
√
d
)

.
3: for h = H,H − 1, . . . , 1 do
4: Set Σ̃h ←

∑K
τ=1 ϕ(s̄

τ
h, ā

τ
h)ϕ(s̄

τ
h, ā

τ
h)

⊤ + λI +K1

5: Set β̃h ← Σ̃−1
h [
∑K

τ=1 ϕ(s̄
τ
h, ā

τ
h) · Ṽh+1(s̄

τ
h+1)

2 + ϕ1]

6: Set θ̃h ← Σ̃−1
h [
∑K

τ=1 ϕ(s̄
τ
h, ā

τ
h) · Ṽh+1(s̄

τ
h+1) + ϕ2]

7: Set
[
ṼarhṼh+1

]
(·, ·)←

〈
ϕ(·, ·), β̃h

〉
[0,(H−h+1)2] −

[〈
ϕ(·, ·), θ̃h

〉
[0,H−h+1]

]2
8: Set σ̃h(·, ·)2 ← max{1, ṼarhṼh+1(·, ·)}
9: Set Λ̃h ←

∑K
τ=1 ϕ (sτh, a

τ
h)ϕ (sτh, a

τ
h)

⊤ /σ̃2
h(s

τ
h, a

τ
h) + λI +K2

10: Set w̃h ← Λ̃−1
h

(∑K
τ=1 ϕ (sτh, a

τ
h) ·

(
rτh + Ṽh+1 (s

τ
h+1)

)
/σ̃2

h(s
τ
h, a

τ
h) + ϕ3

)
11: Set Γh(·, ·)← C

√
d ·
(
ϕ(·, ·)⊤Λ̃−1

h ϕ(·, ·)
)1/2

+ D
K

12: Set Q̄h(·, ·)← ϕ(·, ·)⊤w̃h − Γh(·, ·)
13: Set Q̂h(·, ·)← min

{
Q̄h(·, ·), H − h+ 1

}+
14: Set π̂h(· | ·)← argmaxπh

〈
Q̂h(·, ·), πh(· | ·)

〉
A, Ṽh(·)← maxπh

〈
Q̂h(·, ·), πh(· | ·)

〉
A

15: end for
16: Output: {π̂h}Hh=1.

Below we will show the algorithmic design of DP-VAPVI (Algorithm 2). For the offline dataset,234

we divide it into two independent parts with equal length: D = {(sτh, aτh, rτh, sτh+1)}
h∈[H]
τ∈[K] and235

D′ = {(s̄τh, āτh, r̄τh, s̄τh+1)}
h∈[H]
τ∈[K]. One for estimating variance and the other for calculating Q-values.236

Estimating conditional variance. The first part (line 4 to line 8) aims to estimate the condi-237

tional variance of Ṽh+1 via the definition of variance: [VarhṼh+1](s, a) = [Ph(Ṽh+1)
2](s, a) −238

([PhṼh+1](s, a))
2. For the first term, by the definition of linear MDP, it holds that239 [

PhṼ
2
h+1

]
(s, a) = ϕ(s, a)⊤

∫
S Ṽ 2

h+1 (s
′) dνh (s

′) = ⟨ϕ,
∫
S Ṽ 2

h+1 (s
′) dνh (s

′)⟩. We can estimate240

βh =
∫
S Ṽ 2

h+1 (s
′) dνh (s

′) by applying ridge regression. Below is the output of ridge regression241

with raw statistics without noise:242

8We need to add noise to each of the 5H counts, therefore for ϕ1, we actually sample H i.i.d samples ϕ1,h,
h = 1, · · · , H from the distribution of ϕ1. Then we add ϕ1,h to

∑K
τ=1 ϕ(s̄

τ
h, ā

τ
h) · Ṽh+1(s̄

τ
h+1)

2, ∀h ∈ [H].
For simplicity, we use ϕ1 to represent all the ϕ1,h. The procedure applied to the other 4H statistics are similar.
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argmin
β∈Rd

K∑
k=1

[〈
ϕ(s̄kh, ā

k
h), β

〉
− Ṽ 2

h+1

(
s̄kh+1

)]2
+ λ∥β∥22 = Σ̄−1

h

K∑
k=1

ϕ(s̄kh, ā
k
h)Ṽ

2
h+1

(
s̄kh+1

)
,

where definition of Σ̄h can be found in Appendix A. Instead of using the raw statistics, we replace243

them with private ones with Gaussian noises as in line 5. The second term is estimated similarly in244

line 6. The final estimator is defined as in line 8: σ̃h(·, ·)2 = max{1, ṼarhṼh+1(·, ·)}.9245

Variance-weighted LSVI. Instead of directly applying LSVI [Jin et al., 2021], we can solve the246

variance-weighted LSVI (line 10). The result of variance-weighted LSVI with non-private statistics247

is shown below:248

argmin
w∈Rd

λ∥w∥22+
K∑

k=1

[
⟨ϕ(skh, ak

h), w⟩ − rkh − Ṽh+1(s
k
h+1)

]2
σ̃2
h(s

k
h, a

k
h)

= Λ̂−1
h

K∑
k=1

ϕ
(
skh, a

k
h

)
·
[
rkh + Ṽh+1

(
skh+1

)]
σ̃2
h(s

k
h, a

k
h)

,

where definition of Λ̂h can be found in Appendix A. For the sake of differential privacy, we use249

private statistics instead and derive the w̃h as in line 10.250

Our private pessimism. Notice that if we remove all the Gaussian noises we add, our DP-VAPVI251

(Algorithm 2) will degenerate to VAPVI [Yin et al., 2022]. We design a similar pessimistic penalty252

using private statistics (line 11), with additional D
K accounting for the extra pessimism due to DP.253

Main theorem. We state our main theorem about DP-VAPVI below, the proof sketch is deferred to254

Appendix E.1 and detailed proof is deferred to Appendix E due to space limit. Note that quantities255

Mi, L,E can be found in Appendix A and briefly, L = Õ(
√
H3d/ρ), E = Õ(

√
Hd/ρ). For the256

sample complexity lower bound, within the practical regime where the privacy budget is not very257

small, max{Mi} is dominated by max{Õ(H12d3/κ5), Õ(H14d/κ5)}, which also appears in the258

sample complexity lower bound of VAPVI [Yin et al., 2022]. The σ2
V (s, a) in Theorem 4.1 is defined259

as max{1,VarPh
(V )(s, a)} for any V .260

Theorem 4.1. DP-VAPVI (Algorithm 2) satisfies ρ-zCDP. Furthermore, let K be the number of261

episodes. Under the condition that K > max{M1,M2,M3,M4} and
√
d > ξ, where ξ :=262

supV ∈[0,H], s′∼Ph(s,a), h∈[H]

∣∣∣∣ rh+V (s′)−(ThV )(s,a)

σV (s,a)

∣∣∣∣, for any 0 < λ < κ, with probability 1− δ, for263

all policy π simultaneously, the output π̂ of DP-VAPVI satisfies264

vπ − vπ̂ ≤ Õ

(
√
d ·

H∑
h=1

Eπ

[√
ϕ(·, ·)⊤Λ−1

h ϕ(·, ·)
])

+
DH

K
, (9)

where Λh =
∑K

k=1
ϕ(skh,a

k
h)·ϕ(s

k
h,a

k
h)

⊤

σ2

Ṽh+1(sk
h
,ak

h
)

+ λId, D = Õ
(

H2L
κ + H4E

√
d

κ3/2 +H3
√
d
)

and Õ hides265

constants and Polylog terms.266

In particular, define Λ⋆
h =

∑K
k=1

ϕ(skh,a
k
h)·ϕ(s

k
h,a

k
h)

⊤

σ2

V ⋆
h+1

(sk
h
,ak

h
)

+ λId, we have with probability 1− δ,267

v⋆ − vπ̂ ≤ Õ

(
√
d ·

H∑
h=1

Eπ⋆

[√
ϕ(·, ·)⊤Λ⋆−1

h ϕ(·, ·)
])

+
DH

K
. (10)

Comparison to non-private counterpart VAPVI [Yin et al., 2022]. Plugging in the definition268

of L,E (Appendix A), under the meaningful case that the privacy budget is not very large, DH is269

dominated by Õ

(
H

11
2 d/κ

3
2√

ρ

)
. According to Theorem 3.2 in [Yin et al., 2022], the sub-optimality270

bound of VAPVI is for sufficiently large K, with high probability, the output π̂ satisfies:271

v⋆ − vπ̂ ≤ Õ

(
√
d ·

H∑
h=1

Eπ⋆

[√
ϕ(·, ·)⊤Λ⋆−1

h ϕ(·, ·)
])

+
2H4

√
d

K
. (11)

9The max{1, ·} operator here is for technical reason only: we want a lower bound for each variance estimate.
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Compared to our Theorem 4.1, the additional sub-optimality bound due to differential privacy is272

Õ

(
H

11
2 d/κ

3
2√

ρ·K

)
= Õ

(
H

11
2 d/κ

3
2

ϵ·K

)
.10 In the most popular regime where the privacy budget ρ or ϵ is273

a constant, the additional term due to differential privacy also appears as a lower order term.274

Instance-dependent sub-optimality bound. Similar to DP-APVI (Algorithm 1), our DP-VAPVI275

(Algorithm 2) also enjoys instance-dependent sub-optimality bound. First, the main term in (10)276

improves PEVI [Jin et al., 2021] over O(
√
d) on feature dependence. Also, our main term admits no277

explicit dependence on H , thus improves the sub-optimality bound of PEVI on horizon dependence.278

For more detailed discussions about our main term, we refer readers to [Yin et al., 2022].279

5 Simulations280

In this section, we carry out simulations to evaluate the performance of our DP-VAPVI (Algorithm 2),281

and compare it with its non-private counterpart VAPVI [Yin et al., 2022] and another pessimism-based282

algorithm PEVI [Jin et al., 2021] which does not have privacy guarantee.283

Experimental setting. We evaluate DP-VAPVI (Algorithm 2) on a synthetic linear MDP example that284

originates from the linear MDP in [Min et al., 2021, Yin et al., 2022] but with some modifications.11285

For details of the linear MDP setting, please refer to Appendix G. The two MDP instances we use286

both have horizon H = 20. We compare different algorithms in figure 1(a), while in figure 1(b), we287

compare our DP-VAPVI with different privacy budgets. When doing empirical evaluation, we do not288

split the data for DP-VAPVI or VAPVI and for DP-VAPVI, we run the simulation for 5 times and289

take the average performance.290
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(a) Compare different algorithms, H = 20
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(b) Different privacy budgets, H = 20

Figure 1: Comparison between performance of PEVI, VAPVI and DP-VAPVI (with different privacy
budgets) under the linear MDP example described above. In each figure, y-axis represents sub-
optimality gap v⋆ − vπ̂ while x-axis denotes the number of episodes K. The horizons are fixed to be
H = 20. The number of episodes takes value from 5 to 1000.

Results and discussions. From Figure 1, we can observe that DP-VAPVI (Algorithm 2) performs291

slightly worse than its non-private version VAPVI [Yin et al., 2022]. This is due to the fact that292

we add Gaussian noise to each count. However, as the size of dataset goes larger, the performance293

of DP-VAPVI will converge to that of VAPVI, which supports our theoretical conclusion that the294

cost of privacy only appears as lower order terms. For DP-VAPVI with larger privacy budget, the295

scale of noise will be smaller, thus the performance will be closer to VAPVI, as shown in figure296

1(b). Furthermore, in most cases, DP-VAPVI still outperforms PEVI, which does not have privacy297

guarantee. This arises from our privitization of variance-aware LSVI instead of LSVI.298

6 Conclusion299

In this work, we take the first steps towards the well-motivated task of designing private offline RL300

algorithms. We propose algorithms for both tabular MDPs and linear MDPs, and show that they301

enjoy instance-dependent sub-optimality bounds while guaranteeing differential privacy (either zCDP302

or pure DP). Our results highlight that the cost of privacy only appears as lower order terms, thus303

become negligible as the number of samples goes large.304

10Here we apply the second part of Lemma 2.6 to achieve (ϵ, δ)-DP, the notation Õ also absorbs log 1
δ

(only
here δ denotes the privacy budget instead of failure probability).

11We keep the state space S = {1, 2}, action space A = {1, · · · , 100} and feature map of state-action pairs
while we choose stochastic transition (instead of the original deterministic transition) and more complex reward.
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A Notation List459

A.1 Notations for tabular MDP460

Eρ 4

√
H log 4HS2A

δ

ρ

n The original counts of visitation

n′ The noisy counts, as defined in (2)

ñ Final choice of private counts, as defined in (3)

P̃ Private estimate of transition kernel, as defined in (5)

P̂ Non-private estimate of transition kernel, as defined in (15)

ι log HSA
δ

ρ Budget for zCDP

δ Failure probability

461

A.2 Notations for linear MDP462

L 2H
√

5Hd log( 10Hd
δ )

ρ

E
√

10Hd
ρ

(
2 +

(
log(5c1H/δ)

c2d

) 2
3

)
D Õ

(
H2L
κ + H4E

√
d

κ3/2 +H3
√
d
)

Λ̂h

∑K
k=1 ϕ(s

k
h, a

k
h)ϕ(s

k
h, a

k
h)

⊤/σ̃2
h(s

k
h, a

k
h) + λId

Λ̃h

∑K
k=1 ϕ(s

k
h, a

k
h)ϕ(s

k
h, a

k
h)

⊤/σ̃2
h(s

k
h, a

k
h) + λId +K2

Λ̃p
h Eµ,h[σ̃

−2
h (s, a)ϕ(s, a)ϕ(s, a)⊤]

Λh

∑K
τ=1 ϕ(s

τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤/σ2
Ṽh+1

(sτh, a
τ
h) + λI

Λp
h Eµ,h[σ

−2

Ṽh+1
(s, a)ϕ(s, a)ϕ(s, a)⊤]

Λ⋆
h

∑K
τ=1 ϕ(s

τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤/σ2
V ⋆
h+1

(sτh, a
τ
h) + λI

Σ̄h

∑K
τ=1 ϕ(s̄

τ
h, ā

τ
h)ϕ(s̄

τ
h, ā

τ
h)

⊤ + λId

Σ̃h

∑K
τ=1 ϕ(s̄

τ
h, ā

τ
h)ϕ(s̄

τ
h, ā

τ
h)

⊤ + λId +K1

Σp
h Eµ,h

[
ϕ(s, a)ϕ(s, a)⊤

]
κ minh λmin(Σ

p
h)

σ2
V (s, a) max{1,VarPh

(V )(s, a)} for any V

σ⋆2
h (s, a) max

{
1,VarPh

V ⋆
h+1(s, a)

}
σ̃2
h(s, a) max{1, ṼarhṼh+1(s, a)}

M1 max{2λ, 128 log(2dH/δ), 128H4 log(2dH/δ)
κ2 ,

√
2L√
dκ

}
M2 max{Õ(H12d3/κ5), Õ(H14d/κ5)}

M3 max

{
512H4 log( 2dH

δ )
κ2 , 4λH2

κ

}
M4 max{H2L2

dκ , H6E2

κ2 , H4κ}
ρ Budget for zCDP

δ Failure probability (not the δ of (ϵ, δ)-DP)

ξ supV ∈[0,H], s′∼Ph(s,a), h∈[H]

∣∣∣∣ rh+V (s′)−(ThV )(s,a)

σV (s,a)

∣∣∣∣

463
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B Extended related work464

Online reinforcement learning under JDP or LDP. For online RL, some recent works analyze465

this setting under Joint Differential Privacy (JDP), which requires the RL agent to minimize regret466

while handling user’s raw data privately. Under tabular MDP, Vietri et al. [2020] design PUCB by467

revising UBEV [Dann et al., 2017]. Private-UCB-VI [Chowdhury and Zhou, 2021] results from468

UCBVI (with bonus-1) [Azar et al., 2017]. However, both works privatize Hoeffding type bonus,469

which lead to sub-optimal regret bound. Under linear MDP, Private LSVI-UCB [Ngo et al., 2022]470

and Privacy-Preserving LSVI-UCB [Luyo et al., 2021] are private versions of LSVI-UCB [Jin et al.,471

2020b], while LinOpt-VI-Reg [Zhou, 2022] and Privacy-Preserving UCRL-VTR [Luyo et al., 2021]472

generalize UCRL-VTR [Ayoub et al., 2020]. However, these works are usually based on the LSVI473

technique [Jin et al., 2020b] (unweighted ridge regression), which does not ensure optimal regret474

bound.475

In addition to JDP, another common privacy guarantee for online RL is Local Differential Privacy476

(LDP), LDP is a stronger definition of DP since it requires that the user’s data is protected before the477

RL agent has access to it. Under LDP, Garcelon et al. [2021] reach a regret lower bound and design478

LDP-OBI which has matching regret upper bound. The result is generalized by Liao et al. [2021] to479

linear mixture setting. Later, Luyo et al. [2021] provide an unified framework for analyzing JDP and480

LDP under linear setting.481

Some other differentially private learning algorithms. There are some other works about dif-482

ferentially private online learning [Guha Thakurta and Smith, 2013, Agarwal and Singh, 2017, Hu483

et al., 2021] and various settings of bandit [Shariff and Sheffet, 2018, Gajane et al., 2018, Basu et al.,484

2019, Zheng et al., 2020, Chen et al., 2020, Tossou and Dimitrakakis, 2017]. For the reinforcement485

learning setting, Wang and Hegde [2019] propose privacy-preserving Q-learning to protect the reward486

information. Ono and Takahashi [2020] study the problem of distributed reinforcement learning487

under LDP. Lebensold et al. [2019] present an actor critic algorithm with differentially private critic.488

Cundy and Ermon [2020] tackle DP-RL under the policy gradient framework. Chowdhury et al.489

[2021] consider the adaptive control of differentially private linear quadratic (LQ) systems.490

Offline reinforcement learning under tabular MDP. Under tabular MDP, there are several works491

achieving optimal sub-optimality/sample complexity bounds under different coverage assumptions.492

For the problem of off-policy evaluation (OPE), Yin and Wang [2020] uses Tabular-MIS estimator to493

achieve asymptotic efficiency. In addition, the idea of uniform OPE is used to achieve the optimal494

sample complexity O(H3/dmϵ2) [Yin et al., 2021] for non-stationary MDP and the optimal sample495

complexity O(H2/dmϵ2) [Yin and Wang, 2021a] for stationary MDP, where dm is the lower bound496

for state-action occupancy. Such uniform convergence idea also supports some works regarding497

online exploration [Jin et al., 2020a, Qiao et al., 2022]. For offline RL with single concentrability498

assumption, Xie et al. [2021b] arrive at the optimal sample complexity O(H3SC⋆/ϵ2). Recently,499

Yin and Wang [2021b] propose APVI which can lead to instance-dependent sub-optimality bound,500

which subsumes previous optimal results under several assumptions.501

Offline reinforcement learning under linear MDP. Recently, many works focus on offline RL502

under linear representation. Jin et al. [2021] present PEVI which applies the idea of pessimistic value503

iteration (the idea originates from [Jin et al., 2020b]), and PEVI is provably efficient for offline RL504

under linear MDP. Yin et al. [2022] improve the sub-optimality bound in [Jin et al., 2021] by replacing505

LSVI by variance-weighted LSVI. Xie et al. [2021a] consider Bellman consistent pessimism for506

general function approximation, and their result improves the sample complexity in [Jin et al., 2021]507

by order O(d) (shown in Theorem 3.2). However, there is no improvement on horizon dependence.508

Zanette et al. [2021] propose a new offline actor-critic algorithm that naturally incorporates the509

pessimism principle. Besides, Wang et al. [2021], Zanette [2021] study the statistical hardness of510

offline RL with linear representations by presenting exponential lower bounds.511

C More discussions512

C.1 Discussions about definition of DP513

For a concrete motivating example, please refer to the first paragraph of Introduction. We remark that514

our definition of DP is consistent with Joint DP and Local DP defined under the online RL setting515
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where JDP/LDP also cast each user as one trajectory and provide user-wise privacy protection. For516

detailed definitions and more discussions about JDP/LDP, please refer to Qiao and Wang [2022].517

C.2 Tightness of our results518

We believe our bounds for offline RL with DP is tight. To the best of our knowledge, APVI and519

VAPVI provide the tightest bound under tabular MDP and linear MDP, respectively. The suboptimality520

bounds of our algorithms match these two in the main term, with some lower order additional terms.521

The leading terms are known to match multiple information-theoretical lower bounds for offline522

RL simultaneously (this was illustrated in Yin and Wang [2021b], Yin et al. [2022]), for this reason523

our bound cannot be improved in general. For the lower order terms, the dependence on sample524

complexity n and privacy budget ϵ: Õ( 1
nϵ ) is optimal since policy learning is a special case of ERM525

problems and such dependence is optimal in DP-ERM. In addition, we believe the dependence on526

other parameters (H,S,A, d) in the lower order term is tight due to our special tricks as (3) and527

Lemma E.6.528

D Proof of Theorem 3.4529

D.1 Proof sketch530

Since the whole proof for privacy guarantee is not very complex, we present it in Section D.2 below531

and only sketch the proof for suboptimality bound.532

First of all, we bound the scale of noises we add to show that the ñ derived from (3) are close to real533

visitation numbers. Therefore, denoting the non-private empirical transition kernel by P̂ (detailed534

definition in (15)), we can show that ∥P̃ − P̂∥1 and |
√
VarP̃ (V )−

√
VarP̂ (V )| are small.535

Next, resulting from the conditional independence of Ṽh+1 and P̃h, we apply Empirical Bernstein’s536

inequality to get |(P̃h − Ph)Ṽh+1| ≲
√

VarP̃ (Ṽh+1)/ñsh,ah
+ SHEρ/ñsh,ah

. Together with our537

definition of private pessimism and the key lemma: extended value difference (Lemma F.7 and F.8),538

we can bound the suboptimality of our output policy π̂ by:539

v⋆ − vπ̂ ≲
H∑

h=1

∑
(sh,ah)∈Ch

dπ
⋆

h (sh, ah)

√√√√VarP̃h(·|sh,ah)
(Ṽh+1(·))

ñsh,ah

+ SHEρ/ñsh,ah
. (12)

Finally, we further bound the above suboptimality via replacing private statistics by non-private ones.540

Specifically, we replace ñ by n, P̃ by P and Ṽ by V ⋆. Due to (12), we have ∥Ṽ − V ⋆∥∞ ≲
√

1
nd̄m

.541

Together with the upper bounds of ∥P̃ − P̂∥1 and |
√

VarP̃ (V )−
√

VarP̂ (V )|, we have542 √√√√VarP̃h(·|sh,ah)
(Ṽh+1(·))

ñsh,ah

≲

√
VarP̃h(·|sh,ah)

(V ⋆
h+1(·))

ñsh,ah

+
1

nd̄m

≲

√
VarP̂h(·|sh,ah)

(V ⋆
h+1(·))

ñsh,ah

+
1

nd̄m
≲

√
VarPh(·|sh,ah)(V

⋆
h+1(·))

ñsh,ah

+
1

nd̄m

≲

√
VarPh(·|sh,ah)(V

⋆
h+1(·))

ndµh(sh, ah)
+

1

nd̄m
.

(13)

The final bound using non-private statistics results from (12) and (13).543

D.2 Proof of the privacy guarantee544

The privacy guarantee of DP-APVI (Algorithm 1) is summarized by Lemma D.1 below.545

Lemma D.1 (Privacy analysis of DP-APVI (Algorithm 1)). DP-APVI (Algorithm 1) satisfies ρ-zCDP.546
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Proof of Lemma D.1. The ℓ2 sensitivity of {nsh,ah
} is

√
2H . According to Lemma 2.6, the Gaussian547

Mechanism used on {nsh,ah
} with σ2 = 2H

ρ satisfies ρ
2 -zCDP. Similarly, the Gaussian Mechanism548

used on {nsh,ah,sh+1
} with σ2 = 2H

ρ also satisfies ρ
2 -zCDP. Combining these two results, due to the549

composition of zCDP (Lemma F.16), the construction of {n′} satisfies ρ-zCDP. Finally, DP-APVI550

satisfies ρ-zCDP because the output π̂ is post processing of {n′}.551

D.3 Proof of the sub-optimality bound552

D.3.1 Utility analysis553

First of all, the following Lemma D.2 gives a high probability bound for |n′ − n|.554

Lemma D.2. Let Eρ = 2
√
2σ
√
log 4HS2A

δ = 4

√
H log 4HS2A

δ

ρ , then with probability 1− δ, for all555

sh, ah, sh+1, it holds that556

|n′
sh,ah

− nsh,ah
| ≤ Eρ

2
, |n′

sh,ah,sh+1
− nsh,ah,sh+1

| ≤ Eρ

2
. (14)

Proof of Lemma D.2. The inequalities directly result from the concentration inequality of Gaussian557

distribution and a union bound.558

According to the utility analysis above, we have the following Lemma D.3 giving a high probability559

bound for |ñ− n|.560

Lemma D.3. Under the high probability event in Lemma D.2, for all sh, ah, sh+1, it holds that

|ñsh,ah
− nsh,ah

| ≤ Eρ, |ñsh,ah,sh+1
− nsh,ah,sh+1

| ≤ Eρ.

Proof of Lemma D.3. When the event in Lemma D.2 holds, the original counts {nsh,ah,s′}s′∈S is a
feasible solution to the optimization problem, which means that

max
s′

|ñsh,ah,s′ − n′
sh,ah,s′

| ≤ max
s′

|nsh,ah,s′ − n′
sh,ah,s′

| ≤ Eρ

2
.

Due to the second part of (14), it holds that for any sh, ah, sh+1,

|ñsh,ah,sh+1
− nsh,ah,sh+1

| ≤ |ñsh,ah,sh+1
− n′

sh,ah,sh+1
|+ |n′

sh,ah,sh+1
− nsh,ah,sh+1

| ≤ Eρ.

For the second part, because of the constraints in the optimization problem, it holds that

|ñsh,ah
− n′

sh,ah
| ≤ Eρ

2
.

Due to the first part of (14), it holds that for any sh, ah,

|ñsh,ah
− nsh,ah

| ≤ |ñsh,ah
− n′

sh,ah
|+ |n′

sh,ah
− nsh,ah

| ≤ Eρ.

561

Let the non-private empirical estimate be:562

P̂h(s
′|sh, ah) =

nsh,ah,s′

nsh,ah

, (15)

if nsh,ah
> 0 and P̂h(s

′|sh, ah) = 1
S otherwise. We will show that the private transition kernel P̃ is563

close to P̂ by the Lemma D.4 and Lemma D.5 below.564

Lemma D.4. Under the high probability event of Lemma D.3, for sh, ah, if ñsh,ah
≥ 3Eρ, it holds565

that566 ∥∥∥P̃h(·|sh, ah)− P̂h(·|sh, ah)
∥∥∥
1
≤ 5SEρ

ñsh,ah

. (16)
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Proof of Lemma D.4. If ñsh,ah
≥ 3Eρ and the conclusion in Lemma D.3 hold, we have567 ∥∥∥P̃h(·|sh, ah)− P̂h(·|sh, ah)

∥∥∥
1
≤
∑
s′∈S

∣∣∣P̃h(s
′|sh, ah)− P̂h(s

′|sh, ah)
∣∣∣

≤
∑
s′∈S

(
ñsh,ah,s′ + Eρ

ñsh,ah
− Eρ

− ñsh,ah,s′

ñsh,ah

)
≤
∑
s′∈S

[(
1

ñsh,ah

+
2Eρ

ñ2
sh,ah

)
(ñsh,ah,s′ + Eρ)−

ñsh,ah,s′

ñsh,ah

]

≤ SEρ

ñsh,ah

+
2Eρ

ñsh,ah

+
2SE2

ρ

ñ2
sh,ah

≤ 5SEρ

ñsh,ah

.

(17)

The second inequality is because
ñsh,ah,s′−Eρ

ñsh,ah
+Eρ

≤ nsh,ah,s′

nsh,ah
≤ ñsh,ah,s′+Eρ

ñsh,ah
−Eρ

and
ñsh,ah,s′+Eρ

ñsh,ah
−Eρ

−568

ñsh,ah,s′

ñsh,ah
≥ ñsh,ah,s′

ñsh,ah
− ñsh,ah,s′−Eρ

ñsh,ah
+Eρ

. The third inequality is because of Lemma F.6. The last569

inequality is because ñsh,ah
≥ 3Eρ.570

Lemma D.5. Let V ∈ RS be any function with ∥V ∥∞ ≤ H , under the high probability event of571

Lemma D.3, for sh, ah, if ñsh,ah
≥ 3Eρ, it holds that572 ∣∣∣√VarP̂h(·|sh,ah)
(V )−

√
VarP̃h(·|sh,ah)

(V )
∣∣∣ ≤ 4H

√
SEρ

ñsh,ah

. (18)

Proof of Lemma D.5. For sh, ah such that ñsh,ah
≥ 3Eρ, we use P̃ (·) and P̂ (·) instead of

P̃h(·|sh, ah) and P̂h(·|sh, ah) for simplicity. Because of Lemma D.4, we have∥∥∥P̃ (·)− P̂ (·)
∥∥∥
1
≤ 5SEρ

ñsh,ah

.

Therefore, it holds that573 ∣∣∣√VarP̂ (·)(V )−
√
VarP̃ (·)(V )

∣∣∣ ≤√|VarP̂ (·)(V )−VarP̃ (·)(V )|

≤

√√√√∑
s′∈S

∣∣∣P̂ (s′)− P̃ (s′)
∣∣∣V (s′)2 +

∣∣∣∣∣∑
s′∈S

[
P̂ (s′) + P̃ (s′)

]
V (s′)

∣∣∣∣∣ · ∑
s′∈S

∣∣∣P̂ (s′)− P̃ (s′)
∣∣∣V (s′)

≤
√
H2
∥∥∥P̃ (·)− P̂ (·)

∥∥∥
1
+ 2H2

∥∥∥P̃ (·)− P̂ (·)
∥∥∥
1

≤4H

√
SEρ

ñsh,ah

.

(19)
The second inequality is due to the definition of variance.574

D.3.2 Validity of our pessimistic penalty575

Now we are ready to present the key lemma (Lemma D.6) below to justify our use of Γ as the576

pessimistic penalty.577

Lemma D.6. Under the high probability event of Lemma D.3, with probability 1− δ, for any sh, ah,578

if ñsh,ah
≥ 3Eρ (which implies nsh,ah

> 0), it holds that579

∣∣∣(P̃h − Ph) · Ṽh+1(sh, ah)
∣∣∣ ≤

√√√√2VarP̃h(·|sh,ah)
(Ṽh+1(·)) · ι

ñsh,ah
− Eρ

+
16SHEρ · ι

ñsh,ah

, (20)

where Ṽ is the private version of estimated V function, which appears in Algorithm 1 and ι =580

log(HSA/δ).581
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Proof of Lemma D.6.∣∣∣(P̃h − Ph) · Ṽh+1(sh, ah)
∣∣∣ ≤ ∣∣∣(P̃h − P̂h) · Ṽh+1(sh, ah)

∣∣∣+ ∣∣∣(P̂h − Ph) · Ṽh+1(sh, ah)
∣∣∣

≤H
∥∥∥P̃h(·|sh, ah)− P̂h(·|sh, ah)

∥∥∥
1
+
∣∣∣(P̂h − Ph) · Ṽh+1(sh, ah)

∣∣∣
≤5SHEρ

ñsh,ah

+
∣∣∣(P̂h − Ph) · Ṽh+1(sh, ah)

∣∣∣ ,
(21)

where the third inequality is due to Lemma D.4.582

Next, recall π̂h+1 in Algorithm 1 is computed backwardly therefore only depends on sample tuple583

from time h + 1 to H . As a result, Ṽh+1 = ⟨Qh+1, π̂h+1⟩ also only depends on the sample tuple584

from time h + 1 to H and some Gaussian noise that is independent to the offline dataset. On the585

other side, by the definition, P̂h only depends on the sample tuples from time h to h+ 1. Therefore586

Ṽh+1 and P̂h are Conditionally independent (This trick is also used in [Yin et al., 2021] and [Yin and587

Wang, 2021b]), by Empirical Bernstein’s inequality (Lemma F.4) and a union bound, with probability588

1− δ, for all sh, ah such that ñsh,ah
≥ 3Eρ,589

∣∣∣(P̂h − Ph) · Ṽh+1(sh, ah)
∣∣∣ ≤

√√√√2VarP̂h(·|sh,ah)
(Ṽh+1(·)) · ι

nsh,ah

+
7H · ι
3nsh,ah

. (22)

Therefore, we have590

∣∣∣(P̃h − Ph) · Ṽh+1(sh, ah)
∣∣∣ ≤

√√√√2VarP̂h(·|sh,ah)
(Ṽh+1(·)) · ι

nsh,ah

+
7H · ι
3nsh,ah

+
5SHEρ

ñsh,ah

≤

√√√√2VarP̂h(·|sh,ah)
(Ṽh+1(·)) · ι

nsh,ah

+
9SHEρ · ι
ñsh,ah

≤9SHEρ · ι
ñsh,ah

+

√√√√2VarP̃h(·|sh,ah)
(Ṽh+1(·)) · ι

nsh,ah

+ 4
√
2H

√
SEρ · ι

ñsh,ah
· nsh,ah

≤

√√√√2VarP̃h(·|sh,ah)
(Ṽh+1(·)) · ι

nsh,ah

+
16SHEρ · ι

ñsh,ah

≤

√√√√2VarP̃h(·|sh,ah)
(Ṽh+1(·)) · ι

ñsh,ah
− Eρ

+
16SHEρ · ι

ñsh,ah

.

(23)

The second and forth inequality is because when ñsh,ah
≥ 3Eρ, nsh,ah

≥ 2ñsh,ah

3 . Specifically,591

these two inequalities are also because usually we only care about the case when SEρ ≥ 1, which is592

equivalent to ρ being not very large. The third inequality is due to Lemma D.5. The last inequality is593

due to Lemma D.3.594

Note that the previous Lemmas rely on the condition that ñ is not very small (ñsh,ah
≥ 3Eρ). Below595

we state the Multiplicative Chernoff bound (Lemma D.7 and Remark D.8) to show that under our596

condition in Theorem 3.4, for (sh, ah) ∈ Ch, ñsh,ah
will be larger than 3Eρ with high probability.597

Lemma D.7 (Lemma B.1 in [Yin and Wang, 2021b]). For any 0 < δ < 1, there exists an absolute598

constant c1 such that when total episode n > c1 · 1/d̄m · log(HSA/δ), then with probability 1− δ,599

∀h ∈ [H]600

nsh,ah
≥ n · dµh(sh, ah)/2, ∀ (sh, ah) ∈ Ch.

Furthermore, we denote601

E := {nsh,ah
≥ n · dµh(sh, ah)/2, ∀ (sh, ah) ∈ Ch, h ∈ [H].} (24)

then equivalently P (E) > 1− δ.602
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In addition, we denote603

E ′ := {nsh,ah
≤ 3

2
n · dµh(sh, ah), ∀ (sh, ah) ∈ Ch, h ∈ [H].} (25)

then similarly P (E ′) > 1− δ.604

Remark D.8. According to Lemma D.7, for any failure probability δ, there exists some constant605

c1 > 0 such that when n ≥ c1Eρ·ι
d̄m

, with probability 1 − δ, for all (sh, ah) ∈ Ch, nsh,ah
≥ 4Eρ.606

Therefore, under the condition of Theorem 3.4 and the high probability events in Lemma D.3607

and Lemma D.7, it holds that for all (sh, ah) ∈ Ch, ñsh,ah
≥ 3Eρ while for all (sh, ah) /∈ Ch,608

ñsh,ah
≤ Eρ.609

Lemma D.9. Define (ThV )(·, ·) := rh(·, ·) + (PhV )(·, ·) for any V ∈ RS . Note π̂, Qh, Ṽh are610

defined in Algorithm 1 and denote ξh(s, a) = (ThṼh+1)(s, a)−Qh(s, a). Then it holds that611

V π⋆

1 (s)− V π̂
1 (s) ≤

H∑
h=1

Eπ⋆ [ξh(sh, ah) | s1 = s]−
H∑

h=1

Eπ̂ [ξh(sh, ah) | s1 = s] . (26)

Furthermore, (26) holds for all V π⋆

h (s)− V π̂
h (s).612

Proof of Lemma D.9. Lemma D.9 is a direct corollary of Lemma F.8 with π = π⋆, Q̂h = Qh,613

V̂h = Ṽh and π̂ = π̂ in Algorithm 1, we can obtain this result since by the definition of π̂ in614

Algorithm 1, ⟨Qh (sh, ·) , πh (·|sh)− π̂h (·|sh)⟩ ≤ 0. The proof for V π⋆

h (s)−V π̂
h (s) is identical.615

Next we prove the asymmetric bound for ξh, which is the key to the proof.616

Lemma D.10 (Private version of Lemma D.6 in [Yin and Wang, 2021b]). Denote ξh(s, a) =617

(ThṼh+1)(s, a) − Qh(s, a), where Ṽh+1 and Qh are the quantities in Algorithm 1 and Th(V ) :=618

rh + Ph · V for any V ∈ RS . Then under the high probability events in Lemma D.3 and Lemma D.6,619

for any h, sh, ah such that ñsh,ah
> 3Eρ, we have620

0 ≤ξh(sh, ah) = (ThṼh+1)(sh, ah)−Qh(sh, ah)

≤2

√√√√2VarP̃h(·|sh,ah)
(Ṽh+1(·)) · ι

ñsh,ah
− Eρ

+
32SHEρ · ι

ñsh,ah

,

where ι = log(HSA/δ).621

Proof of Lemma D.10. The first inequality: We first prove ξh(sh, ah) ≥ 0 for all (sh, ah), such622

that ñsh,ah
≥ 3Eρ.623

Indeed, if Q̂p
h(sh, ah) < 0, then Qh(sh, ah) = 0. In this case, ξh(sh, ah) = (ThṼh+1)(sh, ah) ≥ 0624

(note Ṽh ≥ 0 by the definition). If Q̂p
h(sh, ah) ≥ 0, then by definition Qh(sh, ah) =625

min{Q̂p
h(sh, ah), H − h+ 1}+ ≤ Q̂p

h(sh, ah) and this implies626

ξh(sh, ah) ≥ (ThṼh+1)(sh, ah)− Q̂p
h(sh, ah)

=(Ph − P̃h) · Ṽh+1(sh, ah) + Γh(sh, ah)

≥−

√√√√2VarP̃h(·|sh,ah)
(Ṽh+1(·)) · ι

ñsh,ah
− Eρ

− 16SHEρ · ι
ñsh,ah

+ Γh(sh, ah) = 0,

where the second inequality uses Lemma D.6, and the last equation uses Line 5 of Algorithm 1.627

The second inequality: Then we prove ξh(sh, ah) ≤ 2

√
2VarP̃h(·|sh,ah)(Ṽh+1(·))·ι

ñsh,ah
−Eρ

+
32SHEρ·ι
ñsh,ah

for628

all (sh, ah) such that ñsh,ah
≥ 3Eρ.629

First, since by construction Ṽh ≤ H − h+ 1 for all h ∈ [H], this implies630

Q̂p
h = Q̃h − Γh ≤ Q̃h = rh + (P̃h · Ṽh+1) ≤ 1 + (H − h) = H − h+ 1
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which is because rh ≤ 1 and P̃h is a probability distribution. Therefore, we have the equivalent631

definition632

Qh := min{Q̂p
h, H − h+ 1}+ = max{Q̂p

h, 0} ≥ Q̂p
h.

Then it holds that633

ξh(sh, ah) = (ThṼh+1)(sh, ah)−Qh(sh, ah) ≤ (ThṼh+1)(sh, ah)− Q̂p
h(sh, ah)

=(ThṼh+1)(sh, ah)− Q̃h(sh, ah) + Γh(sh, ah)

=(Ph − P̃h) · Ṽh+1(sh, ah) + Γh(sh, ah)

≤

√√√√2VarP̃h(·|sh,ah)
(Ṽh+1(·)) · ι

ñsh,ah
− Eρ

+
16SHEρ · ι

ñsh,ah

+ Γh(sh, ah)

=2

√√√√2VarP̃h(·|sh,ah)
(Ṽh+1(·)) · ι

ñsh,ah
− Eρ

+
32SHEρ · ι

ñsh,ah

.

The proof is complete by combining the two parts.634

D.3.3 Reduction to augmented absorbing MDP635

Before we prove the theorem, we need to construct an augmented absorbing MDP to bridge Ṽ and636

V ⋆. According to Line 5 in Algorithm 1, the locations with ñsh,ah
≤ Eρ is heavily penalized with637

penalty of order Õ(H). Therefore we can prove that under the high probability event in Remark D.8,638

dπ̂h(sh, ah) > 0 only if dµh(sh, ah) > 0 by induction, where π̂ is the output of Algorithm 1. The639

conclusion holds for h = 1. Assume it holds for some h > 1 that dπ̂h(sh, ah) > 0 only if dµh(sh, ah) >640

0, then for any sh+1 ∈ S such that dπ̂h+1(sh+1) > 0, it holds that dµh+1(sh+1) > 0, which leads to641

the conclusion that dπ̂h+1(sh+1, ah+1) > 0 only if dµh+1(sh+1, ah+1) > 0. To summarize, we have642

dπ0

h (sh, ah) > 0 only if dµh(sh, ah) > 0, π0 ∈ {π⋆, π̂}. (27)

Let us define M† by adding one absorbing state s†h for all h ∈ {2, . . . ,H}, therefore the augmented643

state space S† = S ∪ {s†h} and the transition and reward is defined as follows: (recall Ch :=644

{(sh, ah) : dµh(sh, ah) > 0})645

P †
h(· | sh, ah) =

{
Ph(· | sh, ah) sh, ah ∈ Ch,
δ
s
†
h+1

sh = s†h or sh, ah /∈ Ch, r†h(sh, ah) =

{
rh(sh, ah) sh, ah ∈ Ch
0 sh = s†h or sh, ah /∈ Ch

and we further define for any π,646

V †π
h (s) = E†

π

[
H∑
t=h

r†t

∣∣∣∣∣sh = s

]
, v†π = E†

π

[
H∑
t=1

r†t

]
∀h ∈ [H], (28)

where E† means taking expectation under the absorbing MDP M†.647

Note that because π⋆ and π̂ are fully covered by µ (27), it holds that648

v†π
⋆

= vπ
⋆

, v†π̂ = vπ̂. (29)

Define (T †
h V )(·, ·) := r†h(·, ·) + (P †

hV )(·, ·) for any V ∈ RS+1. Note π̂, Qh, Ṽh are defined649

in Algorithm 1 (we extend the definition by letting Ṽh(s
†
h) = 0 and Qh(s

†
h, ·) = 0) and denote650

ξ†h(s, a) = (T †
h Ṽh+1)(s, a)−Qh(s, a). Using identical proof to Lemma D.9, we have651

V †π⋆

1 (s)− V †π̂
1 (s) ≤

H∑
h=1

E†
π⋆

[
ξ†h(sh, ah) | s1 = s

]
−

H∑
h=1

E†
π̂

[
ξ†h(sh, ah) | s1 = s

]
, (30)

where V †π
1 is defined in (28). Furthermore, (30) holds for all V †π⋆

h (s)− V †π̂
h (s).652
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D.3.4 Finalize our result with non-private statistics653

For those (sh, ah) ∈ Ch, ξ†h(sh, ah) = rh(sh, ah) + PhṼh+1(sh, ah) − Qh(sh, ah) = ξh(sh, ah).654

For those (sh, ah) /∈ Ch or sh = s†h, we have ξ†h(sh, ah) = 0.655

Therefore, by (30) and Lemma D.10, under the high probability events in Lemma D.3, Lemma D.6656

and Lemma D.7, we have for all t ∈ [H], s ∈ S (S does not include the absorbing state s†t ),657

V †π⋆

t (s)− V †π̂
t (s) ≤

H∑
h=t

E†
π⋆

[
ξ†h(sh, ah) | st = s

]
−

H∑
h=t

E†
π̂

[
ξ†h(sh, ah) | st = s

]
≤

H∑
h=t

E†
π⋆

[
ξ†h(sh, ah) | st = s

]
− 0

≤
H∑
h=t

E†
π⋆

2
√√√√2VarP̃h(·|sh,ah)

(Ṽh+1(·)) · ι
ñsh,ah

− Eρ
+

32SHEρ · ι
ñsh,ah

| st = s

 · 1 ((sh, ah) ∈ Ch)

≤
H∑
h=t

E†
π⋆

2
√√√√2VarP̃h(·|sh,ah)

(Ṽh+1(·)) · ι
nsh,ah

− 2Eρ
+

32SHEρ · ι
nsh,ah

− Eρ
| st = s

 · 1 ((sh, ah) ∈ Ch)

≤
H∑
h=t

E†
π⋆

4
√√√√VarP̃h(·|sh,ah)

(Ṽh+1(·)) · ι
nsh,ah

+
128SHEρ · ι

3nsh,ah

| st = s

 · 1 ((sh, ah) ∈ Ch)

≤
H∑
h=t

E†
π⋆

4
√√√√2VarP̃h(·|sh,ah)

(Ṽh+1(·)) · ι
ndµh(sh, ah)

+
256SHEρ · ι
3ndµh(sh, ah)

| st = s

 · 1 ((sh, ah) ∈ Ch)

(31)

The second and third inequality are because of Lemma D.10, Remark D.8 and the the fact that either658

ξ† = 0 or ξ† = ξ while (sh, ah) ∈ Ch. The forth inequality is due to Lemma D.3. The fifth inequality659

is because of Remark D.8. The last inequality is by Lemma D.7.660

Below we present a crude bound of
∣∣∣V †π⋆

t (s)− Ṽt(s)
∣∣∣, which can be further used to bound the main661

term in the main result.662

Lemma D.11 (Self-bounding, private version of Lemma D.7 in [Yin and Wang, 2021b]). Under the663

high probability events in Lemma D.3, Lemma D.6 and Lemma D.7, it holds that for all t ∈ [H] and664

s ∈ S,665

∣∣∣V †π⋆

t (s)− Ṽt(s)
∣∣∣ ≤ 4

√
2ιH2√
n · d̄m

+
256SH2Eρ · ι

3n · d̄m
.

where d̄m is defined in Theorem 3.4.666

Proof of Lemma D.11. According to (31), since VarP̃h(·|sh,ah)
(Ṽh+1(·)) ≤ H2, we have for all667

t ∈ [H],668

∣∣∣V †π⋆

t (s)− V †π̂
t (s)

∣∣∣ ≤ 4
√
2ιH2√
n · d̄m

+
256SH2Eρ · ι

3n · d̄m
(32)
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Next, apply Lemma F.7 by setting π = π̂, π′ = π⋆, Q̂ = Q, V̂ = Ṽ under M†, then we have669

V †π⋆

t (s)− Ṽt(s) =

H∑
h=t

E†
π⋆

[
ξ†h(sh, ah) | st = s

]
+

H∑
h=t

E†
π⋆

[
⟨Qh (sh, ·) , π⋆

h (·|sh)− π̂h (·|sh)⟩ | st = s
]

≤
H∑
h=t

E†
π⋆

[
ξ†h(sh, ah) | st = s

]
≤4

√
2ιH2√
n · d̄m

+
256SH2Eρ · ι

3n · d̄m
.

(33)
Also, apply Lemma F.7 by setting π = π′ = π̂, Q̂ = Q, V̂ = Ṽ under M†, then we have670

Ṽt(s)− V †π̂
t (s) = −

H∑
h=t

E†
π̂

[
ξ†h(sh, ah) | st = s

]
≤ 0. (34)

The proof is complete by combing (32), (33) and (34).671

Now we are ready to bound
√
VarP̃h(·|sh,ah)

(Ṽh+1(·)) by
√

VarPh(·|sh,ah)(V
†⋆
h+1(·)). Under the672

high probability events in Lemma D.3, Lemma D.6 and Lemma D.7, with probability 1− δ, it holds673

that for all (sh, ah) ∈ Ch,674 √
VarP̃h(·|sh,ah)

(Ṽh+1(·)) ≤
√

VarP̃h(·|sh,ah)
(V †⋆

h+1(·)) +
∥∥∥Ṽh+1 − V †π⋆

h+1

∥∥∥
∞,s∈S

≤
√
VarP̃h(·|sh,ah)

(V †⋆
h+1(·)) +

4
√
2ιH2√
n · d̄m

+
256SH2Eρ · ι

3n · d̄m

≤
√
VarP̂h(·|sh,ah)

(V †⋆
h+1(·)) +

4
√
2ιH2√
n · d̄m

+
256SH2Eρ · ι

3n · d̄m
+ 4H

√
SEρ

ñsh,ah

≤
√
VarP̂h(·|sh,ah)

(V †⋆
h+1(·)) +

4
√
2ιH2√
n · d̄m

+
256SH2Eρ · ι

3n · d̄m
+ 8H

√
SEρ

n · d̄m

≤
√
VarPh(·|sh,ah)(V

†⋆
h+1(·)) +

4
√
2ιH2√
n · d̄m

+
256SH2Eρ · ι

3n · d̄m
+ 8H

√
SEρ

n · d̄m
+ 3H

√
ι

n · d̄m

≤
√
VarPh(·|sh,ah)(V

†⋆
h+1(·)) +

9
√
ιH2√

n · d̄m
+

256SH2Eρ · ι
3n · d̄m

+ 8H

√
SEρ

n · d̄m
.

(35)

The second inequality is because of Lemma D.11. The third inequality is due to Lemma D.5. The675

forth inequality comes from Lemma D.3 and Remark D.8. The fifth inequality holds with probability676

1− δ because of Lemma F.5 and a union bound.677

Finally, by plugging (35) into (31) and averaging over s1, we finally have with probability 1− 4δ,678

vπ
⋆

− vπ̂ = v†π
⋆

− v†π̂ ≤
H∑

h=1

E†
π⋆

4
√√√√2VarP̃h(·|sh,ah)

(Ṽh+1(·)) · ι
ndµh(sh, ah)

+
256SHEρ · ι
3ndµh(sh, ah)


≤4

√
2

H∑
h=1

E†
π⋆

√VarPh(·|sh,ah)(V
†⋆
h+1(·)) · ι

ndµh(sh, ah)

+ Õ

(
H3 + SH2Eρ

n · d̄m

)

=4
√
2

H∑
h=1

∑
(sh,ah)∈Ch

dπ
⋆

h (sh, ah)

√
VarPh(·|sh,ah)(V

†⋆
h+1(·)) · ι

ndµh(sh, ah)
+ Õ

(
H3 + SH2Eρ

n · d̄m

)

=4
√
2

H∑
h=1

∑
(sh,ah)∈Ch

dπ
⋆

h (sh, ah)

√
VarPh(·|sh,ah)(V

⋆
h+1(·)) · ι

ndµh(sh, ah)
+ Õ

(
H3 + SH2Eρ

n · d̄m

)
,

(36)
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where Õ absorbs constants and Polylog terms. The first equation is due to (29). The first inequality is679

because of (31). The second inequality comes from (35) and our assumption that n · d̄m ≥ c1H
2.680

The second equation uses the fact that dπ
⋆

h (sh, ah) = d†π
⋆

h (sh, ah), for all (sh, ah). The last681

equation is because for any (sh, ah, sh+1) such that dπ
⋆

h (sh, ah) > 0 and Ph(sh+1|sh, ah) > 0,682

V †⋆
h+1(sh+1) = V ⋆

h+1(sh+1).683

D.4 Put everything together684

Combining Lemma D.1 and (36), the proof of Theorem 3.4 is complete.685

E Proof of Theorem 4.1686

E.1 Proof sketch687

Since the whole proof for privacy guarantee is not very complex, we present it in Section E.2 below688

and only sketch the proof for suboptimality bound.689

First of all, by extended value difference (Lemma F.7 and F.8), we can convert bounding the subopti-690

mality gap of v⋆ − vπ̂ to bounding
∑H

h=1 Eπ [Γh(sh, ah)], given that |(ThṼh+1 − T̃hṼh+1)(s, a)| ≤691

Γh(s, a) for all s, a, h. To bound (ThṼh+1 − T̃hṼh+1)(s, a), according to our analysis about the692

upper bound of the noises we add, we can decompose (ThṼh+1−T̃hṼh+1)(s, a) to lower order terms693

(Õ( 1
K )) and the following key quantity:694

ϕ(s, a)⊤Λ̂−1
h

[
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

)
−
(
ThṼh+1

)
(sτh, a

τ
h)
)
/σ̃2

h(s
τ
h, a

τ
h)

]
. (37)

For the term above, we prove an upper bound of
∥∥∥σ2

Ṽh+1
− σ̃2

h

∥∥∥
∞

, so we can convert σ̃2
h to σ2

Ṽh+1
.695

Next, since Var
[
rτh + Ṽh+1

(
sτh+1

)
−
(
ThṼh+1

)
(sτh, a

τ
h) | sτh, aτh

]
≈ σ2

Ṽh+1
, we can apply Bern-696

stein’s inequality for self-normalized martingale (Lemma F.10) as in Yin et al. [2022] for deriving697

tighter bound.698

Finally, we replace the private statistics by non-private ones. More specifically, we convert σ2
Ṽh+1

to699

σ⋆2
h (Λ−1

h to Λ⋆−1
h ) by combining the crude upper bound of

∥∥∥Ṽ − V ⋆
∥∥∥
∞

and matrix concentrations.700

E.2 Proof of the privacy guarantee701

The privacy guarantee of DP-VAPVI (Algorithm 2) is summarized by Lemma E.1 below.702

Lemma E.1 (Privacy analysis of DP-VAPVI (Algorithm 2)). DP-VAPVI (Algorithm 2) satisfies703

ρ-zCDP.704

Proof of Lemma E.1. For
∑K

τ=1 ϕ(s̄
τ
h, ā

τ
h) · Ṽh+1(s̄

τ
h+1)

2, the ℓ2 sensitivity is 2H2. For∑K
τ=1 ϕ(s̄

τ
h, ā

τ
h) · Ṽh+1(s̄

τ
h+1) and

∑K
τ=1 ϕ (sτh, a

τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

))
/σ̃2

h(s
τ
h, a

τ
h), the ℓ2 sen-

sitivity is 2H . Therefore according to Lemma 2.6, the use of Gaussian Mechanism (the additional
noises ϕ1, ϕ2, ϕ3) ensures ρ0-zCDP for each counter. For

∑K
τ=1 ϕ(s̄

τ
h, ā

τ
h)ϕ(s̄

τ
h, ā

τ
h)

⊤ + λI and∑K
τ=1 ϕ (sτh, a

τ
h)ϕ (sτh, a

τ
h)

⊤
/σ̃2

h(s
τ
h, a

τ
h) + λI , according to Appendix D in [Redberg and Wang,

2021], the per-instance ℓ2 sensitivity is

∥∆x∥2 =
1√
2

sup
ϕ:∥ϕ∥2≤1

∥∥ϕϕ⊤∥∥
F
=

1√
2

sup
ϕ:∥ϕ∥2≤1

√∑
i,j

ϕ2
iϕ

2
j =

1√
2
.
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Therefore the use of Gaussian Mechanism (the additional noises K1,K2) also ensures ρ0-zCDP for705

each counter.12 Combining these results, according to Lemma F.17, the whole algorithm satisfies706

5Hρ0 = ρ-zCDP.707

E.3 Proof of the sub-optimality bound708

E.3.1 Utility analysis and some preparation709

We begin with the following high probability bound of the noises we add.710

Lemma E.2 (Utility analysis). Let L = 2H
√

d
ρ0

log( 10Hd
δ ) = 2H

√
5Hd log( 10Hd

δ )

ρ and711

E =
√

2d
ρ0

(
2 +

(
log(5c1H/δ)

c2d

) 2
3

)
=
√

10Hd
ρ

(
2 +

(
log(5c1H/δ)

c2d

) 2
3

)
for some universal constants712

c1, c2. Then with probability 1− δ, the following inequalities hold simultaneously:713

For allh ∈ [H], ∥ϕ1∥2 ≤ HL, ∥ϕ2∥2 ≤ L, ∥ϕ3∥2 ≤ L.

For allh ∈ [H], K1,K2 are symmetric and positive definite and ∥Ki∥2 ≤ E, i ∈ {1, 2}. (38)

Proof of Lemma E.2. The second line of (38) results from Lemma 19 in [Redberg and Wang, 2021]714

and Weyl’s Inequality. The first line of (38) directly results from the concentration inequality for715

Guassian distribution and a union bound.716

Define the Bellman update error ζh(s, a) := (ThṼh+1)(s, a)− Q̂h(s, a) and recall717

π̂h(s) = argmaxπh
⟨Q̂h(s, ·), πh(· | s)⟩A, then because of Lemma F.8,718

V π
1 (s)− V π̂

1 (s) ≤
H∑

h=1

Eπ [ζh(sh, ah) | s1 = s]−
H∑

h=1

Eπ̂ [ζh(sh, ah) | s1 = s] . (39)

Define T̃hṼh+1(·, ·) = ϕ(·, ·)⊤w̃h. Then similar to Lemma D.10, we have the following lemma719

showing that in order to bound the sub-optimality, it is sufficient to bound the pessimistic penalty.720

Lemma E.3 (Lemma C.1 in [Yin et al., 2022]). Suppose with probability 1 − δ, it holds for all721

s, a, h ∈ S × A × [H] that |(ThṼh+1 − T̃hṼh+1)(s, a)| ≤ Γh(s, a), then it implies ∀s, a, h ∈722

S ×A× [H], 0 ≤ ζh(s, a) ≤ 2Γh(s, a). Furthermore, with probability 1− δ, it holds for any policy723

π simultaneously,724

V π
1 (s)− V π̂

1 (s) ≤
H∑

h=1

2 · Eπ [Γh(sh, ah) | s1 = s] .

Proof of Lemma E.3. We first show given |(ThṼh+1 − T̃hṼh+1)(s, a)| ≤ Γh(s, a), then 0 ≤725

ζh(s, a) ≤ 2Γh(s, a), ∀s, a, h ∈ S ×A× [H].726

Step 1: The first step is to show 0 ≤ ζh(s, a), ∀s, a, h ∈ S ×A× [H].727

Indeed, if Q̄h(s, a) ≤ 0, then by definition Q̂h(s, a) = 0 and therefore ζh(s, a) := (ThṼh+1)(s, a)−728

Q̂h(s, a) = (ThṼh+1)(s, a) ≥ 0. If Q̄h(s, a) > 0, then Q̂h(s, a) ≤ Q̄h(s, a) and729

ζh(s, a) :=(ThṼh+1)(s, a)− Q̂h(s, a) ≥ (ThṼh+1)(s, a)− Q̄h(s, a)

=(ThṼh+1)(s, a)− (T̃hṼh+1)(s, a) + Γh(s, a) ≥ 0.

Step 2: The second step is to show ζh(s, a) ≤ 2Γh(s, a), ∀s, a, h ∈ S ×A× [H].730

Under the assumption that |(ThṼh+1 − T̃hṼh+1)(s, a)| ≤ Γh(s, a), we have

Q̄h(s, a) = (T̃hṼh+1)(s, a)− Γh(s, a) ≤ (ThṼh+1)(s, a) ≤ H − h+ 1,

12For more detailed explanation, we refer the readers to Appendix D of [Redberg and Wang, 2021].
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which implies that Q̂h(s, a) = max(Q̄h(s, a), 0). Therefore, it holds that731

ζh(s, a) :=(ThṼh+1)(s, a)− Q̂h(s, a) ≤ (ThṼh+1)(s, a)− Q̄h(s, a)

=(ThṼh+1)(s, a)− (T̃hṼh+1)(s, a) + Γh(s, a) ≤ 2 · Γh(s, a).

For the last statement, denote F := {0 ≤ ζh(s, a) ≤ 2Γh(s, a), ∀s, a, h ∈ S × A × [H]}. Note732

conditional on F, then by (39), V π
1 (s)− V π̂

1 (s) ≤
∑H

h=1 2 · Eπ[Γh(sh, ah) | s1 = s] holds for any733

policy π almost surely. Therefore,734

P

[
∀π, V π

1 (s)− V π̂
1 (s) ≤

H∑
h=1

2 · Eπ[Γh(sh, ah) | s1 = s].

]

=P

[
∀π, V π

1 (s)− V π̂
1 (s) ≤

H∑
h=1

2 · Eπ[Γh(sh, ah) | s1 = s]

∣∣∣∣∣F
]
· P[F]

+P

[
∀π, V π

1 (s)− V π̂
1 (s) ≤

H∑
h=1

2 · Eπ[Γh(sh, ah) | s1 = s]

∣∣∣∣∣Fc

]
· P[Fc]

≥P

[
∀π, V π

1 (s)− V π̂
1 (s) ≤

H∑
h=1

2 · Eπ[Γh(sh, ah) | s1 = s]

∣∣∣∣∣F
]
· P[F] = 1 · P[F] ≥ 1− δ,

which finishes the proof.735

E.3.2 Bound the pessimistic penalty736

By Lemma E.3, it remains to bound |(ThṼh+1)(s, a)−(T̃hṼh+1)(s, a)|. Suppose wh is the coefficient737

corresponding to the ThṼh+1 (such wh exists by Lemma F.14), i.e. ThṼh+1 = ϕ⊤wh, and recall738

(T̃hṼh+1)(s, a) = ϕ(s, a)⊤w̃h, then:739 (
ThṼh+1

)
(s, a)−

(
T̃hṼh+1

)
(s, a) = ϕ(s, a)⊤ (wh − w̃h)

=ϕ(s, a)⊤wh − ϕ(s, a)⊤Λ̃−1
h

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

))
/σ̃2

h(s
τ
h, a

τ
h) + ϕ3

)

=ϕ(s, a)⊤wh − ϕ(s, a)⊤Λ̂−1
h

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

))
/σ̃2

h(s
τ
h, a

τ
h)

)
︸ ︷︷ ︸

(i)

− ϕ(s, a)⊤Λ̂−1
h ϕ3︸ ︷︷ ︸

(ii)

+ϕ(s, a)⊤(Λ̂−1
h − Λ̃−1

h )

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

))
/σ̃2

h(s
τ
h, a

τ
h) + ϕ3

)
︸ ︷︷ ︸

(iii)

,

(40)
where Λ̂h = Λ̃h −K2 =

∑K
τ=1 ϕ (sτh, a

τ
h)ϕ (sτh, a

τ
h)

⊤
/σ̃2

h(s
τ
h, a

τ
h) + λI .740

Term (ii) can be handled by the following Lemma E.4741

Lemma E.4. Recall κ in Assumption 2.2. Under the high probability event in Lemma E.2, suppose742

K ≥ max

{
512H4·log( 2Hd

δ )
κ2 , 4λH2

κ

}
, then with probability 1− δ, for all s, a, h ∈ S × A × [H], it743

holds that744 ∣∣∣ϕ(s, a)⊤Λ̂−1
h ϕ3

∣∣∣ ≤ 4H2L/κ

K
.

Proof of Lemma E.4. Define Λ̃p
h = Eµ,h[σ̃

−2
h (s, a)ϕ(s, a)ϕ(s, a)⊤]. Then because of Assumption745

2.2 and σ̃h ≤ H , it holds that λmin(Λ̃
p
h) ≥ κ

H2 . Therefore, due to Lemma F.13, we have with746
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probability 1− δ,747 ∣∣∣ϕ(s, a)⊤Λ̂−1
h ϕ3

∣∣∣ ≤ ∥ϕ(s, a)∥Λ̂−1
h

· ∥ϕ3∥Λ̂−1
h

≤ 4

K
∥ϕ(s, a)∥(Λ̃p

h)
−1 · ∥ϕ3∥(Λ̃p

h)
−1

≤4L

K
∥(Λ̃p

h)
−1∥

≤4H2L/κ

K
.

The first inequality is because of Cauchy-Schwarz inequality. The second inequality holds with748

probability 1 − δ due to Lemma F.13 and a union bound. The third inequality holds because749 √
a⊤ ·A · a ≤

√
∥a∥2∥A∥2∥a∥2 = ∥a∥2

√
∥A∥2. The last inequality arises from ∥(Λ̃p

h)
−1∥ =750

λmax((Λ̃
p
h)

−1) = λ−1
min(Λ̃

p
h) ≤

H2

κ .751

The difference between Λ̃−1
h and Λ̂−1

h can be bounded by the following Lemma E.5752

Lemma E.5. Under the high probability event in Lemma E.2, suppose K ≥ 128H4 log 2dH
δ

κ2 , then with753

probability 1− δ, for all h ∈ [H], it holds that ∥Λ̂−1
h − Λ̃−1

h ∥ ≤ 4H4E/κ2

K2 .754

Proof of Lemma E.5. First of all, we have755

∥Λ̂−1
h − Λ̃−1

h ∥ = ∥Λ̂−1
h · (Λ̂h − Λ̃h) · Λ̃−1

h ∥
≤∥Λ̂−1

h ∥ · ∥Λ̂h − Λ̃h∥ · ∥Λ̃−1
h ∥

≤λ−1
min(Λ̂h) · λ−1

min(Λ̃h) · E.

(41)

The first inequality is because ∥A ·B∥ ≤ ∥A∥ · ∥B∥. The second inequality is due to Lemma E.2.756

Let Λ̂′
h = 1

K Λ̂h, then because of Lemma F.12, with probability 1− δ, it holds that for all h ∈ [H],∥∥∥∥Λ̂′
h − Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ̃2
h(s, a)]−

λ

K
Id

∥∥∥∥ ≤ 4
√
2√
K

(
log

2dH

δ

)1/2

,

which implies that when K ≥ 128H4 log 2dH
δ

κ2 , it holds that (according to Weyl’s Inequality)

λmin(Λ̂
′
h) ≥ λmin(Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ̃2
h(s, a)]) +

λ

K
− κ

2H2
≥ κ

2H2
.

Under this high probability event, we have λmin(Λ̂h) ≥ Kκ
2H2 and therefore λmin(Λ̃h) ≥ λmin(Λ̂h) ≥

Kκ
2H2 . Plugging these two results into (41), we have

∥Λ̂−1
h − Λ̃−1

h ∥ ≤ 4H4E/κ2

K2
.

757

Then we can bound term (iii) by the following Lemma E.6758

Lemma E.6. Suppose K ≥ max{ 128H4 log 2dH
δ

κ2 ,
√
2L√
dκ

}, under the high probability events in759

Lemma E.2 and Lemma E.5, it holds that for all s, a, h ∈ S ×A× [H],760 ∣∣∣∣∣ϕ(s, a)⊤(Λ̂−1
h − Λ̃−1

h )

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

))
/σ̃2

h(s
τ
h, a

τ
h) + ϕ3

)∣∣∣∣∣ ≤ 4
√
2H4E

√
d/κ3/2

K
.

Proof of Lemma E.6. First of all, the left hand side is bounded by∥∥∥∥∥(Λ̂−1
h − Λ̃−1

h )

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

))
/σ̃2

h(s
τ
h, a

τ
h)

)∥∥∥∥∥
2

+
4H4EL/κ2

K2
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due to Lemma E.5. Then the left hand side can be further bounded by761

H

K∑
τ=1

∥∥∥(Λ̂−1
h − Λ̃−1

h )ϕ (sτh, a
τ
h) /σ̃h(s

τ
h, a

τ
h)
∥∥∥
2
+

4H4EL/κ2

K2

≤H

K∑
τ=1

√√√√Tr

(
(Λ̂−1

h − Λ̃−1
h ) ·

ϕ (sτh, a
τ
h)ϕ (sτh, a

τ
h)

⊤

σ̃2
h(s

τ
h, a

τ
h)

· (Λ̂−1
h − Λ̃−1

h )

)
+

4H4EL/κ2

K2

≤H

√
K · Tr

(
(Λ̂−1

h − Λ̃−1
h ) · Λ̂h · (Λ̂−1

h − Λ̃−1
h )
)
+

4H4EL/κ2

K2

≤H

√
Kd · λmax

(
(Λ̂−1

h − Λ̃−1
h ) · Λ̂h · (Λ̂−1

h − Λ̃−1
h )
)
+

4H4EL/κ2

K2

=H

√
Kd ·

∥∥∥(Λ̂−1
h − Λ̃−1

h ) · Λ̂h · (Λ̂−1
h − Λ̃−1

h )
∥∥∥
2
+

4H4EL/κ2

K2

≤H

√
Kd ·

∥∥∥Λ̃−1
h

∥∥∥
2
·
∥∥∥Λ̃h − Λ̂h

∥∥∥
2
·
∥∥∥Λ̂−1

h − Λ̃−1
h

∥∥∥
2
+

4H4EL/κ2

K2

≤2
√
2H4E

√
d/κ3/2

K
+

4H4EL/κ2

K2

≤4
√
2H4E

√
d/κ3/2

K
.

The first inequality is because ∥a∥2 =
√
a⊤a =

√
Tr(aa⊤). The second inequality is due to762

Cauchy-Schwarz inequality. The third inequality is because for positive definite matrix A, it holds763

that Tr(A) =
∑d

i=1 λi(A) ≤ dλmax(A). The equation is because for symmetric, positive definite764

matrix A, ∥A∥2 = λmax(A). The forth inequality is due to ∥A ·B∥ ≤ ∥A∥ · ∥B∥. The fifth765

inequality is because of Lemma E.2, Lemma E.5 and the statement in the proof of Lemma E.5 that766

λmin(Λ̃h) ≥ Kκ
2H2 . The last inequality uses the assumption that K ≥

√
2L√
dκ

.767

Now the remaining part is term (i), we have768

ϕ(s, a)⊤wh − ϕ(s, a)⊤Λ̂−1
h

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

))
/σ̃2

h(s
τ
h, a

τ
h)

)
︸ ︷︷ ︸

(i)

=ϕ(s, a)⊤wh − ϕ(s, a)⊤Λ̂−1
h

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
ThṼh+1

)
(sτh, a

τ
h) /σ̃

2
h(s

τ
h, a

τ
h)

)
︸ ︷︷ ︸

(iv)

− ϕ(s, a)⊤Λ̂−1
h

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

)
−
(
ThṼh+1

)
(sτh, a

τ
h)
)
/σ̃2

h(s
τ
h, a

τ
h)

)
︸ ︷︷ ︸

(v)

.

(42)

We are able to bound term (iv) by the following Lemma E.7.769

Lemma E.7. Recall κ in Assumption 2.2. Under the high probability event in Lemma E.2, suppose770

K ≥ max

{
512H4·log( 2Hd

δ )
κ2 , 4λH2

κ

}
, then with probability 1− δ, for all s, a, h ∈ S ×A× [H],771

∣∣∣∣∣ϕ(s, a)⊤wh − ϕ(s, a)⊤Λ̂−1
h

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
ThṼh+1

)
(sτh, a

τ
h) /σ̃

2
h(s

τ
h, a

τ
h)

)∣∣∣∣∣ ≤ 8λH3
√
d/κ

K
.
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Proof of Lemma E.7. Recall ThṼh+1 = ϕ⊤wh and apply Lemma F.13, we obtain with probability772

1− δ, for all s, a, h ∈ S ×A× [H],773 ∣∣∣∣∣ϕ(s, a)⊤wh − ϕ(s, a)⊤Λ̂−1
h

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
ThṼh+1

)
(sτh, a

τ
h) /σ̃

2
h(s

τ
h, a

τ
h)

)∣∣∣∣∣
=

∣∣∣∣∣ϕ(s, a)⊤wh − ϕ(s, a)⊤Λ̂−1
h

(
K∑

τ=1

ϕ (sτh, a
τ
h) · ϕ(sτh, aτh)⊤wh/σ̃

2
h(s

τ
h, a

τ
h)

)∣∣∣∣∣
=
∣∣∣ϕ(s, a)⊤wh − ϕ(s, a)⊤Λ̂−1

h

(
Λ̂h − λI

)
wh

∣∣∣
=
∣∣∣λ · ϕ(s, a)⊤Λ̂−1

h wh

∣∣∣
≤λ ∥ϕ(s, a)∥Λ̂−1

h
· ∥wh∥Λ̂−1

h

≤4λ

K
∥ϕ(s, a)∥(Λ̃p

h)
−1 · ∥wh∥(Λ̃p

h)
−1

≤4λ

K
· 2H

√
d ·
∥∥∥(Λ̃p

h)
−1
∥∥∥

≤8λH3
√
d/κ

K
,

where Λ̃p
h := Eµ,h

[
σ̃h(s, a)

−2ϕ(s, a)ϕ(s, a)⊤
]
. The first inequality applies Cauchy-Schwarz in-774

equality. The second inequality holds with probability 1− δ due to Lemma F.13 and a union bound.775

The third inequality uses
√
a⊤ ·A · a ≤

√
∥a∥2 ∥A∥2 ∥a∥2 = ∥a∥2

√
∥A∥2 and ∥wh∥ ≤ 2H

√
d. Fi-776

nally, as λmin(Λ̃
p
h) ≥

κ
maxh,s,a σ̃h(s,a)2

≥ κ
H2 implies

∥∥∥(Λ̃p
h)

−1
∥∥∥ ≤ H2

κ , the last inequality holds.777

For term (v), denote: xτ =
ϕ(sτh,a

τ
h)

σ̃h(sτh,a
τ
h)
, ητ =

(
rτh + Ṽh+1

(
sτh+1

)
−
(
ThṼh+1

)
(sτh, a

τ
h)
)
/σ̃h(s

τ
h, a

τ
h),778

then by Cauchy-Schwarz inequality, it holds that for all h, s, a ∈ [H]× S ×A,779 ∣∣∣∣∣ϕ(s, a)⊤Λ̂−1
h

(
K∑

τ=1

ϕ (sτh, a
τ
h) ·

(
rτh + Ṽh+1

(
sτh+1

)
−
(
ThṼh+1

)
(sτh, a

τ
h)
)
/σ̃2

h(s
τ
h, a

τ
h)

)∣∣∣∣∣
≤
√
ϕ(s, a)⊤Λ̂−1

h ϕ(s, a) ·

∥∥∥∥∥
K∑

τ=1

xτητ

∥∥∥∥∥
Λ̂−1

h

.

(43)

We bound
√
ϕ(s, a)⊤Λ̂−1

h ϕ(s, a) by
√
ϕ(s, a)⊤Λ̃−1

h ϕ(s, a) using the following Lemma E.8.780

Lemma E.8. Suppose K ≥ max{ 128H4 log 2dH
δ

κ2 ,
√
2L√
dκ

}, under the high probability events in
Lemma E.2 and Lemma E.5, it holds that for all s, a, h ∈ S ×A× [H],√

ϕ(s, a)⊤Λ̂−1
h ϕ(s, a) ≤

√
ϕ(s, a)⊤Λ̃−1

h ϕ(s, a) +
2H2

√
E/κ

K
.

Proof of Lemma E.8.√
ϕ(s, a)⊤Λ̂−1

h ϕ(s, a) =

√
ϕ(s, a)⊤Λ̃−1

h ϕ(s, a) + ϕ(s, a)⊤(Λ̂−1
h − Λ̃−1

h )ϕ(s, a)

≤
√
ϕ(s, a)⊤Λ̃−1

h ϕ(s, a) +
∥∥∥Λ̂−1

h − Λ̃−1
h

∥∥∥
2

≤
√
ϕ(s, a)⊤Λ̃−1

h ϕ(s, a) +

√∥∥∥Λ̂−1
h − Λ̃−1

h

∥∥∥
2

≤
√
ϕ(s, a)⊤Λ̃−1

h ϕ(s, a) +
2H2

√
E/κ

K
.

(44)
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The first inequality uses |a⊤Aa| ≤ ∥a∥22 · ∥A∥. The second inequality is because for a, b ≥ 0,781 √
a+

√
b ≥

√
a+ b. The last inequality uses Lemma E.5.782

Remark E.9. Similarly, under the same assumption in Lemma E.8, we also have for all s, a, h ∈
S ×A× [H], √

ϕ(s, a)⊤Λ̃−1
h ϕ(s, a) ≤

√
ϕ(s, a)⊤Λ̂−1

h ϕ(s, a) +
2H2

√
E/κ

K
.

E.3.3 An intermediate result: bounding the variance783

Before we handle
∥∥∥∑K

τ=1 xτητ

∥∥∥
Λ̂−1

h

, we first bound suph

∥∥∥σ̃2
h − σ2

Ṽh+1

∥∥∥
∞

by the following784

Lemma E.10.785

Lemma E.10 (Private version of Lemma C.7 in [Yin et al., 2022]). Recall the definition of σ̃h(·, ·)2 =786

max{1, ṼarhṼh+1(·, ·)} in Algorithm 2 where
[
ṼarhṼh+1

]
(·, ·) =

〈
ϕ(·, ·), β̃h

〉
[0,(H−h+1)2] −787 [〈

ϕ(·, ·), θ̃h
〉
[0,H−h+1]

]2 (β̃h and θ̃h are defined in Algorithm 2) and σṼh+1
(·, ·)2 :=788

max{1,VarPh
Ṽh+1(·, ·)}. Suppose K ≥ max

{
512 log( 2Hd

δ )
κ2 , 4λ

κ ,
128 log 2dH

δ

κ2 ,
√
2L

H
√
dκ

}
and K ≥789

max{ 4L2

H2d3κ ,
32E2

d2κ2 ,
16λ2

d2κ }, under the high probability event in Lemma E.2, it holds that with proba-790

bility 1− 6δ,791

sup
h
||σ̃2

h − σ2
Ṽh+1

||∞ ≤ 36

√
H4d3

κK
log

(
(λ+K)2KdH2

λδ

)
.

Proof of Lemma E.10. Step 1: The first step is to show for all h, s, a ∈ [H]×S×A, with probability792

1− 3δ,793 ∣∣∣⟨ϕ(s, a), β̃h⟩[0,(H−h+1)2] − Ph(Ṽh+1)
2(s, a)

∣∣∣ ≤ 12

√
H4d3

κK
log

(
(λ+K)2KdH2

λδ

)
.

Proof of Step 1. We can bound the left hand side by the following decomposition:794 ∣∣∣⟨ϕ(s, a), β̃h⟩[0,(H−h+1)2] − Ph(Ṽh+1)
2(s, a)

∣∣∣ ≤ ∣∣∣⟨ϕ(s, a), β̃h⟩ − Ph(Ṽh+1)
2(s, a)

∣∣∣
=

∣∣∣∣∣ϕ(s, a)⊤Σ̃−1
h

(
K∑

τ=1

ϕ(s̄τh, ā
τ
h) · Ṽh+1(s̄

τ
h+1)

2 + ϕ1

)
− Ph(Ṽh+1)

2(s, a)

∣∣∣∣∣
≤

∣∣∣∣∣ϕ(s, a)⊤Σ̄−1
h

(
K∑

τ=1

ϕ(s̄τh, ā
τ
h) · Ṽh+1(s̄

τ
h+1)

2

)
− Ph(Ṽh+1)

2(s, a)

∣∣∣∣∣︸ ︷︷ ︸
(1)

+
∣∣∣ϕ(s, a)⊤Σ̄−1

h ϕ1

∣∣∣︸ ︷︷ ︸
(2)

+

∣∣∣∣∣ϕ(s, a)⊤(Σ̃−1
h − Σ̄−1

h )

(
K∑

τ=1

ϕ(s̄τh, ā
τ
h) · Ṽh+1(s̄

τ
h+1)

2 + ϕ1

)∣∣∣∣∣︸ ︷︷ ︸
(3)

,

where Σ̄h = Σ̃h −K1 =
∑K

τ=1 ϕ(s̄
τ
h, ā

τ
h)ϕ(s̄

τ
h, ā

τ
h)

⊤ + λI .795

Similar to the proof in Lemma E.5, when K ≥ max{ 128 log 2dH
δ

κ2 ,
√
2L

H
√
dκ

}, it holds that with probability
1− δ, for all h ∈ [H],

λmin(Σ̄h) ≥
Kκ

2
, λmin(Σ̃h) ≥

Kκ

2
,
∥∥∥Σ̃−1

h − Σ̄−1
h

∥∥∥
2
≤ 4E/κ2

K2
.

(The only difference to Lemma E.5 is here Eµ,h[ϕ(s, a)ϕ(s, a)
⊤] ≥ κ.)796

Under this high probability event, for term (2), it holds that for all h, s, a ∈ [H]× S ×A,797 ∣∣ϕ(s, a)⊤Σ̄−1
h ϕ1

∣∣ ≤ ∥ϕ(s, a)∥ ·
∥∥Σ̄−1

h

∥∥ · ∥ϕ1∥ ≤ λ−1
min(Σ̄h) ·HL ≤ 2HL/κ

K
. (45)
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For term (3), similar to Lemma E.6, we have for all h, s, a ∈ [H]× S ×A,798 ∣∣∣∣∣ϕ(s, a)⊤(Σ̃−1
h − Σ̄−1

h )

(
K∑

τ=1

ϕ(s̄τh, ā
τ
h) · Ṽh+1(s̄

τ
h+1)

2 + ϕ1

)∣∣∣∣∣ ≤ 4
√
2H2E

√
d/κ3/2

K
. (46)

(The only difference to Lemma E.6 is that here Ṽh+1(s)
2 ≤ H2, ∥ϕ1∥2 ≤ HL,

∥∥∥Σ̃−1
h

∥∥∥
2
≤ 2

Kκ and799 ∥∥∥Σ̃−1
h − Σ̄−1

h

∥∥∥
2
≤ 4E/κ2

K2 .)800

We further decompose term (1) as below.801

(1) =

∣∣∣∣∣ϕ(s, a)⊤Σ̄−1
h

(
K∑

τ=1

ϕ(s̄τh, ā
τ
h) · Ṽh+1(s̄

τ
h+1)

2

)
− Ph(Ṽh+1)

2(s, a)

∣∣∣∣∣
=

∣∣∣∣∣ϕ(s, a)⊤Σ̄−1
h

K∑
τ=1

ϕ(s̄τh, ā
τ
h) · Ṽh+1(s̄

τ
h+1)

2 − ϕ(s, a)⊤Σ̄−1
h (

K∑
τ=1

ϕ(s̄τh, ā
τ
h)ϕ(s̄

τ
h, ā

τ
h)

⊤ + λI)

∫
S
(Ṽh+1)

2(s′)dνh(s
′)

∣∣∣∣∣
≤

∣∣∣∣∣ϕ(s, a)⊤Σ̄−1
h

K∑
τ=1

ϕ(s̄τh, ā
τ
h) ·

(
Ṽh+1(s̄

τ
h+1)

2 − Ph(Ṽh+1)
2(s̄τh, ā

τ
h)
)∣∣∣∣∣︸ ︷︷ ︸

(4)

+λ

∣∣∣∣ϕ(s, a)⊤Σ̄−1
h

∫
S
(Ṽh+1)

2(s′)dνh(s
′)

∣∣∣∣︸ ︷︷ ︸
(5)

.

(47)

For term (5), because K ≥ max

{
512 log( 2Hd

δ )
κ2 , 4λ

κ

}
, by Lemma F.13 and a union bound, with802

probability 1− δ, for all h, s, a ∈ [H]× S ×A,803

λ

∣∣∣∣ϕ(s, a)⊤Σ̄−1
h

∫
S
(Ṽh+1)

2(s′)dνh(s
′)

∣∣∣∣ ≤ λ ∥ϕ(s, a)∥Σ̄−1
h

∥∥∥∥∫
S
(Ṽh+1)

2(s′)dνh(s
′)

∥∥∥∥
Σ̄−1

h

≤λ
2√
K

∥ϕ(s, a)∥(Σp
h)

−1

2√
K

∥∥∥∥∫
S
(Ṽh+1)

2(s′)dνh(s
′)

∥∥∥∥
(Σp

h)
−1

≤ 4λ
∥∥(Σp

h)
−1
∥∥ H2

√
d

K
≤ 4λ

H2
√
d

κK
,

(48)
where Σp

h = Eµ,h[ϕ(s, a)ϕ(s, a)
⊤] and λmin(Σ

p
h) ≥ κ.804

For term (4), it can be bounded by the following inequality (because of Cauchy-Schwarz inequality).805

(4) ≤ ∥ϕ(s, a)∥Σ̄−1
h

·

∥∥∥∥∥
K∑

τ=1

ϕ(s̄τh, ā
τ
h) ·

(
Ṽh+1(s̄

τ
h+1)

2 − Ph(Ṽh+1)
2(s̄τh, ā

τ
h)
)∥∥∥∥∥

Σ̄−1
h

. (49)

Bounding using covering. Note for any fix Vh+1, we can define xτ = ϕ(s̄τh, ā
τ
h) (∥ϕ∥2 ≤ 1) and806

ητ = Vh+1(s̄
τ
h+1)

2 − Ph(Vh+1)
2(s̄τh, ā

τ
h) is H2-subgaussian, by Lemma F.9 (where t = K and807

L = 1), it holds that with probability 1− δ,808 ∥∥∥∥∥
K∑

τ=1

ϕ(s̄τh, ā
τ
h) ·

(
Vh+1(s̄

τ
h+1)

2 − Ph(Vh+1)
2(s̄τh, ā

τ
h)
)∥∥∥∥∥

Σ̄−1
h

≤

√
8H4 · d

2
log

(
λ+K

λδ

)
.

Let Nh(ϵ) be the minimal ϵ-cover (with respect to the supremum norm) of809

Vh :=

{
Vh : Vh(·) = maxa∈A{min{ϕ(s, a)⊤θ − C1

√
d · ϕ(·, ·)⊤Λ̃−1

h ϕ(·, ·)− C2, H − h+ 1}+}
}
.810

That is, for any V ∈ Vh, there exists a value function V ′ ∈ Nh(ϵ) such that811

sups∈S |V (s)− V ′(s)| < ϵ. Now by a union bound, we obtain with probability 1− δ,812

sup
Vh+1∈Nh+1(ϵ)

∥∥∥∥∥
K∑

τ=1

ϕ(s̄τh, ā
τ
h) ·

(
Vh+1(s̄

τ
h+1)

2 − Ph(Vh+1)
2(s̄τh, ā

τ
h)
)∥∥∥∥∥

Σ̄−1
h

≤

√
8H4 · d

2
log

(
λ+K

λδ
|Nh+1(ϵ)|

)
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which implies813 ∥∥∥∥∥
K∑

τ=1

ϕ(s̄τh, ā
τ
h) ·

(
Ṽh+1(s̄

τ
h+1)

2 − Ph(Ṽh+1)
2(s̄τh, ā

τ
h)
)∥∥∥∥∥

Σ̄−1
h

≤

√
8H4 · d

2
log

(
λ+K

λδ
|Nh+1(ϵ)|

)
+ 4H2

√
ϵ2K2/λ

choosing ϵ = d
√
λ/K, applying Lemma B.3 of [Jin et al., 2021]13 to the covering number Nh+1(ϵ)814

w.r.t. Vh+1, we can further bound above by815

≤

√
8H4 · d

3

2
log

(
λ+K

λδ
2dHK

)
+ 4H2

√
d2 ≤ 6

√
H4 · d3 log

(
λ+K

λδ
2dHK

)
Apply a union bound for h ∈ [H], we have with probability 1− δ, for all h ∈ [H],816 ∥∥∥∥∥

K∑
τ=1

ϕ(s̄τh, ā
τ
h) ·

(
Ṽh+1(s̄

τ
h+1)

2 − Ph(Ṽh+1)
2(s̄τh, ā

τ
h)
)∥∥∥∥∥

Σ̄−1
h

≤ 6

√
H4d3 log

(
(λ+K)2KdH2

λδ

)
(50)

and similar to term (2), it holds that for all h, s, a ∈ [H]× S ×A,817

∥ϕ(s, a)∥Σ̄−1
h

≤
√∥∥Σ̄−1

h

∥∥ ≤
√

2

κK
. (51)

Combining (45), (46), (47), (48), (49), (50), (51) and the assumption that K ≥818

max{ 4L2

H2d3κ ,
32E2

d2κ2 ,
16λ2

d2κ }, we obtain with probability 1− 3δ for all h, s, a ∈ [H]× S ×A,819 ∣∣∣⟨ϕ(s, a), β̃h⟩[0,(H−h+1)2] − Ph(Ṽh+1)
2(s, a)

∣∣∣ ≤ 12

√
H4d3

κK
log

(
(λ+K)2KdH2

λδ

)
.

Step 2: The second step is to show for all h, s, a ∈ [H]× S ×A, with probability 1− 3δ,820 ∣∣∣⟨ϕ(s, a), θ̃h⟩[0,H−h+1] − Ph(Ṽh+1)(s, a)
∣∣∣ ≤ 12

√
H2d3

κK
log

(
(λ+K)2KdH2

λδ

)
. (52)

The proof of Step 2 is nearly identical to Step 1 except Ṽ 2
h is replaced by Ṽh.821

Step 3: The last step is to prove suph||σ̃2
h − σ2

Ṽh+1
||∞ ≤ 36

√
H4d3

κK log
(

(λ+K)2KdH2

λδ

)
with high822

probability.823

Proof of Step 3. By (52),824 ∣∣∣[〈ϕ(·, ·), θ̃h〉[0,H−h+1]

]2 − [Ph(Ṽh+1)(s, a)
]2∣∣∣

=
∣∣∣⟨ϕ(s, a), θ̃h⟩[0,H−h+1] + Ph(Ṽh+1)(s, a)

∣∣∣ · ∣∣∣⟨ϕ(s, a), θ̃h⟩[0,H−h+1] − Ph(Ṽh+1)(s, a)
∣∣∣

≤2H ·
∣∣∣⟨ϕ(s, a), θ̃h⟩[0,H−h+1] − Ph(Ṽh+1)(s, a)

∣∣∣ ≤ 24

√
H4d3

κK
log

(
(λ+K)2KdH2

λδ

)
.

Combining this with Step 1, we have with probability 1− 6δ, ∀h, s, a ∈ [H]× S ×A,825 ∣∣∣∣ṼarhṼh+1(s, a)−VarPh
Ṽh+1(s, a)

∣∣∣∣ ≤ 36

√
H4d3

κK
log

(
(λ+K)2KdH2

λδ

)
.

Finally, by the non-expansiveness of operator max{1, ·}, the proof is complete.826

13Note that the conclusion in [Jin et al., 2021] hold here even though we have an extra constant C2.
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E.3.4 Validity of our pessimism827

Recall the definition Λ̂h =
∑K

τ=1 ϕ (sτh, a
τ
h)ϕ (sτh, a

τ
h)

⊤
/σ̃2

h(s
τ
h, a

τ
h) + λ · I and828

Λh =
∑K

τ=1 ϕ(s
τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤/σ2
Ṽh+1

(sτh, a
τ
h)+λI . Then we have the following lemma to bound829

the term
√
ϕ(s, a)⊤Λ̂−1

h ϕ(s, a) by
√
ϕ(s, a)⊤Λ−1

h ϕ(s, a).830

Lemma E.11 (Private version of lemma C.3 in [Yin et al., 2022]). Denote the quantities C1 =831

max{2λ, 128 log(2dH/δ), 128H4 log(2dH/δ)
κ2 } and C2 = Õ(H12d3/κ5). Suppose the number of832

episode K satisfies K > max{C1, C2} and the condition in Lemma E.10, under the high probability833

events in Lemma E.2 and Lemma E.10, it holds that with probability 1 − 2δ, for all h, s, a ∈834

[H]× S ×A,835 √
ϕ(s, a)⊤Λ̂−1

h ϕ(s, a) ≤ 2
√
ϕ(s, a)⊤Λ−1

h ϕ(s, a).

Proof of Lemma E.11. By definition
√
ϕ(s, a)⊤Λ̂−1

h ϕ(s, a) = ∥ϕ(s, a)∥Λ̂−1
h

. Then denote836

Λ̂′
h =

1

K
Λ̂h, Λ′

h =
1

K
Λh,

where Λh =
∑K

τ=1 ϕ(s
τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤/σ2
Ṽh+1

(sτh, a
τ
h) + λI . Under the assumption of K, by the837

conclusion in Lemma E.10, we have838 ∥∥∥Λ̂′
h − Λ′

h

∥∥∥ ≤ sup
s,a

∥∥∥∥∥ϕ(s, a)ϕ(s, a)⊤σ̃2
h(s, a)

− ϕ(s, a)ϕ(s, a)⊤

σ2
Ṽh+1

(s, a)

∥∥∥∥∥
≤ sup

s,a

∣∣∣∣∣ σ̃
2
h(s, a)− σ2

Ṽh+1
(s, a)

σ̃2
h(s, a) · σ2

Ṽh+1
(s, a)

∣∣∣∣∣ · ∥ϕ(s, a)∥2
≤ sup

s,a

∣∣∣∣∣ σ̃
2
h(s, a)− σ2

Ṽh+1
(s, a)

1

∣∣∣∣∣ · 1
≤36

√
H4d3

κK
log

(
(λ+K)2KdH2

λδ

)
.

(53)

Next by Lemma F.12 (with ϕ to be ϕ/σṼh+1
and therefore C = 1) and a union bound, it holds with839

probability 1− δ, for all h ∈ [H],840 ∥∥∥∥Λ′
h −

(
Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
Ṽh+1

(s, a)] +
λ

K
Id

)∥∥∥∥ ≤ 4
√
2√
K

(
log

2dH

δ

)1/2

.

Therefore by Weyl’s inequality and the assumption that K satisfies that841

K > max{2λ, 128 log(2dH/δ), 128H4 log(2dH/δ)
κ2 }, the above inequality leads to842

∥Λ′
h∥ =λmax(Λ

′
h) ≤ λmax

(
Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
Ṽh+1

(s, a)]
)
+

λ

K
+

4
√
2√
K

(
log

2dH

δ

)1/2

=
∥∥∥Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
Ṽh+1

(s, a)]
∥∥∥
2
+

λ

K
+

4
√
2√
K

(
log

2dH

δ

)1/2

≤∥ϕ(s, a)∥2 + λ

K
+

4
√
2√
K

(
log

2dH

δ

)1/2

≤ 1 +
λ

K
+

4
√
2√
K

(
log

2dH

δ

)1/2

≤ 2,

λmin(Λ
′
h) ≥λmin

(
Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
Ṽh+1

(s, a)]
)
+

λ

K
− 4

√
2√
K

(
log

2dH

δ

)1/2

≥λmin

(
Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
Ṽh+1

(s, a)]
)
− 4

√
2√
K

(
log

2dH

δ

)1/2

≥ κ

H2
− 4

√
2√
K

(
log

2dH

δ

)1/2

≥ κ

2H2
.

33



Hence with probability 1− δ, ∥Λ′
h∥ ≤ 2 and

∥∥Λ′−1
h

∥∥ = λ−1
min(Λ

′
h) ≤ 2H2

κ . Similarly, one can show843 ∥∥∥Λ̂′−1
h

∥∥∥ ≤ 2H2

κ with probability 1− δ using identical proof.844

Now apply Lemma F.11 and a union bound to Λ̂′
h and Λ′

h, we obtain with probability 1− δ, for all845

h, s, a ∈ [H]× S ×A,846

∥ϕ(s, a)∥Λ̂′−1
h

≤

[
1 +

√∥∥Λ′−1
h

∥∥ · ∥Λ′
h∥ ·

∥∥∥Λ̂′−1
h

∥∥∥ · ∥∥∥Λ̂′
h − Λ′

h

∥∥∥] · ∥ϕ(s, a)∥Λ′−1
h

≤

[
1 +

√
2H2

κ
· 2 · 2H

2

κ
·
∥∥∥Λ̂′

h − Λ′
h

∥∥∥] · ∥ϕ(s, a)∥Λ′−1
h

≤

1 +
√√√√288H4

κ2

(√
H4d3

κK
log

(
(λ+K)2KdH2

λδ

)) · ∥ϕ(s, a)∥Λ′−1
h

≤2 ∥ϕ(s, a)∥Λ′−1
h

where the third inequality uses (53) and the last inequality uses K > Õ(H12d3/κ5). Note the847

conclusion can be derived directly by the above inequality multiplying 1/
√
K on both sides.848

In order to bound
∥∥∥∑K

τ=1 xτητ

∥∥∥
Λ̂−1

h

, we apply the following Lemma E.12.849

Lemma E.12 (Lemma C.4 in [Yin et al., 2022]). Recall xτ =
ϕ(sτh,a

τ
h)

σ̃h(sτh,a
τ
h)

and850

ητ =
(
rτh + Ṽh+1

(
sτh+1

)
−
(
ThṼh+1

)
(sτh, a

τ
h)
)
/σ̃h(s

τ
h, a

τ
h). Denote851

ξ := sup
V ∈[0,H], s′∼Ph(s,a), h∈[H]

∣∣∣∣rh + V (s′)− (ThV ) (s, a)

σV (s, a)

∣∣∣∣ .
Suppose K ≥ Õ(H12d3/κ5)14, then with probability 1− δ,852 ∥∥∥∥∥

K∑
τ=1

xτητ

∥∥∥∥∥
Λ̂−1

h

≤ Õ
(
max

{√
d, ξ
})

,

where Õ absorbs constants and Polylog terms.853

Now we are ready to prove the following key lemma, which gives a high probability bound for854 ∣∣∣(ThṼh+1 − T̃hṼh+1)(s, a)
∣∣∣.855

Lemma E.13. Assume K > max{M1,M2,M3,M4}, for any 0 < λ < κ, suppose
√
d > ξ,856

where ξ := supV ∈[0,H], s′∼Ph(s,a), h∈[H]

∣∣∣∣ rh+V (s′)−(ThV )(s,a)

σV (s,a)

∣∣∣∣. Then with probability 1− δ, for all857

h, s, a ∈ [H]× S ×A,858 ∣∣∣(ThṼh+1 − T̃hṼh+1)(s, a)
∣∣∣ ≤ Õ

(√
d

√
ϕ(s, a)⊤Λ̃−1

h ϕ(s, a)

)
+

D

K
,

where Λ̃h =
∑K

τ=1 ϕ(s
τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤/σ̃2
h(s

τ
h, a

τ
h) + λI +K2,

D = Õ

(
H2L

κ
+

H4E
√
d

κ3/2
+H3

√
d+

H2
√
Ed

κ

)
= Õ

(
H2L

κ
+

H4E
√
d

κ3/2
+H3

√
d

)
and Õ absorbs constants and Polylog terms.859

14Note that here the assumption is stronger than the assumption in [Yin et al., 2022], therefore the conclusion
of Lemma C.4 holds.
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Proof of Lemma E.13. The proof is by combining (40), (42), Lemma E.4, Lemma E.6, Lemma E.7,860

Lemma E.8, Lemma E.12 and a union bound.861

Remark E.14. Under the same assumption of Lemma E.13, because of Remark E.9 and Lemma E.11,862

we have with probability 1− δ, for all h, s, a ∈ [H]× S ×A,863 ∣∣∣(ThṼh+1 − T̃hṼh+1)(s, a)
∣∣∣ ≤ Õ

(√
d

√
ϕ(s, a)⊤Λ̃−1

h ϕ(s, a)

)
+

D

K

≤Õ

(√
d

√
ϕ(s, a)⊤Λ̂−1

h ϕ(s, a)

)
+

2D

K

≤Õ

(
2
√
d
√
ϕ(s, a)⊤Λ−1

h ϕ(s, a)

)
+

2D

K
.

(54)

Because D = Õ
(

H2L
κ + H4E

√
d

κ3/2 +H3
√
d
)

and Õ absorbs constant, we will write as below for864

simplicity:865 ∣∣∣(ThṼh+1 − T̃hṼh+1)(s, a)
∣∣∣ ≤ Õ

(√
d
√

ϕ(s, a)⊤Λ−1
h ϕ(s, a)

)
+

D

K
. (55)

E.3.5 Finalize the proof of the first part866

We are ready to prove the first part of Theorem 4.1.867

Theorem E.15 (First part of Theorem 4.1). Let K be the number of episodes. Suppose
√
d > ξ, where868

ξ := supV ∈[0,H], s′∼Ph(s,a), h∈[H]

∣∣∣∣ rh+V (s′)−(ThV )(s,a)

σV (s,a)

∣∣∣∣ and K > max{M1,M2,M3,M4}.869

Then for any 0 < λ < κ, with probability 1 − δ, for all policy π simultaneously, the output π̂870

of Algorithm 2 satisfies871

vπ − vπ̂ ≤ Õ

(
√
d ·

H∑
h=1

Eπ

[(
ϕ(·, ·)⊤Λ−1

h ϕ(·, ·)
)1/2])

+
DH

K
,

where Λh =
∑K

τ=1
ϕ(sτh,a

τ
h)·ϕ(s

τ
h,a

τ
h)

⊤

σ2
Ṽh+1(sτ

h
,aτ

h
)

+ λId, D = Õ
(

H2L
κ + H4E

√
d

κ3/2 +H3
√
d
)

and Õ absorbs872

constants and Polylog terms.873

Proof of Theorem E.15. Combining Lemma E.3 and Remark E.14, we have with probability 1− δ,874

for all policy π simultaneously,875

V π
1 (s)− V π̂

1 (s) ≤ Õ

(
√
d ·

H∑
h=1

Eπ

[(
ϕ(·, ·)⊤Λ−1

h ϕ(·, ·)
)1/2∣∣∣s1 = s

])
+

DH

K
, (56)

now the proof is complete by taking the initial distribution d1 on both sides.876

E.3.6 Finalize the proof of the second part877

To prove the second part of Theorem 4.1, we begin with a crude bound on suph

∥∥∥V ⋆
h − Ṽh

∥∥∥
∞

.878

Lemma E.16 (Private version of Lemma C.8 in [Yin et al., 2022]). Suppose K ≥879

max{M1,M2,M3,M4}, under the high probability event in Lemma E.13, with probability at880

least 1− δ,881

sup
h

∥∥∥V ⋆
h − Ṽh

∥∥∥
∞

≤ Õ

(
H2

√
d√

κK

)
.

Proof of Lemma E.16. Step 1: The first step is to show with probability at least 1 − δ,882

suph
∥∥V ⋆

h − V π̂
h

∥∥
∞ ≤ Õ

(
H2

√
d√

κK

)
.883
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Indeed, combine Lemma E.3 and Lemma E.13, similar to the proof of Theorem E.15, we directly884

have with probability 1− δ, for all policy π simultaneously, and for all s ∈ S, h ∈ [H],885

V π
h (s)− V π̂

h (s) ≤ Õ

(
√
d ·

H∑
t=h

Eπ

[(
ϕ(·, ·)⊤Λ−1

t ϕ(·, ·)
)1/2∣∣∣sh = s

])
+

DH

K
, (57)

Next, since K ≥ max

{
512 log( 2Hd

δ )
κ2 , 4λ

κ

}
, by Lemma F.13 and a union bound over h ∈ [H], with886

probability 1− δ,887

sup
s,a

∥ϕ(s, a)∥Λ−1
h

≤ 2√
K

sup
s,a

∥ϕ(s, a)∥(Λp
h)

−1 ≤ 2√
K

√
λ−1
min(Λ

p
h) ≤

2H√
κK

, ∀h ∈ [H],

where Λp
h = Eµ,h[σ

−2

Ṽh+1
(s, a)ϕ(s, a)ϕ(s, a)⊤] and λmin(Λ

p
h) ≥

κ
H2 .888

Lastly, taking π = π⋆ in (57) to obtain889

0 ≤ V π⋆

h (s)− V π̂
h (s) ≤Õ

(
√
d ·

H∑
t=h

Eπ⋆

[(
ϕ(·, ·)⊤Λ−1

t ϕ(·, ·)
)1/2∣∣∣sh = s

])
+

DH

K

≤Õ

(
H2

√
d√

κK

)
+ Õ

(
H3L/κ

K
+

H5E
√
d/κ3/2

K
+

H4
√
d

K

)
.

(58)

This implies by using the condition K > max{H2L2

dκ , H6E2

κ2 , H4κ}, we finish the proof of Step 1.890

Step 2: The second step is to show with probability 1− δ, suph
∥∥∥Ṽh − V π̂

h

∥∥∥
∞

≤ Õ
(

H2
√
d√

κK

)
.891

Indeed, applying Lemma F.7 with π = π′ = π̂, then with probability 1− δ, for all s, h892 ∣∣∣Ṽh(s)− V π̂
h (s)

∣∣∣ = ∣∣∣∣∣
H∑
t=h

Eπ̂

[
Q̂h(sh, ah)−

(
ThṼh+1

)
(sh, ah)

∣∣∣sh = s
]∣∣∣∣∣

≤
H∑
t=h

∥∥∥(T̃hṼh+1 − ThṼh+1)(s, a)
∥∥∥
∞

+H · ∥Γh(s, a)∥∞

≤Õ

(
H
√
d

∥∥∥∥√ϕ(s, a)⊤Λ−1
h ϕ(s, a)

∥∥∥∥
∞

)
+ Õ

(
DH

K

)
≤Õ

(
H2

√
d√

κK

)
,

where the second inequality uses Lemma E.13, Remark E.14 and the last inequality holds due to the893

same reason as Step 1.894

Step 3: The proof of the lemma is complete by combining Step 1, Step 2, triangular inequality and a895

union bound.896

897

Then we can give a high probability bound of suph||σ2
Ṽh+1

− σ⋆2
h ||∞.898

Lemma E.17 (Private version of Lemma C.10 in [Yin et al., 2022]). Recall σ2
Ṽh+1

=899

max
{
1,VarPh

Ṽh+1

}
and σ⋆2

h = max
{
1,VarPh

V ⋆
h+1

}
. Suppose K ≥ max{M1,M2,M3,M4},900

then with probability 1− δ,901

sup
h
||σ2

Ṽh+1
− σ⋆2

h ||∞ ≤ Õ

(
H3

√
d√

κK

)
.
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Proof of Lemma E.17. By definition and the non-expansiveness of max{1, ·}, we have902 ∥∥∥σ2
Ṽh+1

− σ⋆2
h

∥∥∥
∞

≤
∥∥∥VarṼh+1 −VarV ⋆

h+1

∥∥∥
∞

≤
∥∥∥Ph

(
Ṽ 2
h+1 − V ⋆2

h+1

)∥∥∥
∞

+
∥∥∥(PhṼh+1)

2 − (PhV
⋆
h+1)

2
∥∥∥
∞

≤
∥∥∥Ṽ 2

h+1 − V ⋆2
h+1

∥∥∥
∞

+
∥∥∥(PhṼh+1 + PhV

⋆
h+1)(PhṼh+1 − PhV

⋆
h+1)

∥∥∥
∞

≤2H
∥∥∥Ṽh+1 − V ⋆

h+1

∥∥∥
∞

+ 2H
∥∥∥PhṼh+1 − PhV

⋆
h+1

∥∥∥
∞

≤Õ

(
H3

√
d√

κK

)
.

The second inequality is because of the definition of variance. The last inequality comes from903

Lemma E.16.904

We transfer
√
ϕ(s, a)⊤Λ−1

h ϕ(s, a) to
√
ϕ(s, a)⊤Λ⋆−1

h ϕ(s, a) by the following Lemma E.18.905

Lemma E.18 (Private version of Lemma C.11 in [Yin et al., 2022]). Suppose K ≥906

max{M1,M2,M3,M4}, then with probability 1− δ,907

√
ϕ(s, a)⊤Λ−1

h ϕ(s, a) ≤ 2
√

ϕ(s, a)⊤Λ⋆−1
h ϕ(s, a), ∀h, s, a ∈ [H]× S ×A,

Proof of Lemma E.18. By definition
√
ϕ(s, a)⊤Λ−1

h ϕ(s, a) = ∥ϕ(s, a)∥Λ−1
h

. Then denote908

Λ′
h =

1

K
Λh, Λ⋆′

h =
1

K
Λ⋆
h,

where Λ⋆
h =

∑K
τ=1 ϕ(s

τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤/σ2
V ⋆
h+1

(sτh, a
τ
h) + λI . Under the condition of K, by909

Lemma E.17, with probability 1− δ, for all h ∈ [H],910

∥∥∥Λ⋆′

h − Λ′
h

∥∥∥ ≤ sup
s,a

∥∥∥∥∥ϕ(s, a)ϕ(s, a)⊤σ⋆2
h (s, a)

− ϕ(s, a)ϕ(s, a)⊤

σ2
Ṽh+1

(s, a)

∥∥∥∥∥
≤ sup

s,a

∣∣∣∣∣σ
⋆2
h (s, a)− σ2

Ṽh+1
(s, a)

σ⋆2
h (s, a) · σ2

Ṽh+1
(s, a)

∣∣∣∣∣ · ∥ϕ(s, a)∥2
≤ sup

s,a

∣∣∣∣∣σ
⋆2
h (s, a)− σ2

Ṽh+1
(s, a)

1

∣∣∣∣∣ · 1
≤Õ

(
H3

√
d√

κK

)
.

(59)

Next by Lemma F.12 (with ϕ to be ϕ/σV ⋆
h+1

and C = 1), it holds with probability 1− δ,911

∥∥∥∥Λ⋆′

h −
(
Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
V ⋆
h+1

(s, a)] +
λ

K
Id

)∥∥∥∥ ≤ 4
√
2√
K

(
log

2dH

δ

)1/2

.
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Therefore by Weyl’s inequality and the condition K > max{2λ, 128 log
(
2dH
δ

)
, 128H4 log(2dH/δ)

κ2 },912

the above inequality implies913 ∥∥∥Λ⋆′

h

∥∥∥ =λmax(Λ
⋆′

h ) ≤ λmax

(
Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
V ⋆
h+1

(s, a)]
)
+

λ

K
+

4
√
2√
K

(
log

2dH

δ

)1/2

≤
∥∥∥Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
V ⋆
h+1

(s, a)]
∥∥∥+ λ

K
+

4
√
2√
K

(
log

2dH

δ

)1/2

≤∥ϕ(s, a)∥2 + λ

K
+

4
√
2√
K

(
log

2dH

δ

)1/2

≤ 1 +
λ

K
+

4
√
2√
K

(
log

2dH

δ

)1/2

≤ 2,

λmin(Λ
⋆′

h ) ≥λmin

(
Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
V ⋆
h+1

(s, a)]
)
+

λ

K
− 4

√
2√
K

(
log

2dH

δ

)1/2

≥λmin

(
Eµ,h[ϕ(s, a)ϕ(s, a)

⊤/σ2
V ⋆
h+1

(s, a)]
)
− 4

√
2√
K

(
log

2dH

δ

)1/2

≥ κ

H2
− 4

√
2√
K

(
log

2dH

δ

)1/2

≥ κ

2H2
.

Hence with probability 1− δ,
∥∥∥Λ⋆′

h

∥∥∥ ≤ 2 and
∥∥∥Λ⋆′−1

h

∥∥∥ = λ−1
min(Λ

⋆′

h ) ≤ 2H2

κ . Similarly, we can show914

that
∥∥∥Λ′−1

h

∥∥∥ ≤ 2H2

κ holds with probability 1− δ by using identical proof.915

Now apply Lemma F.11 and a union bound to Λ⋆′

h and Λ′
h, we obtain with probability 1− δ, for all916

h, s, a ∈ [H]× S ×A,917

∥ϕ(s, a)∥Λ′−1
h

≤
[
1 +

√∥∥Λ⋆′−1
h

∥∥ · ∥∥Λ⋆′
h

∥∥ · ∥∥Λ′−1
h

∥∥ · ∥∥Λ⋆′
h − Λ′

h

∥∥] · ∥ϕ(s, a)∥
Λ⋆′−1

h

≤

[
1 +

√
2H2

κ
· 2 · 2H

2

κ
·
∥∥Λ⋆′

h − Λ′
h

∥∥] · ∥ϕ(s, a)∥
Λ⋆′−1

h

≤

1 +
√√√√H4

κ2

[
Õ

(
H3

√
d√

κK

)] · ∥ϕ(s, a)∥
Λ⋆′−1

h

≤2 ∥ϕ(s, a)∥
Λ⋆′−1

h

where the third inequality uses (59) and the last inequality uses K ≥ Õ(H14d/κ5). The conclusion918

can be derived directly by the above inequality multiplying 1/
√
K on both sides.919

Finally, the second part of Theorem 4.1 can be proven by combining Theorem E.15 (with π = π⋆)920

and Lemma E.18.921

E.4 Put everything toghther922

Combining Lemma E.1, Theorem E.15, and the discussion above, the proof of Theorem 4.1 is923

complete.924

F Assisting technical lemmas925

Lemma F.1 (Multiplicative Chernoff bound [Chernoff et al., 1952]). Let X be a Binomial random
variable with parameter p, n. For any 1 ≥ θ > 0, we have that

P[X < (1− θ)pn] < e−
θ2pn

2 , and P[X ≥ (1 + θ)pn] < e−
θ2pn

3

Lemma F.2 (Hoeffding’s Inequality [Sridharan, 2002]). Let x1, ..., xn be independent bounded
random variables such that E[xi] = 0 and |xi| ≤ ξi with probability 1. Then for any ϵ > 0 we have

P

(
1

n

n∑
i=1

xi ≥ ϵ

)
≤ e

− 2n2ϵ2∑n
i=1

ξ2
i .
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Lemma F.3 (Bernstein’s Inequality). Let x1, ..., xn be independent bounded random variables such
that E[xi] = 0 and |xi| ≤ ξ with probability 1. Let σ2 = 1

n

∑n
i=1 Var[xi], then with probability

1− δ we have
1

n

n∑
i=1

xi ≤
√

2σ2 · log(1/δ)
n

+
2ξ

3n
log(1/δ).

Lemma F.4 (Empirical Bernstein’s Inequality [Maurer and Pontil, 2009]). Let x1, ..., xn be i.i.d
random variables such that |xi| ≤ ξ with probability 1. Let x̄ = 1

n

∑n
i=1 xi and V̂n = 1

n

∑n
i=1(xi −

x̄)2, then with probability 1− δ we have∣∣∣∣∣ 1n
n∑

i=1

xi − E[x]

∣∣∣∣∣ ≤
√

2V̂n · log(2/δ)
n

+
7ξ

3n
log(2/δ).

Lemma F.5 (Lemma I.8 in [Yin and Wang, 2021b]). Let n ≥ 2 and V ∈ RS be any function with926

||V ||∞ ≤ H , P be any S-dimensional distribution and P̂ be its empirical version using n samples.927

Then with probability 1− δ,928 ∣∣∣∣∣√VarP̂ (V )−
√

n− 1

n
VarP (V )

∣∣∣∣∣ ≤ 2H

√
log(2/δ)

n− 1
.

Lemma F.6 (Claim 2 in [Vietri et al., 2020]). Let y ∈ R be any positive real number. Then for all929

x ∈ R with x ≥ 2y, it holds that 1
x−y ≤ 1

x + 2y
x2 .930

F.1 Extended Value Difference931

Lemma F.7 (Extended Value Difference (Section B.1 in [Cai et al., 2020])). Let π = {πh}Hh=1 and932

π′ = {π′
h}Hh=1 be two arbitrary policies and let {Q̂h}Hh=1 be any given Q-functions. Then define933

V̂h(s) := ⟨Q̂h(s, ·), πh(· | s)⟩ for all s ∈ S. Then for all s ∈ S,934

V̂1(s)− V π′

1 (s) =

H∑
h=1

Eπ′

[
⟨Q̂h (sh, ·) , πh (· | sh)− π′

h (· | sh)⟩ | s1 = s
]

+

H∑
h=1

Eπ′

[
Q̂h (sh, ah)−

(
ThV̂h+1

)
(sh, ah) | s1 = s

] (60)

where (ThV )(·, ·) := rh(·, ·) + (PhV )(·, ·) for any V ∈ RS .935

Lemma F.8 (Lemma I.10 in [Yin and Wang, 2021b]). Let π̂ = {π̂h}Hh=1 and Q̂h(·, ·) be the936

arbitrary policy and Q-function and also V̂h(s) = ⟨Q̂h(s, ·), π̂h(·|s)⟩ ∀s ∈ S, and ξh(s, a) =937

(ThV̂h+1)(s, a)− Q̂h(s, a) element-wisely. Then for any arbitrary π, we have938

V π
1 (s)− V π̂

1 (s) =

H∑
h=1

Eπ [ξh(sh, ah) | s1 = s]−
H∑

h=1

Eπ̂ [ξh(sh, ah) | s1 = s]

+

H∑
h=1

Eπ

[
⟨Q̂h (sh, ·) , πh (·|sh)− π̂h (·|sh)⟩ | s1 = s

]
where the expectation are taken over sh, ah.939

F.2 Assisting lemmas for linear MDP setting940

Lemma F.9 (Hoeffding inequality for self-normalized martingales [Abbasi-Yadkori et al., 2011]).941

Let {ηt}∞t=1 be a real-valued stochastic process. Let {Ft}∞t=0 be a filtration, such that ηt is Ft-942

measurable. Assume ηt also satisfies ηt given Ft−1 is zero-mean and R-subgaussian, i.e.943

∀λ ∈ R, E
[
eληt | Ft−1

]
≤ eλ

2R2/2.
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Let {xt}∞t=1 be an Rd-valued stochastic process where xt is Ft−1 measurable and ∥xt∥ ≤ L. Let944

Λt = λId +
∑t

s=1 xsx
⊤
s . Then for any δ > 0, with probability 1− δ, for all t > 0,945 ∥∥∥∥∥

t∑
s=1

xsηs

∥∥∥∥∥
2

Λ−1
t

≤ 8R2 · d
2
log

(
λ+ tL

λδ

)
.

Lemma F.10 (Bernstein inequality for self-normalized martingales [Zhou et al., 2021]). Let {ηt}∞t=1946

be a real-valued stochastic process. Let {Ft}∞t=0 be a filtration, such that ηt is Ft-measurable.947

Assume ηt also satisfies948

|ηt| ≤ R,E [ηt | Ft−1] = 0,E
[
η2t | Ft−1

]
≤ σ2.

Let {xt}∞t=1 be an Rd-valued stochastic process where xt is Ft−1 measurable and ∥xt∥ ≤ L. Let949

Λt = λId +
∑t

s=1 xsx
⊤
s . Then for any δ > 0, with probability 1− δ, for all t > 0,950 ∥∥∥∥∥

t∑
s=1

xsηs

∥∥∥∥∥
Λ−1

t

≤ 8σ

√
d log

(
1 +

tL2

λd

)
· log

(
4t2

δ

)
+ 4R log

(
4t2

δ

)
Lemma F.11 (Lemma H.4 in [Yin et al., 2022]). Let Λ1 and Λ2 ∈ Rd×d be two positive semi-definite951

matrices. Then:952

∥Λ−1
1 ∥ ≤ ∥Λ−1

2 ∥+ ∥Λ−1
1 ∥ · ∥Λ−1

2 ∥ · ∥Λ1 − Λ2∥
and953

∥ϕ∥Λ−1
1

≤
[
1 +

√
∥Λ−1

2 ∥ · ∥Λ2∥ · ∥Λ−1
1 ∥ · ∥Λ1 − Λ2∥

]
· ∥ϕ∥Λ−1

2
.

for all ϕ ∈ Rd.954

Lemma F.12 (Lemma H.4 in [Min et al., 2021]). Let ϕ : S ×A → Rd satisfies ∥ϕ(s, a)∥ ≤ C for955

all s, a ∈ S × A. For any K > 0, λ > 0, define ḠK =
∑K

k=1 ϕ(sk, ak)ϕ(sk, ak)
⊤ + λId where956

(sk, ak)’s are i.i.d samples from some distribution ν. Then with probability 1− δ,957 ∥∥∥∥ ḠK

K
− Eν

[
ḠK

K

]∥∥∥∥ ≤ 4
√
2C2

√
K

(
log

2d

δ

)1/2

.

Lemma F.13 (Lemma H.5 in [Min et al., 2021]). Let ϕ : S × A → Rd be a bounded function s.t.958

∥ϕ∥2 ≤ C. Define ḠK =
∑K

k=1 ϕ(sk, ak)ϕ(sk, ak)
⊤ + λId where (sk, ak)’s are i.i.d samples from959

some distribution ν. Let G = Eν [ϕ(s, a)ϕ(s, a)
⊤]. Then for any δ ∈ (0, 1), if K satisfies960

K ≥ max

{
512C4

∥∥G−1
∥∥2 log(2d

δ

)
, 4λ

∥∥G−1
∥∥} .

Then with probability at least 1− δ, it holds simultaneously for all u ∈ Rd that961

∥u∥Ḡ−1
K

≤ 2√
K

∥u∥G−1 .

Lemma F.14 (Lemma H.9 in [Yin et al., 2022]). For a linear MDP, for any 0 ≤ V (·) ≤ H , there962

exists a wh ∈ Rd s.t. ThV = ⟨ϕ,wh⟩ and ∥wh∥2 ≤ 2H
√
d for all h ∈ [H]. Here Th(V )(s, a) =963

rh(x, a) + (PhV )(s, a). Similarly, for any π, there exists wπ
h ∈ Rd, such that Qπ

h = ⟨ϕ,wπ
h⟩ with964

∥wπ
h∥2 ≤ 2(H − h+ 1)

√
d.965

F.3 Assisting lemmas for differential privacy966

Lemma F.15 (Converting zCDP to DP [Bun and Steinke, 2016]). If M satisfies ρ-zCDP then M967

satisfies (ρ+ 2
√
ρ log(1/δ), δ)-DP.968

Lemma F.16 (zCDP Composition [Bun and Steinke, 2016]). Let M : Un → Y and M ′ : Un → Z969

be randomized mechanisms. Suppose that M satisfies ρ-zCDP and M ′ satisfies ρ′-zCDP. Define970

M ′′ : Un → Y ×Z by M ′′(U) = (M(U),M ′(U)). Then M ′′ satisfies (ρ+ ρ′)-zCDP.971
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Lemma F.17 (Adaptive composition and Post processing of zCDP [Bun and Steinke, 2016]). Let972

M : Xn → Y and M ′ : Xn × Y → Z . Suppose M satisfies ρ-zCDP and M ′ satisfies ρ′-zCDP973

(as a function of its first argument). Define M ′′ : Xn → Z by M ′′(x) = M ′(x,M(x)). Then M ′′974

satisfies (ρ+ ρ′)-zCDP.975

Definition F.18 (ℓ1 sensitivity). Define the ℓ1 sensitivity of a function f : NX 7→ Rd as976

∆1(f) = sup
neighboring U,U ′

∥f(U)− f(U ′)∥1.

Definition F.19 (Laplace Mechanism [Dwork et al., 2014]). Given any function f : NX 7→ Rd, the977

Laplace mechanism is defined as:978

ML(x, f, ϵ) = f(x) + (Y1, · · · , Yd),

where Yi are i.i.d. random variables drawn from Lap(∆1(f)/ϵ).979

Lemma F.20 (Privacy guarantee of Laplace Mechanism [Dwork et al., 2014]). The Laplace mecha-980

nism preserves (ϵ, 0)-differential privacy. For simplicity, we say ϵ-DP.981

G Details for the Evaluation part982

In the Evaluation part, we apply a synthetic linear MDP case that is similar to [Min et al., 2021, Yin983

et al., 2022] but with some modifications for our evaluation task. The linear MDP example we use984

consists of |S| = 2 states and |A| = 100 actions, while the feature dimension d = 10. We denote985

S = {0, 1} and A = {0, 1, . . . , 99} respectively. For each action a ∈ {0, 1, . . . , 99}, we obtain a986

vector a ∈ R8 via binary encoding. More specifically, each coordinate of a is either 0 or 1.987

First, we define the following indicator function δ(s, a) =

{
1 if 1{s = 0} = 1{a = 0}
0 otherwise

, then988

our non-stationary linear MDP example can be characterized by the following parameters.989

990

The feature map ϕ is:
ϕ(s, a) =

(
a⊤, δ(s, a), 1− δ(s, a)

)⊤ ∈ R10.

The unknown measure νh is:

νh(0) = (0, · · · , 0, αh,1, αh,2) ,

νh(1) = (0, · · · , 0, 1− αh,1, 1− αh,2) ,

where {αh,1, αh,2}h∈[H] is a sequence of random values sampled uniformly from [0, 1].
The unknown vector θh is:

θh = (rh/8, 0, rh/8, 1/2− rh/2, rh/8, 0, rh/8, 0, rh/2, 1/2− rh/2) ∈ R10,

where rh is also sampled uniformly from [0, 1]. Therefore, the transition kernel follows Ph(s
′|s, a) =991

⟨ϕ(s, a),νh(s
′)⟩ and the expected reward function rh(s, a) = ⟨ϕ(s, a), θh⟩.992

Finally, the behavior policy is to always choose action a = 0 with probability p, and other actions993

uniformly with probability (1− p)/99. Here we choose p = 0.6. The initial distribution is a uniform994

distribution over S = {0, 1}.995
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