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ABSTRACT

Vision–Language–Action (VLA) models adapt large vision–language backbones
to map images and instructions into robot actions. However, prevailing VLAs
either generate actions autoregressively in a fixed left-to-right order or attach sep-
arate MLP or diffusion heads outside the backbone, leading to fragmented in-
formation pathways and specialized training requirements that hinder a unified,
scalable architecture. We present Discrete Diffusion VLA, a unified-transformer
policy that models discretized action chunks with discrete diffusion. The de-
sign retains diffusion’s progressive refinement paradigm while remaining natively
compatible with the discrete token interface of VLMs. Our method achieves an
adaptive decoding order that resolves easy action elements before harder ones
and uses secondary re-masking to revisit uncertain predictions across refinement
rounds, which improves consistency and enables robust error correction. This
unified decoder preserves pretrained vision-language priors, supports parallel de-
coding, breaks the autoregressive bottleneck, and reduces the number of func-
tion evaluations. Discrete Diffusion VLA achieves 96.3% avg. success rates on
LIBERO, 71.2% visual matching on SimplerEnv-Fractal and 54.2% overall on
SimplerEnv–Bridge, improving over autoregressive, MLP decoder and continuous
diffusion baselines. These findings indicate that discrete-diffusion VLA supports
precise action modeling and consistent training, laying groundwork for scaling
VLA to larger models and datasets.

1 INTRODUCTION

Vision-Language-Action (VLA) models enable robots to interpret visual and linguistic inputs and
execute corresponding action sequences. Modern VLA frameworks typically adapt a large pre-
trained vision-language model (VLM) by adding an action-generation head that outputs motor
commands (either continuous trajectories or discrete tokens). Current approaches fall into two
paradigms: (1) an autoregressive (AR) approach, inspired by GPT-style transformers, that predicts
discretized action tokens sequentially within the transformer (e.g. OpenVLA (Kim et al., 2024), π0-
FAST (Pertsch et al., 2025)); and (2) a separate action decoder that employs MLP or continuous
diffusion to map VLM output latent tokens to executable controls (e.g., π0 (Black et al., 2024) and
SmolVLA (Shukor et al., 2025)). Continuous diffusion can model sophisticated multimodal actions
better than AR but remains decoupled from the VLM backbone. Some integration efforts (e.g.,
Transfusion (Zhou et al., 2024) in π0) still rely on diffusion-specific training and iterative sampling,
lacking a truly unified structure which is consistent with VLM part.

Drawing on recent advances of discrete diffusion and discrete flow-matching for language and multi-
modal generation (Nie et al., 2025a; Shi et al., 2024b; Gat et al., 2024; Kim et al., 2025a; Yang et al.,
2025), we introduce Discrete Diffusion VLA, the first VLA framework to unify vision, language,
and action in a single transformer, maintaining strong VLM priors and achieving precise action mod-
eling. In Discrete Diffusion VLA, each action dimension is first discretized into tokens via binning
scheme and then grouped into fixed-length chunks. The fixed-length token generation is exactly suit-
able for discrete diffusion models. During training, we mask a subset of tokens in the action chunk
and train the transformer to predict them from the context of unmasked tokens across all modalities.
At inference, we start with all action tokens masked and iteratively predict them and re-mask low-
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Figure 1: Paradigm comparison. Continuous diffusion over action chunks (left) versus discrete
token decoders: AR (sequential), BERT-style (parallel), and our discrete diffusion with re-masking.

confident ones until convergence, in line with the “first-easy, then-hard” philosophy. Moreover, we
employ a secondary re-masking technique to guarantee the consistency across different denoising
steps, yielding flexible parallel decoding and robust error correction.

For robotics manipulation tasks, our Discrete Diffusion VLA keeps action generation inside a uni-
fied transformer with the same training objective (i.e., cross-entropy loss) as VLM, different from
separate action decoder methods. This preserves much of the backbone’s pretrained vision and lan-
guage capability (analogous to extending a LLM to new languages), while offering a potential path
to inherit from unified transformer’s scaling behavior, paving the way for future large-scale VLA
research. On the other hand, Discrete Diffusion VLA breaks AR model’s left-to-right bottleneck.
Action chunks are adaptively decoded in parallel over a small number of steps, and unconfident to-
kens can be revisited via iterative re-masking, leveraging full cross-modal context (including actions
itself) for refinement.

We evaluate Discrete Diffusion VLA across multiple robots and tasks: (1) a Franka Panda arm on
LIBERO (Liu et al., 2023), (2) a Google Robot on SimplerEnv–Fractal (Li et al., 2025), and (3)
a WidowX Arm on SimplerEnv–Bridge (Li et al., 2025). Using only RGB inputs, language and
end-effector positions (no depth and affordances), Discrete Diffusion VLA achieves 96.3% average
success rates on LIBERO ( +0.9% vs. OpenVLA-OFT (Discrete) ), 71.2% visual matching with
64.1% overall on SimplerEnv–Fractal, and 54.2% overall on SimplerEnv–Bridge (+14.7% over π0

and +6.4% over π0-FAST). Our model outperforms all of AR, MLP decoder and diffusion baselines
across tasks while using fewer number of function evaluations (NFEs) than AR. Ablations confirm
the benefits of our adaptive decoding strategy.

In summary, our contributions are threefold: 1) We introduce the first discrete diffusion VLA, uni-
fying action generation with vision–language in one transformer while maintaining strong perfor-
mance. 2) We develop an adaptive decoding strategy with iterative re-masking, enabling parallel
action-token decoding and error correction, improving accuracy with the unified architecture. 3) We
validate Discrete Diffusion VLA on Franka Panda, Google Robot and WidowX, achieving 96.3%
avg. SR on LIBERO, 64.1% and 54.2% overall on SimplerEnv–Fractal and –Bridge, consistently
outperforming AR, MLP decoder and continuous diffusion baselines (e.g., π0 and π0-FAST).

2 RELATED WORKS

2.1 VISION-LANGUAGE-ACTION MODELS

Early VLA systems took a two-part form: RT-1 and RT-2 first let the VLM produce latent tokens,
then a separate MLP action decoder maps them to discretized controls in a single shot (Brohan et al.,
2022; Zitkovich et al., 2023). Subsequent work shifted to AR token policies and scaled backbones
and vision encoders for general manipulation (e.g. OpenVLA) (Kim et al., 2024; Touvron et al.,
2023b; Oquab et al., 2024a; Zhai et al., 2023), while learning latent action shows better versatility
(e.g. LAPA (Ye et al., 2024)). For high-frequency control and fast adaptation, token compression and
action chunking are introduced and improve efficiency (e.g. π0-FAST and OpenVLA-OFT (Pertsch
et al., 2025; Kim et al., 2025b)). In parallel, diffusion and flow matching action heads model contin-
uous trajectories (Janner et al., 2022; Chi et al., 2023; Liang et al., 2023; Liu et al., 2024), spanning
lightweight transformers (Li et al., 2024a), and hierarchical designs (e.g. π0/π0.5 (Bu et al., 2025b;a;
Black et al., 2024; Intelligence et al., 2025; Wen et al., 2025; Zhong et al., 2025; Liu et al., 2025; Qu
et al., 2025)), typically via a separate denoising loop conditioned on language and vision tokens.
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In contrast, we perform discrete diffusion inside a single transformer over tokenized action chunks,
enabling parallel, revisable decoding via iterative re-masking in a few steps while preserving the
VLM’s emergent multimodal capabilities.

2.2 DISCRETE DIFFUSION MODELS

Discrete diffusion has recently achieved strong results on discrete data, notably tokenized images
and natural language. Foundational work like D3PM (Austin et al., 2021) formalizes discrete diffu-
sion as a Markov chain. Different from continuous diffusion models, it factorizes across positions,
so each token (represented as a one-hot vector) is independently corrupted into a categorical distri-
bution. VQ-Diffusion (Gu et al., 2022) and MaskGIT (Chang et al., 2022a) build on this, achieving
high-fidelity image generation with transformers that iteratively predict masked/corrupted image to-
kens in a non-autoregressive manner. In language, Diffusion-BERT (He et al., 2022) and subsequent
Masked Diffusion Models (Shi et al., 2024c; Zheng et al., 2024) demonstrate the viability of this ap-
proach and more recent LLaDA (Nie et al., 2025b) and DiffuLLaMA (Gong et al., 2024) scale it to
7B LMs competitive with AR baselines. MMaDA (Yang et al., 2025) further develops this direction
and shows the unified discrete diffusion model can jointly generate text and images.

Our work extends this line to the action modality: we perform discrete diffusion over tokenized
action chunks, preserving language capabilities and VLM synergy, yielding competitive state-of-
the-art VLA performance and laying groundwork toward unified, scalable, multi-modal foundation
models spanning vision, language, and actions.

3 DISCRETE DIFFUSION VISION-LANGUAGE-ACTION MODEL

3.1 OVERVIEW

Figure 2 outlines our Discrete Diffusion VLA. We cast action decoding as discrete diffusion via
masked-token denoising inside the same transformer that encodes vision and language. Given image
observations (single- or multi-view) and a language instruction, each continuous control dimension
is discretized into tokens and packed into a fixed-length future action chunk. A single transformer
attends to frozen visual features and pretrained-LM text embeddings while progressively unmasking
action tokens according to a diffusion schedule, so perception, instruction grounding, and action
denoising are executed within one unified model.

Section 3.2 formalizes discrete diffusion over action tokens; Section 3.3 presents the unified trans-
former architecture; Section 3.4 outlines the overall algorithmic pipeline; and Section 3.5 details
inference, including the adaptive decoding mechanism and secondary re-masking for consistency.

3.2 DISCRETE DIFFUSION OVER ACTION TOKENS

Let a single action chunk be a length-L token sequence a0 = (a0,1, . . . , a0,L), where each a0,i ∈
{1, . . . ,K} is obtained by binning continuous controls (position, orientation, etc.) following prior
methods (Brohan et al., 2022; Kim et al., 2024). We augment the action vocabulary with a special
mask token M (i.e., [MASK]), yielding V = K+1 symbols and one-hot basis {e1, . . . , eK , eM}.

The forward (noising) process of discrete diffusion is a Markov chain {at}Tt=0 with per-step transi-
tion matrices Qt ∈ RV×V that independently map each token to M with probability βt and keep it
unchanged with probability 1−βt. Formally, for any one-hot vector eat,i

of token at,i,

Qt eat,i = (1−βt) eat,i + βt eM. (1)

Composing transition matrices yields Q̄t = Qt · · ·Q1, and the corrupted distribution at time t
factorizes across positions with L the length of action chunk tokens.

q(at | a0) =

L∏
i=1

Categorical
(
at,i

∣∣ Q̄t ea0,i

)
, (2)

The reverse (denoising) process defines conditionals pθ(at−1 | at, c) under multimodal (i.e., vision
and language) context c. By Bayes’ rule, for each position i, we have

pθ(at−1,i | at,i, c) ∝ q(at,i | at−1,i) pθ(at−1,i | c), (3)
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Figure 2: Discrete Diffusion VLA architecture. A single-transformer VLM backbone encodes
multi-view RGB (SigLIP+DINOv2 ViTs) and a tokenized instruction, and decodes discrete ac-
tion chunks via diffusion-style iterative refinement. Adaptive Decoding (bottom left) keeps high-
confidence tokens each round and anneals the keep ratio with a cosine schedule for easy-first par-
allel refinement. Secondary Re-Masking (bottom right) uses threshold and residual-drop checks to
re-mask uncertain tokens, enforcing cross-step consistency and robust error correction.

which, under the masking corruption q in Eq. 2, reduces to

pθ(at−1,i | at,i, c) =

{
δ
(
at−1,i = at,i

)
, at,i ̸= M,

Categorical
(
at−1,i | πθ(i | c)

)
, at,i = M,

(4)

where πθ(i | c) is the model’s predictive distribution. Thus, at each step, Discrete Diffusion VLA
recovers only a subset of masked positions and leaves the rest masked, moving from higher to lower
mask ratios until reaching a0.

In implementation, we follow mask diffusion formulations and collapse the multi-step chain into a
single masked-token prediction objective. We draw a mask ratio γt ∈ (0, 1] that emulates diffusion
time t, replace the selected action positions by special token [MASK] to obtain ãt, and train a
transformer fθ to predict the original tokens with cross-entropy on masked indices:

LCE(θ) = −
∑

i∈Mγt

log pθ
(
a0,i | ãt, c

)
, pθ(·) = softmax

(
W fθ(ãt, c)

)
, (5)

where Mγt
is the masked set and W projects hidden states of action positions to the K-way action

local vocabulary. This objective preserves diffusion’s corruption–denoising spirit while using a
simple maximum-likelihood surrogate. As shown in recent analyses (Shi et al., 2024a; Kim et al.,
2025a), such losses upper-bound the negative log-likelihood under appropriate schedules.

Discrete Diffusion VLA accepts increased training-time complexity (i.e. solving exponentially many
infilling tasks) to gain arbitrary-order decoding at test time, selecting the inference order adaptively
by confidence or confidence gap, different from BERT-style parallel decoding which uses a fixed,
small mask ratio in a single pass and lacks a principled generative reverse chain.

3.3 OUR UNIFIED VLA ARCHITECTURE

Base architecture. We build upon OpenVLA (Kim et al., 2024) architecture consisting of a
Prismatic-7B VLM (Karamcheti et al., 2024) with SigLIP+DINOv2 (Zhai et al., 2023; Oquab et al.,
2024b) visual encoders, a projector, and a Llama 2 language model (LM) backbone (Touvron et al.,
2023a). Unlike the original autoregressive action head, Discrete Diffusion VLA modifies the causal-
attention backbone into a bi-direction transformer that embeds discrete diffusion over actions inside
the same VLM backbone, yielding a single, unified architecture.

4
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Tokenization and action chunking. Following RT series and OpenVLA (Brohan et al., 2022; Kim
et al., 2024), we discretize each control dimension by a 256-bin quantile-based scheme (discretize
only 1st–99th percentiles to avoid outliers), and treat the gripper as a seperate token between 0-1.
A single-timestep action therefore consists of Dact=7 tokens: 3 for translation, 3 for rotation, and
1 for gripper. For action chunking, we arrange tokens from H future timesteps into a fixed layout,
yielding a total of L=H×Dact action positions. Discrete diffusion model excels at generating fixed
length sequences. We additionally append a special [MASK] token to the action vocabulary.

Visual inputs comprise a mandatory third-person image and two optional left and right wrist observa-
tions (Fig. 2). Each view is encoded by SigLIP and DINOv2 ViTs, whose features are projected into
the Llama2 embedding space; the language instruction is tokenized directly by the Llama2. Optional
proprioceptive states (i.e. end effector positions) are embedded via a small MLP and concatenated.

Unified transformer and heads. All tokens (including vision, language and action) pass through
the unified transformer. And we only predict logits at the action positions. For action tokens, we use
a bidirectional attention mask which means no causal constraint and allow each action position to at-
tend to all vision and language tokens. This design enables naturally full cross-modal fusion without
bespoke adapters. Hidden states at action positions are projected to 256-way logit local vocabulary
via a shared classification head. Vision and language tokens follow standard VLM masking.

Compared to prior two action head designs, this unified backbone retains the language model’s
representation power, scales seamlessly with model size, and allows parallel decoding. At inference
time, our adaptive re-masking (detailed in Sec. 3.5) further refines uncertain tokens, combining the
global-context strength of transformers with the iterative denoising spirit of diffusion.

3.4 ALGORITHMIC PIPELINE

Training pipeline. During training, for each minibatch, firstly we sample a mask ratio γ ∈ (0, 1]
from a schedule (e.g., linear or cosine) that emulates diffusion time. Then we replace γL action po-
sitions with special token [MASK], and minimize the masked cross-entropy on those action indices
following Eq. 5. We adopt hard-label supervision, representing ground truth as one-hot vectors at
the masked indices. Vision and language tokens are attended but ignored in loss. The objective is
compatible with LM training which helps preserve the pretrained VLM capability, while aligning
action generation with discrete diffusion via mask schedules. Because the model predicts a fixed-
length action chunk with L=H×D tokens, all sequences have uniform length and require no [EOS]
padding. Joint optimization over the L positions naturally trains the action chunk in a single pass.

Inference pipeline. At test time, we initialize all L action positions as [MASK] and perform a small
number of parallel refinement rounds. At each round t, our model predicts token posteriors for every
currently masked position. We then draw a candidate token at each position by multinomial sampling
from the predicted logits. Next, we set the mask ratio to γt according to a preset schedule and use it
to determine how many positions remain masked. We rank the masked positions by data-dependent
scores (e.g. maximum confidence or confidence gap), commit the sampled tokens at the top (1− γt)
fraction, and keep the remaining γt fraction masked for the next round. This schedule makes the
decoding order adaptive to each instance rather than fixed. The reverse-step conditionals follow the
masking Bayesian formula in Eq. 4. A lightweight secondary re-masking mechanism further applies
threshold and consistency checks to previously demasked tokens to prevent error propagation. Full
criteria are detailed in Section 3.5.

3.5 ADAPTIVE DECODING MECHANISM AND SECONDARY RE-MASKING

Adaptive Decoding Mechanism. As illustrated above, the inference pipeline starts from a fully
masked action chunk a1 = ML with mask ratio γ1=1, and then performs T refinement steps with
a monotone schedule γt+1 < γt. Here, we use cosine schedule. At step t, the model yields per-
position posteriors pθ(at−1 | at, c) instantiating the reverse conditionals in Eq. 4. We score each
position i using one of the adaptive metrics:

st,i = max
k

pθ(k | at, c) (Max Confidence), (6)

gt,i = pθ(k(1) | ·)− pθ(k(2) | ·) (Confidence Gap), (7)
with k(1), k(2) the labels corresponding to the highest and second-highest probabilities. Let mt,i∈
{st,i, gt,i}. We keep the top (1 − γt+1)L positions Kt and update these positions’ tokens via

5
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Figure 3: Benchmarks and tasks. We evaluate Discrete Diffusion VLA across three robot set-
tings: LIBERO with a Franka Panda arm, SimplerEnv–Fractal with a Google Robot, and Sim-
plerEnv–Bridge with a WidowX Arm.

tempered Gumbel sampling to encourage exploration:

at+1,i ∼ Categorical

(
softmax

(
log pθ(· | at, c) + ε

τt

))
, i ∈ Kt, (8)

where ε has i.i.d. Gumbel(0, 1) components (equivalently, Gumbel–Max), and τt is a temperature
that decays with γt. Positions not in Kt are set to [MASK], and the process iterates until γT=0 or
convergence. This instance-wise ranking makes the decoding order adaptive rather than fixed.

Secondary Re-Masking. Beyond meeting the target ratio γt+1, we run two lightweight checks on
previously committed tokens to prevent early errors from persisting. Tokens that fail either checks
are re-masked, a step we refer to as secondary re-masking.

(i) Threshold check. If the current confidence falls below a monotonically-increasing step-dependent
threshold ηabs

t , the token is re-masked:

Rabs
t =

{
i ∈ Kt : st,i < ηabs

t

}
. (9)

(ii) Residual-drop check. Let t⋆i denote the first step at which position i was kept, and cache the
reference confidence score srefi := st⋆i ,i. We compute a confidence residual ∆t,i = srefi − st,i.
Tokens with large degradation are re-masked either by a threshold or top-Q rule:

Rdrop
t =

{
i ∈ Kt : ∆t,i > ηdrop

t

}
or Rdrop

t = arg top
Q

∆t,i. (10)

The secondary re-masked set is Rt = Rabs
t ∪ Rdrop

t . For i ∈ Rt we set at+1,i = M before
proceeding to step t+1. These operations maintain alignment with the Bayes reverse kernel (Eq. 4)
while improving cross-iteration consistency.

4 EXPERIMENTS

4.1 BENCHMARKS AND BASELINES

Benchmarks. We evaluate our Discrete Diffusion VLA on three different robot settings as shown
in Fig. 3: (i) Franka Panda arm in LIBERO (Liu et al., 2023), using the four suites LIBERO-
Spatial, LIBERO-Object, LIBERO-Goal, and LIBERO-Long (10 tasks per suite; 500 expert de-
mos per suite). (ii) Google Robot in SimplerEnv–Fractal (Li et al., 2025), which reports Visual
Matching and Variant Aggregation scores across diverse scene variations. (iii) WidowX Robot in
SimplerEnv–Bridge, a real-to-sim evaluation aligned with BridgeData-V2 Walke et al. (2023) tasks.
Policies receive only RGB images, that is one third-person view and one wrist view for LIBERO,
and a single third-person view for SimplerEnv, together with a language instruction and optional
end-effector positions. No depth, affordances, or other auxiliary information are used.

Baselines. We compare against representative policies spanning autoregressive (AR) token de-
coders, separate MLP action decoders and continuous diffusion / flow-matching action heads, cov-
ering both models trained from scratch and models fine-tuned from large pretrained bases.
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Table 1: LIBERO task performance results (%). Each column is a LIBERO task suite; values are
averaged over 500 rollouts per suite (10 tasks × 50 episodes). Methods above the horizontal rule
(Diffusion Policy, Seer (scratch), MDT) are trained from scratch; those below are fine-tuned from
pretrained bases. Best and second-best are bold and underlined, respectively.

Model Libero-Spatial Libero-Object Libero-Goal Libero-Long Average
Success (%) Success (%) Success (%) Success (%) Success (%)

Diffusion Policy (Chi et al., 2023) 78.3 92.5 68.3 50.5 72.4
MDT (Reuss et al., 2024) 78.5 87.5 73.5 64.8 76.1
Seer (scratch) (Tian et al., 2025) – – – 78.7 –

OpenVLA (Kim et al., 2024) 84.7 88.4 79.2 53.7 76.5
Octo-Base (Ghosh et al., 2024) 78.9 85.7 84.6 51.1 75.1
Seer (fine-tuned) (Tian et al., 2025) – – – 87.7 –
Dita / DiT Policy (Hou et al., 2025) 84.2 96.3 85.4 63.8 82.4
TraceVLA (Zheng et al., 2025) 84.6 85.2 75.1 54.1 74.8
SpatialVLA (Qu et al., 2025) 88.2 89.9 78.6 55.5 78.1
π0 + FAST (Pertsch et al., 2025) 96.4 96.8 88.6 60.2 85.5
π0 (Black et al., 2024) 96.8 98.8 95.8 85.2 94.2
OpenVLA-OFT (Cont-Diffusion) 96.9 98.1 95.5 91.1 95.4
OpenVLA-OFT (Discrete) (Kim et al., 2025b) 96.2 98.2 95.6 92.0 95.5
GR00T-N1 (Bjorck et al., 2025) 94.4 97.6 93.0 90.6 93.9
Discrete Diffusion VLA 97.2 98.6 97.4 92.0 96.3

Discretized action methods. RT-1-X / RT-2-X (O’Neill et al., 2024), OpenVLA (Kim et al.,
2024), Octo-Small / Octo-Base (Ghosh et al., 2024), HPT (Wang et al., 2024), TraceVLA (Zheng
et al., 2025), SpatialVLA (Qu et al., 2025), OpenVLA-OFT (Discrete) (Kim et al., 2025b) and
π0+FAST (Pertsch et al., 2025) represent AR-style or BERT-style generation of discrete action to-
kens with a unified VLM backbone or with a separate MLP decoder.

Continuous diffusion / flow-matching methods. Diffusion Policy (Chi et al., 2023), MDT (Reuss
et al., 2024), DiT Policy (Dita) (Hou et al., 2025), RoboVLM (Li et al., 2024b), π0 (Black et al.,
2024), OpenVLA-OFT (Cont.-Diffusion) (Kim et al., 2025b) and GR00T-N1 (Bjorck et al., 2025)
instantiate denoising or flow-matching heads over continuous action trajectories. Seer is reported in
both scratch and fine-tuned forms (Tian et al., 2025).

All baselines are evaluated on at least one of the three benchmarks using official metrics: LIBERO
success rates (SR); SimplerEnv–Fractal visual matching and variant aggregation SR; and Sim-
plerEnv–Bridge partial and full SR. Unless otherwise noted, numbers are taken from the original pa-
pers or reproduced from open-source implementations under same input modality described above.

4.2 OVERALL PERFORMANCE COMPARISONS

Training details. We fine-tune Discrete Diffusion VLA on each benchmark from the same VLM
backbone as OpenVLA (Prismatic–7B), following the respective official protocols. All input images
are resized to 224px × 224px. For LIBERO, we train a separate policy per suite using the provided
demonstrations, filtering unsuccessful episodes as in Kim et al. (2025b), and report success rates
over the official test episodes. For SimplerEnv–Fractal and SimplerEnv–Bridge, we fine-tune on
Fractal (Brohan et al., 2022) and BridgeData-V2 (Walke et al., 2023), respectively. Across all set-
tings, Discrete Diffusion VLA uses our unified transformer with discrete action tokens and a fixed
action chunk. Chunk sizes are chosen to match the widely used settings for fair comparison: 8 for
LIBERO and SimplerEnv–Fractal but 3 for SimplerEnv–Bridge. At inference, the adaptive decoding
runs a small, fixed number of refinement rounds (12 by default) with a cosine mask schedule, which
has been shown effective for discrete diffusion decoding (Chang et al., 2022b).

LIBERO results. Table 1 reports success rates (SR) on four LIBERO suites. Discrete Diffusion
VLA attains the best average SR of 96.3%, with per-suite scores of 97.2% (Spatial), 98.6% (Ob-
ject), 97.4% (Goal), and 92.0% (Long). Our most comparable baseline is OpenVLA-OFT (Discrete),
which uses the same action discretization as ours but decodes via parallel decoding rather than dis-
crete diffusion. Discrete Diffusion VLA reaches 96.3% average SR vs 95.4% for OpenVLA-OFT
(Discrete), a +0.9 point gain. These gains at matched tokenization indicate that discrete diffusion
decoding provides a consistent advantage over parallel decoding. For reference, the pure AR base-
line (OpenVLA) averages 76.5%, underscoring the benefit of moving beyond left-to-right decoding.
Against methods trained from scratch, Discrete Diffusion VLA surpasses Diffusion Policy and MDT
by +23.9 and +20.2 points on average, respectively. We observe consistent advantages across suites.
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Table 2: SimplerEnv evaluation across different policies on Google Robot tasks. We report the
results of all models pretrained with OXE dataset (O’Neill et al., 2024) and then fine-tuned with
Fractal dataset (Brohan et al., 2022).

Model
Visual Matching Variant Aggregation #Overall

AveragePick Coke Mv Near Drawer Avg. Pick Coke Mv Near Drawer Avg.

RT-1-X (O’Neill et al., 2024) 56.7% 31.7% 59.7% 53.4% 49.0% 32.3% 29.4% 39.6% 46.5%
RT-2-X (O’Neill et al., 2024) 78.7% 77.9% 25.0% 60.7% 82.3% 79.2% 35.3% 64.3% 62.5%
Octo-Base (Ghosh et al., 2024) 17.0% 4.2% 22.7% 16.8% 0.6% 3.1% 1.1% 1.1% 9.0%
OpenVLA (Kim et al., 2024) 16.3% 46.2% 35.6% 27.7% 54.5% 47.7% 17.7% 39.8% 33.8%
HPT (Wang et al., 2024) 56.0% 60.0% 24.0% 46.0% – – – – –
Moto (Chen et al., 2025) 74.0% 60.4% 43.1% 59.2% – – – – –
RoboVLM (Li et al., 2024b) 77.3% 61.7% 43.5% 63.4% 75.6% 60.0% 10.6% 51.3% 57.4%
TraceVLA (Zheng et al., 2025) 28.0% 53.7% 57.0% 42.0% 60.0% 56.4% 31.0% 45.0% 43.5%
π0 (Black et al., 2024) 72.7% 65.3% 38.3% 58.8% 75.2% 63.7% 25.6% 54.8% 56.8%
π0-FAST (Pertsch et al., 2025) 75.3% 67.5% 42.9% 61.9% 77.6% 68.2% 31.3% 59.0% 60.5%
OpenVLA-OFT (Kim et al., 2025b) 72.3% 69.6% 47.2% 63.0% 65.3% 59.0% 12.2% 45.5% 54.3%
GR00T-N1 (Bjorck et al., 2025) 47.0% 70.0% 18.1% 45.0% 78.8% 62.5% 13.2% 51.5% 48.4%
Discrete Diffusion VLA 85.4% 67.5% 60.6% 71.2% 82.5% 64.6% 23.6% 56.9% 64.1%

Table 3: SimplerEnv evaluation across different policies on WidowX Robot tasks. We report
the results of all models pretrained with OXE dataset (O’Neill et al., 2024) and then fine-tuned with
BridgeData V2 (Walke et al., 2023).

Method Put Spoon on Towel Put Carrot on Plate Stack Green on Yellow Put Eggplant in Basket #Overall
Grasp Spoon Success Grasp Carrot Success Grasp G Block Success Grasp Eggplant Success Average

RT-1-X (O’Neill et al., 2024) 16.7% 0.0% 20.8% 4.2% 8.3% 0.0% 0.0% 0.0% 6.3%
Octo-Base (Ghosh et al., 2024) 34.7% 12.5% 52.8% 8.3% 31.9% 0.0% 66.7% 43.1% 31.3%
Octo-Small (Ghosh et al., 2024) 77.8% 47.2% 27.8% 9.7% 40.3% 4.2% 87.5% 56.9% 43.9%
OpenVLA (Kim et al., 2024) 4.1% 0.0% 33.0% 0.0% 12.5% 0.0% 8.3% 4.1% 7.8%
RoboVLM (Li et al., 2024b) 54.2% 29.2% 25.0% 25.0% 45.8% 12.5% 58.3% 58.3% 38.5%
π0 (Black et al., 2024) 45.8% 29.1% 25.0% 0.0% 50.0% 16.7% 91.6% 62.5% 40.1%
π0-FAST (Pertsch et al., 2025) 62.5% 29.1% 58.5% 21.9% 54.0% 10.8% 83.3% 66.6% 48.3%
OpenVLA-OFT (Kim et al., 2025b) 50.0% 12.5% 41.7% 4.2% 70.8% 8.3% 91.7% 37.5% 39.6%
GR00T-N1 Bjorck et al. (2025) 83.3% 62.5% 54.2% 45.8% 70.8% 16.7% 41.7% 20.8% 49.5%
Discrete Diffusion VLA 70.8% 29.2% 58.3% 29.2% 62.5% 20.8% 91.7% 70.8% 54.2%

Google Robot results. As shown in Tab. 2, Discrete Diffusion VLA achieves the best Visual Match-
ing average of 71.2%, clearly surpassing widely used baselines including π0 (58.8%) and π0-FAST
(61.9%), and markedly outperforming OpenVLA-OFT (63.0%). On Variant Aggregation, Discrete
Diffusion VLA attains 56.9%, competitive with the top RT-2-X (64.3%) and π0-FAST (59.0%).
Aggregating both metrics, Discrete Diffusion VLA yields the highest overall average of 64.1%,
reflecting strong robustness across tasks.

WidowX Robot results. On the WidowX evaluation in Tab. 3, Discrete Diffusion VLA attains the
best overall average of 54.2%, outperforming diffusion / flow-matching policies (π0: 40.1%) and
exceeding AR-style and BERT-style baselines (e.g., Octo-Small at 43.9% and π0-FAST: 48.3%).
Per-task breakdown shows consistent gains in both grasp and success metrics (e.g., Put Eggplant in
Basket: 91.7% grasp / 70.8% success), indicating that discrete diffusion decoding improves reliabil-
ity in these visually diverse manipulation settings.

Across all three settings, the best overall score supports our central claim that casting action gener-
ation as discrete diffusion inside a single transformer trained with masked cross-entropy preserves
VLM priors while enabling parallel, adaptive, revisitable decoding. This unified, non-autoregressive
design consistently outperforms both AR and continuous diffusion / flow-matching baselines under
identical action tokenization way.

4.3 ABLATION STUDY

Decoding strategy. We compare one-shot parallel decoding, random order, confidence-gap selec-
tion, max-confidence selection and our max-confidence + secondary remasking. On LIBERO-Goal,
the success rates are 95.6%, 96.0%, 96.6%, 97.0%, and 97.4% respectively (Tab. 4). The adap-
tive easy-first schedule guided by per-token confidence yields > +1% over one-shot parallel. And
max-confidence selection is slightly better than confidence-gap, while random order lags behind.
Additionally, our secondary remasking scheme also brings about +0.4% benefits. These results

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablation study on decoding strategy. (LIBERO-
Goal). Ranking tokens by instance-wise confidence im-
proves over one-shot parallel by > 1 point, and our max
conf+secondary remask yields the best accuracy (97.4%).

Decoding
Strategy

Parallel
Decoding

Random
Order

Confidence
Gap

Max
Confidence

Max Conf+
Second Remask

Success 95.6% 96.0% 96.6% 97.0% 97.4%

Table 5: Ablation study on choice temperature.
(LIBERO-Goal). Linear decay temperature attains the best
97.4%, encouraging mild exploration early and sharper
commitment later.

Choice Temperature Hard Sample
(Temp=0)

Fixed Temp
(Temp=1)

Linear Decay Temp
(Temp=1-t)

Success Rates 96.2% 96.4% 97.4%

Figure 4: Speed–Quality trade-off.
(i) Time efficiency by the number of
generated action chunks per second.
(ii) Ablation on denoising steps. We
adopt T = 12 as a knee point for high
accuracy at strong throughput.

indicate that ranking tokens by instance-wise confidence and resolving the easy elements first im-
proves refinement effectiveness and final accuracy.

Choice temperature. We study the temperature used to turn posteriors into discrete choices during
refinement. Hard argmax at all steps reaches 96.2%, a fixed temperature of 1.0 gives 96.4%, and a
simple linear decay from 1.0 to 0.0 across steps achieves 97.4% (Tab. 5). Decay encourages mild
exploration early and sharper commitment later, complementing adaptive decoding to correct early
mistakes and consolidate consistent actions.

Denoise Steps. Please refer to Fig. 4. And detailed illustrations are in the following section.

4.4 ANALYSIS ON INFERENCE EFFICIENCY

Another benefit of discrete diffusion is inference efficiency in number of function evaluations (NFEs)
compared to autoregressive decoding. For an action chunk of length L=H×Dact, an AR decoder
without mechanisms like multi-token prediction (Gloeckle et al., 2024) performs L sequential for-
ward passes (each token conditions on all previous ones). For instance, in LIBERO, H=8 and
Dact=7 yield L=56, creating a latency bottleneck that scales linearly with horizon. It’s a critical
constraint for real-time robotic applications.

In contrast, Discrete Diffusion VLA denoises the entire chunk in T refinement steps. Each step is a
single forward pass that predicts posteriors for all currently masked tokens, so NFEs equal T . With
our default T=12, NFEs drop from 56 to 12 (4.7× fewer), decoupling cost from sequence length.
The adaptive decoding and secondary remasking operate on logits and add no extra forward passes,
preserving this efficiency of the parallel refinement.

Speed–quality trade-off. Figure 4 sweeps T and reports throughput (number of action chunks
generated per second; left y-axis) and success rates on LIBERO-GOAL (right y-axis). Accuracy
improves monotonically with T but with diminishing returns: most gains appear by T∈[8, 12], while
increasing to T≥16 yields sub–1 point improvements at a disproportionate drop in speed (throughput
scales roughly as 1/T ). We therefore choose T=12 as a knee point that matches the best accuracy
in Tables 4–5 while maintaining high throughput (about 3 Hz for action chunk generation).

5 CONCLUSION

Discrete Diffusion VLA unifies vision, language, and actions inside a single transformer by mar-
rying diffusion’s progressive-refinement paradigm with a discrete-token action interface, enabling
an adaptive “easy-first, hard-later” decoding order and secondary re-masking for reliable error cor-
rection. Our architecture preserves pretrained VLM priors, breaks the left-to-right bottleneck in
autoregressive VLA, and delivers state-of-the-art performance across LIBERO and two SimplerEnv
suites while using fewer function evaluations than AR baselines. By aligning action decoding with
the VLM transformer, Discrete Diffusion VLA offers a path to inherit unified-transformer scaling
behavior, paving the way for large-scale VLA research with larger models and broader datasets.
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A DISCLOSURE OF LARGE LANGUAGE MODEL USAGE

We employed large language models (LLMs) only for minor copyediting—grammar and phrasing.
All LLM-suggested edits were carefully reviewed and verified by the authors to prevent fabricated
content and preserve the original intent. The research ideas, methodology, implementation, experi-
ments, data analysis, and conclusions presented in this work were entirely conceived and executed
entirely by the authors without LLM assistance.

B VISUALIZATIONS OF ROBOT TASK EXECUTIONS

i) Franka Panda Arm on LIBERO-Spatial Task

ii) Google Robot on Move Near Task

iii) WidowX Arm on Put Eggplant in Basket Task

iv) Franka Panda Arm on LIBERO-Long Task

v) WidowX Arm on Stack Green Block on Yellow Block Task
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C IMPLEMENTATION DETAILS

1. We choose action chunk size H as 8 for both LIBERO and SimplerEnv-Fractal, and 3 for
SimplerEnv-Bridge, following widely used settings in each environment, respectively.

2. We conduct our experiments with batch size 32 for all of the experiments and typically
conduct each run on 4 NVIDIA A800 TENSOR CORE GPUs.

3. We apply Feature-wise Linear Modulation (FiLM) (Kim et al., 2025b) on Simpler-Bridge
experiments to enhance the language grounding abilities of our model on WidowX Arm
manipulation tasks.

4. We train our model on LIBERO-Spatial and LIBERO-Object for 150k steps while 300k
steps on LIBERO-Goal and LIBERO-Long. And we report the results of each highest
checkpoints. Besides, we only train 100k steps on both Simpler-Fractal and Simpler-Bridge
and report the highest overall performance of each environment.

5. For secondary re-masking, we set ηabst = 0.5× (1− t/T ) as the step-dependent threshold
of threshold check.
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