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ABSTRACT

Multi-objective reinforcement learning (MORL) aims to optimize multiple con-
flicting objectives for a single agent, where finding Pareto-optimal solutions is
NP-hard and existing algorithms are often centralized with high computational
complexity, limiting their practical applicability. Multi-objective multi-agent re-
inforcement learning (MOMARL) extends MORL to multiple agents, which not
only increases computational complexity exponentially due to the global state-
action space, but also introduces communication challenges, as agents cannot con-
tinuously communicate with a central coordinator in large-scale scenarios. This
necessitates distributed algorithm, where each agent relies only on the information
of its neighbors within a limited range rather than depending on the global scale.
To address these challenges, we propose a distributed MOMARL algorithm in
which each agent leverages only the state of its κ-hop neighbors and locally adjust-
s the weights of multiple objectives through a consensus protocol. We introduce
an approximated policy gradient that reduces the dependency on global actions
and a linear function approximation that limits the state space to local neighbor-
hoods. Each agent i’s computational complexity is thus reduced from O(|S||A|)
with global state-action space in centralized algorithms to O(|SNκi ||Ai|) with κ-
neighborhood state and local action space. We prove that the algorithm converges
to a Pareto-stationary solution at a rate ofO(1/T ) and demonstrate in simulations
for robot path planning that our approach achieves higher multi-objective values
than state-of-the-art method.

1 INTRODUCTION

As real-world tasks grow increasingly complex, many scenarios naturally involve multiple con-
flicting objectives, motivating the study of multi-objective reinforcement learning (MORL). For
instance, in robotic path planning (Zhang et al., 2016), sa robotic agsent may aim to simultaneously
minimize path length, avoid collisions, and maximize information collection.
Different from the rapid development of traditional reinforcement learning (RL) (Grondman et al,
2012; Zhang et al, 2021), research on MORL (Ge et al., 2022; Stamenkovic et al, 2022) remains
in its infancy due to the inherent conflicts among multiple objectives. Unlike scalar-reward RL, in
MORL the improvement of one objective may degrade others, making standard policy optimization
insufficient. A common approach to tackle MORL is to assign fixed weights to objectives and
reduce the problem to a single-objective RL (Blondin & Hale, 2020); however, this requires prior
knowledge of objective importance and may fail to explore the full Pareto front. To address this
limitation, a more rigorous metric is Pareto optimality, where no objective can be improved without
degrading others.
However, for non-convex MORL problems, finding exact Pareto-optimal solutions is NP-hard. Con-
sequently, practical algorithms aim for ε-Pareto stationary solutions (Sener & Koltun, 2018), which
provide a necessary condition for approximate Pareto optimality. On the algorithmic side, for MOR-
L problem with continuous action spaces, (Chen et al., 2021) proposed an actor-critic MORL al-
gorithm based on deterministic policy gradients (Silver et al., 2014) to directly optimize multiple
objectives. For MORL with discrete action spaces, (Zhou et al., 2024) introduced a unified multi-
objective actor-critic framework applicable to both discounted and average-reward settings, where
stochastic policy parameters are updated via a multi-gradient descent approach (Désidéri, 2012),
ensuring convergence toward ε-Pareto stationary solutions.
The aforementioned methods are all directed towards addressing the MORL problem in a centralized
setting or for a single agent. However, practical applications of MORL problems often involve multi-
agents. For instance, teams of robots need to decide themselves how to explore distinct regions
by simultaneously minimizing energy consumption and travel time. In comparison to the MORL
problem with single-agent, the multi-objective multi-agent problem (MOMARL) (Rădulescu, 2020)
is more intricate as it encompasses not only potential conflicts among different objectives but also
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interactions between the distributed agents with limited communication. An intuitive approach to
the MOMARL problem is to consider it as a MORL problem with a single agent, where the state
and action are represented by the joint states and joint actions of all agents, respectively. However,
as the number of agents increases, the size of their joint state-action space grows exponentially,
and in large-scale scenarios, agents cannot communicate with a central coordinator continuously.
These characteristic renders the current algorithms used for solving MORL problems with a single
agent (Chen et al., 2021; Zhou et al., 2024) unsuitable for large-scale scenarios with multi-agents.
Consequently, the MOMARL problem poses new challenges to the design of scalable algorithms
and their theoretical analysis.
In this paper, we aims to address the following problem: How to develop a fully distributed algorithm
for the MOMARL problem and ensure its convergence to Pareto-stationary of the multi-objective
function? The contributions of this paper are described as follows.

1. We first propose a novel approximated policy gradient for each agent i, which reduces the
global action a required by centralized algorithms to the agent’s local action ai. Further-
more, to reduce the dimensionality of state information, we employ a linear function ap-
proximation to restrict agent i’s state to the neighborhood state sNκi , encompassing only its
κ-hop neighbors. The per-agent computational complexity is thus reduced fromO(|S||A|)
in centralized algorithms to O(|SNκi ||Ai|).

2. We propose a novel distributed algorithm in which each agent only uses the policy gradient
information from its immediate neighbors, while collaboratively adjusting the weights of
multiple objectives via a consensus protocol. This design enables the agents to perform
cooperative optimization toward a Pareto-stationary solution, without requiring access to
the policy gradient information of agents beyond the direct neighbors.

3. We prove that the proposed distributed algorithm, despite relying only on local neigh-
borhood information, achieves convergence to an ε-Pareto-stationary solution at a rate of
O(1/T ), matching the convergence speed of centralized algorithms. Moreover, we run
simulations in a robot path planning environment and show our algorithm converges to
greater multi-objective values as compared to the extension of the latest MORL algorith-
m (Zhou et al., 2024), and performs close to the central optimum with much shorter running
time.

For the sake of convenience, some key functions in this paper are presented in Table 1.

Table 1: Symbols and functions.
Symbols Annotation

Qm(s,a;θ) Global Q-function in the m-th objective under joint policy πθ
Qmi (s,a;θ) Local Q-function of agent i in the m-th objective under joint policy πθ

Qmtru,i(sNκi , aNκi ;θ) Graph-truncated Q-function of agent i in the m-th objective under joint policy πθ
∇θiJ

m
tru,i(θ) Graph-truncated policy gradient of agent i in the m-th objective under joint policy πθ

Q̂mi (s, ai;θ) Action-averaged Q-function of agent i in the m-th objective under policy πθ
∇θiJ

m
app,i(θ) Approximated policy gradient of agent i in the m-th objective under joint policy πθ

Q̂mi (sNκi , ai;w
m
i ) Linear approximation function of agent i in the m-th objective

2 THE NEW MOMARL PROBLEM FORMULATION AND PRELIMINARIES

2.1 MODEL OF THE MOMARL PROBLEM

The MOMARL problem is described as
(
N ,M,G(N , E), {Si}i∈N , {Ai}i∈N , {Pi}i∈N ,ρ,

{rmi }i∈N ,m∈M,γ
)
, where N = {1, · · · , N} and M = {1, · · · ,M} represent the agent set and

the objective set, respectively. G =
(
N , E

)
represents the communication network among agents

with E being the set of edges1. For integer κ ≥ 1, denote N κ
i as the κ-hop neighborhood of agent i

and N κ
−i = N \N κ

i .
State and action: Si and Ai represent the local state space and the local action space of agent i,
respectively. Denote S =

∏N
i=1 Si and A =

∏N
i=1Ai as the global state space and the global action

space, respectively. Denote s = (s1, · · · , sN ) ∈ S and a = (a1, · · · , aN ) ∈ A as the global state
and the global action of agents, where si ∈ Si and ai ∈ Ai represent the local state and local action

1For the case of time-varying neighbor agents, our algorithm is still applicable if the agent communicates
intermittently (or delays communication) with its initial neighbor. In the process of convergence analysis of
the algorithm, we just need to introduce an additional error to (22) caused by communication disconnection or
delay.
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of agent i ∈ N , respectively. For integer κ ≥ 1, denote sNκi and aNκi as the state and action of
agent i’s κ-hop neighbors, respectively. Denote SNκi =

∏
j∈Nκi

Sj and ANκi =
∏
j∈Nκi

Aj as the
state space and the action space of agent i’s κ-hop neighbors, respectively. Moreover, denote SNκ−i
and ANκ−i as the state space and the action space of agents excluding agent i’s κ-hop neighbors,
respectively. aNκ−i ∈ SNκ−i
State transition probability function: Pi(s′i|sN 1

i
, ai) : SN 1

i
× Ai × Si → [0, 1] is the state

transition probability function of agent i, dependent of its 1-hop neighborhood state and its local
action. Denote P(s′|s,a) =

∏N
i=1 Pi(s′i|sN 1

i
, ai) : S × A × S → [0, 1] as the global state

transition probability function. Note that the definition of the state transition probability function∏N
i=1 Pi(s′i|sN 1

i
, ai) is common in the literature. For example, it applies to the scenario of traffic

signal control problem (Chu et al., 2020), where the traffic flow at each intersection is influenced by
the traffic flow at its neighboring intersections and its own signal light.
Initial state distribution: ρ is the distribution of the initial state s0.
Reward function: rmi (si, ai) : Si ×Ai → R is the reward function of agent i ∈ N in the objective
m ∈ M. Denote st = (s1,t, · · · , sN,t) and at = (a1,t, · · · , aN,t) as the global state and the global
action at time t, respectively. The reward of agent i ∈ N in the objective m ∈ M at time t can be
represented as rmi,t = rmi (si,t, ai,t).

Discount factor: γ = (γ1, · · · , γM )> ∈ RM with γm ∈ (0, 1) being the discount factor in the
objective m ∈M.
Softmax policy: In this paper, we use the parameterized softmax policy πθi(ai|si) with parameter
θi ∈ R|Si||Ai|, which is described as

πθi(ai|si) =
exp(θi,si,ai)∑
a′i
exp(θi,si,a′i)

, (1)

where θi,si,ai represents the element corresponding to (si, ai) in θi. Denote θ = (θ>1 , · · · , θ>N )> ∈
R

∑N
i=1 |Si||Ai| as the joint policy parameter of agents and πθ(a|s) =

∏N
i=1 πθi(ai|si) be the joint

policy of all agents. Note that the softmax policy is used in RL to ensure the exploration of a-
gents (Zhou et al., 2023; Zhang et al., 2022).
In the MOMARL problem, given a joint policy parameter θ, the m-th objective of all agents is
defined as

Jm(θ) =Es∼ρ
[ 1
N

∞∑
t=0

N∑
i=1

(γm)trmi,t|s0 = s,at ∼ πθ(·|st)
]
, (2)

which is represents the average discounted reward of all agents over all time t. The goal of agents in
the MOMARL problem is to find a joint policy parameter θ to maximize the following composite
objective, i.e.,

max
θ
J(θ) = [J1(θ), · · · , JM (θ)]> ∈ RM . (3)

In order to address the potential conflicts among the J(θ) in (3), the notions of Pareto-optimality
and ε-Pareto-stationarity are introduced as follows.

Definition 1 (Pareto-optimality) A solution θ dominates solution θ′ if and only if Jm(θ) ≥ Jm(θ′),
∀m ∈ M and ∃m′ ∈ M, Jm

′
(θ) > Jm

′
(θ′). A solution θ is Pareto-optimal if it is not dominated

by any other solution.

Considering that finding Pareto-optimal solutions for non-convex MOMARL problems is NP-hard,
it is generally more practical to seek the ε-Pareto-stationary solution instead of the Pareto-optimal
solution (Kumar et al., 2019).

Definition 2 (ε-Pareto-stationarity) Define ∇θJ(θ) as the gradient of J(θ) respect to θ. A
solution θ is ε-Pareto stationary if there exists λ = (λ1, · · · , λM )> ∈ RM such that
minλ∈RM ‖∇θJ(θ)>λ‖22 ≤ ε with λ ≥ 0, ‖λ‖1 = 1, and ε > 0.

Based on Definitions 1-2, it is obvious that the Pareto-stationarity is a necessary condition for a solu-
tion to be Pareto-optimal. Specifically, in the context of convex MOMARL problems, the solutions
that are Pareto-stationary also qualify as Pareto-optimal. Given the complexity associated with the
MOMARL problem, this paper focuses on developing a distributed scalable algorithm to identify
and achieve Pareto-stationarity.
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2.2 PRELIMINARIES IN THE MOMARL PROBLEM

In the MOMARL problem, for any joint policy parameter θ and m ∈ M, the global Q-function
Qm(s,a;θ) in m-th objective is defined as

Qm(s,a;θ) = Eπθ

[ 1
N

∞∑
t=0

N∑
i=1

(γm)trmi,t|s0 = s,a0 = a
]
, (4)

which represents the value of the stat-action pair (s,a) in m-th objective under join policy πθ. In
the MOMARL problem, given the joint policy parameter θ, define dθ,mρ (s) as the discounted state
visitation distribution, which is represented as

dθ,mρ (s) = (1− γm)

∞∑
t=0

(γm)tPrπθ (st = s|s0 ∼ ρ), (5)

where Prπθ (st = s|s0 ∼ ρ) represents the probability of st = s at time t under the initial state
distribution ρ and the joint policy πθ.
Recall that the policy gradient theorem (Sutton et al., 2000) is the foundation of algorithm design in
RL. Inspired by the theorem, in our MOMARL problem, we also have the following policy gradient
lemma.
Lemma 1 In the MOMARL problem, for any joint policy parameter θ, the gradient of Jm(θ) in
m-the objective with respect to θ is given by:

∇θJm(θ) =
1

1− γm
Es∼dθ,mρ ,a∼πθ

[∇θ logπθ(a|s)Qm(s,a;θ)],∀m ∈M. (6)

For the policy gradients involved in Definition 2, Lemma 1 shows that the calculation of the policy
gradient∇θJm(θ) depends onQm(s,a;θ), which involves global state-action (s,a). Consequent-
ly, there are two challenges in applying (6): (i) the computational complexity of handling the global
state-action (s,a) in a centralized setting is high; (ii) achieving distributed decision making among
multi-agents with limited communication.

3 DISTRIBUTED SCALABLE ACTOR-CRITIC ALGORITHM FOR MOMARL
PROBLEM

Before presenting our proposed method, we first revisit the centralized approach for solving MO-
MARL problems. In the centralized setting, the policy update requires the global state-action pair
(s,a). This immediately leads to an exponential growth of the joint state-action space with the
number of agents, i.e., of order O(|S||A|). Such computational complexity makes centralized al-
gorithms prohibitive for large-scale systems. Moreover, centralized training implicitly assumes that
agents can constantly communicate with a central controller, which is unrealistic in many real-world
scenarios (e.g., swarm robotics, sensor networks). To overcome these limitations, the natural way
forward is to make the algorithm scalable, meaning that the per-agent computational cost should
remain polynomial in the state-action dimension of its neighbors within a limited range rather than
depending on the global scale. The most effective way to achieve scalability is to design a distribut-
ed algorithm, where (i) each agent i makes decisions independently using only (sNκi , ai), where
sNκi is the state from its κ-hop neighbors and (2) exchanges its local Lagrangian multiplier λi with
its directly neighbors for balancing multiple objectives. This shift from centralized to distributed
design is the key idea underlying our algorithm: by restricting each agent’s decision to local state-
action information and coordinating objective trade-offs through a consensus protocol, we preserve
scalability while maintaining rigorous convergence guarantees.
To reduce the reliance of algorithm on global information, we design a distributed algorithm, where
each agent (i) estimates a local policy gradient based only on its own action, (ii) leverages a linear
approximation restricted to κ-hop neighborhood states, and (iii) updates multi-objective weights
through a consensus protocol to cooperatively approach Pareto-stationary solutions.

3.1 A NOVEL APPROXIMATED POLICY

In contrast to the global Q-function utilized in (6), which relies on global state-action information,
we introduce a novel conceptłthe “action-averaged Q-function” for each agent i. This formulation
leverages rewards from agent i’s κ-hop neighbors to effectively reduce the dependence on the full
joint action a by focusing on the local action ai, as defined below:

Q̂mi (s, ai;θ) = Eπθ

[ 1
N

∞∑
t=0

(γm)t
∑
j∈Nκi

rmj (sj,t, aj,t)|s0 = s, ai,0 = ai

]
. (7)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To approximate the true policy gradient∇θJm(θ) in (6), we define∇θiJmapp(θ) as an approximated
policy gradient for agent i, derived using the action-averagedQ-function presented in (7), as follows:

∇θiJmapp,i(θ) =
1

1− γm
Es∼dθ,mρ ,ai∼πθi

[
Q̂mi (s, ai;θ)∇θi log πθi(ai|si)

]
. (8)

Unlike the policy gradient in centralized algorithm that requires global action a, (8) only requires the
local action ai of agent i. The approximation error between ∇θiJmapp,i(θ) and original ∇θiJm(θ)
in (6) can be well bounded for the MOMARL problem in the following theorem.

Theorem 1 In the MOMARL problem, given a joint policy πθ, for any agent i ∈ N and objective
m ∈M, it holds that

‖∇θiJmapp,i(θ)−∇θiJm(θ)‖2 ≤
√
2R

(1− γm)2
(γm)κ+1. (9)

The proof of Theorem 1 is provided in Appendix A.2. The policy gradient has been approximated so
far by constructing Q̂mi (s, ai;θ) in (7) and∇θiJmapp,i(θ) in (8), which reduces the action dimension
of each agent i to its local action ai. However, the expression of Q̂mi (s, ai;θ) still requires the
global state. Therefore, in the following, we will focus on reducing the dimensionality of agents’
state information.

3.2 CRITIC STEP: LINEAR FUNCTION APPROXIMATION

Algorithm 1: Linear function approximation
1 Require: The number of samples K, the learning-rate ηmw and ε > 0;
2 Initialization: Initialize the ε-exploration policy πεθ = ΠN

i=1π
ε
θi

, where
πεθi(ai|si) = (1− ε)πθi(ai|si) + ε

|Ai|
for all i ∈ N . The initial values of the parameters wmi,0 is set as

wmi,0 = 0di for all i ∈ {1, 2, · · · , N};
3 The agents execute the ε-exploration policy πεθ and each agent i ∈ N collects a sequence of samples
{(si,k, ai,k, rmi,k)}0≤k≤K in m-the objective;

4 for i = 1, 2, · · · , N do
5 For each objective m ∈M, agent i ∈ N collects the state information {sj}j∈Nκi of its κ-hop neighbors

and reward {rmj }j∈Nκi from its κ-hop neighbors to form a sample set {sNκi ,k, ai,k, r
m
Nκi ,k
}0≤k≤K ;

6 for k = 0, 1, 2, · · · ,K − 1 do
7 Each agent i ∈ N estimates its local temporal difference error:

δmi,k = φi(sNκi ,k, ai,k)>wmi,k − 1
N

∑
j∈Nκi

rmj,k − γmφi(sNκi ,k+1, ai,k+1)>wmi,k;
8 wmi,k+1 = wmi,k − ηmw δmi,kφi(sNκi ,k+1, ai,k+1);
9 end

10 end
11 Output: {wmi,K}i∈N ,m∈M

In this subsection, we use the localized stochastic approximation and propose a linear function in
(10) to reduce the dimension of the state-action required by agent i ∈ N to (sNκi , ai). Specially, the
linear function Q̂mi (sNκi , ai;w

m
i ) of agent i to approximate Q̂mi (s, ai;θ) in (7) is given as

Q̂mi (sNκi , ai;w
m
i ) = φi(sNκi , ai)

>wmi , (10)

where φi(sNκi , ai) : SNκi ×Ai → Rdi is the feature vector mapping and wmi ∈ Rdi is the parameter
of agent i inm-th objective. By the definition of Q̂mi (s, ai;θ) in (7), the parameter with initial value
wmi,0 can be updated by sample sequence {sNκi ,k, ai,k, r

m
Nκi ,k
}0≤k≤K as

wmi,k+1 = wmi,k − ηmw δmi,kφi(sNκi ,k+1, ai,k+1), (11)
where K is the number of sample for linear parameter training and δmi,k is the local temporal differ-
ence error, which is discribed as

δmi,k =φi(sNκi ,k, ai,k)
>wmi,k −

1

N

∑
j∈Nκi

rmj,k − γmφi(sNκi ,k+1, ai,k+1)
>wmi,k, (12)

and ηmw is the fixed learning rate of parameters wmi . The detailed description of linear function
approximation is given in Algorithm 1.

5
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3.3 ACTOR STEP: POLICY PARAMETER UPDATE

To estimate the policy gradient and ensure convergence toward a Pareto-stationary solution, we need
to dynamically adjust the weights associated with multiple objectives. In centralized algorithms, this
requires access to all agents’ policy gradients, which is often infeasible and unscalable (Zhou et al.,
2024). To overcome this limitation, we design a distributed algorithm in which agents collaborative-
ly adjust the objective weights through a consensus protocol. This design removes the dependence
on global policy gradient while still enabling cooperative optimization toward Pareto-stationary so-
lution.
To estimate the approximated policy gradient∇θiJmapp,i(θ) in (8), for joint policy πθt , our estimate
gmi,t(B) is calculated iteratively based on the sample sequence {(sbNκi ,h, a

b
i,h)}0≤b≤B−1,0≤h≤H−1:

gmi,t(b+ 1) =
b

b+ 1
gmi,t(b) +

1

b+ 1
∇̂θiJ

m,b
app,i(θt), (13)

where gmi,t(0) = 0|Si||Ai| and

∇̂θiJ
m,b
app,i(θt) =

H−1∑
h=0

(γm)hφi(s
b
Nκi ,h, a

b
i,h)
>wmi (t)∇θi log πθi,t(abi,h|sbi,h) (14)

with wmi (t) being the output of Algorithm 1 in t-th iteration of policy parameters. Let gmi,t =

gmi,t(B)> and gmt =
(
(gm1,t)

>, · · · , (gmN,t)>
)> ∈ R

∑N
i=1 |Si||Ai|. Following Pareto-stationarity in

Definition 1, we denote λ∗t = (λ∗1t , · · · , λ∗Mt )> ∈ RM as solution of the following quadratic
programming problem:

min
λt=(λ1

t ,··· ,λMt )>∈RM
Jgt (λt) =

∥∥∥ M∑
m=1

λmt g
m
t

∥∥∥2
2

s.t. λt ≥ 0, ‖λt‖1 = 1. (15)

For the network G(N , E) among agents, we define its weight matrix as WG = [wGij ]N×N , where
each element wGij represents the weight of the edge from agent j to agent i, which is defined as

wGij =


1

1+max(|Ni|,|Nj |) , j ∈ Ni,
1−

∑
l∈Ni w

G
il, j = i,

0, otherwise.
(16)

By using the definition of WG in (16), we solve the problem (15) in a distributed way, which is
presented in the following Algorithm 2.

Algorithm 2: Distributed computation to solve problem (15) of objective weight adjustment
1 Initialization: Each agent i ∈ N sets λi(0) = 1

M
1M and chooses step sizes αk = 2

k+2
for all k ≥ 0;

2 for k = 0, 1, 2, . . . ,Kλ − 1 do
3 Each agent i initializes xi,t(k) =

∑M
m=1 λi,m(k)gmi,t;

4 for m = 1, 2, · · · ,M do
5 Each agent i initializes ymi,t(k, 0) = 〈xi,t(k), gmi,t〉;
6 while ∃ i ∈ N , ymi,t(l1) 6= 1

N

∑N
i=1 y

m
i,t(k, 0) do

7 ymi,t(k, l1 + 1) =
∑
j∈Ni w

G
ijy

m
j,t(k, l1);

8 l1 ← l1 + 1;
9 end

10 Each agent i obtains local output ymi,t(k);
11 end
12 Each agent obtains u∗i,t(k) = arg minm y

m
i,t(k);

13 Each agent updates λi(k + 1) = (1− αk)λi(k) + αkeu∗i,t(k), where eu∗i,t(k) is an M -dimensional unit
vector with the u∗i,t(k)-th element being 1, and the other elements being 0;

14 end
15 Output: λ̂t = λi(Kλ) for all i ∈ N ;

In Algorithm 2 each agent iteratively computes policy gradients, engages in consensus steps to eval-
uate the quadratic objective (ref. Lines 5-9), and updates its local weight vector via a Frank-Wolfe
update rule (ref. Lines 12-13). Through repeated consensus and update steps, all agents asymptot-
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ically agree on the optimal weight vector λ̂t, thereby achieving a distributed solution that approxi-
mates the centralized Pareto-stationary weighting without requiring global information exchange.

After computing λ̂t by Algorithm 2, we update the weight λt as

λt = (1− ηλ,t)λt−1 + ηλ,tλ̂t, (17)

where ηλ,t is the learning rate of λt. Denote gt =
∑M
m=1 λ

m
t g

m
t , the update of θt+1 is presented as

θt+1 = θt + ηθ,tgt, (18)
where ηθ,t is the learning rate of policy parameter. In the NMARL problem, the agents can use θt
to execute the actions based on (1).

3.4 OVERALL DISTRIBUTED ALGORITHM FOR MOMARL PROBLEM

Based on the distributed designs in the previous three subsections, we propose a distributed MO-
MARL algorithm, which is given in Algorithm 3.

Algorithm 3: Distributed algorithm for MOMARL problem
1 Require: The non-negative integers T , B, H , the learning-rates {ηλ,t}t∈{1,··· ,T} and {ηθ,t}t∈{1,··· ,T};
2 Initialization: Initialize λ0 = 1

M
1M ∈ RM , the policy parameter θi,1 ∈ R|Si|×|Ai| to follow Gaussian

distribution for all i ∈ {1, 2, · · · , N};
3 for t = 1, 2, · · · , T do
4 Initial policy gradient estimation gmi,t(0) = 0|Si||Ai| for all i ∈ N ;
5 Critic step: All agents use Algorithm 1 and output the weight vectors {wmi (t)}i∈N ;
6 Actor step:
7 for b = 0, 1, 2, · · · , B − 1 do
8 All agents execute the joint policy πθt in H − 1 horizon;
9 Each agent i ∈ N collects a sequence of samples, which includes the state information {sj}j∈Nκi

from its κ-hop neighbors and its local action information ai, i.e., {(sbNκi ,h, a
b
i,h)}0≤h≤H−1;

10 Each agent i estimates the local policy gradient in m-th objective according to (13);
11 end
12 All agents calculate gmi,t = gmi,t(B) by (13) and achieve gmt =

(
(gm1,t)

>, · · · , (gmN,t)>
)> for all m ∈ [M ];

13 Compute λ̂t by Algorithm 2 as the approximationn solution to problem (15);
14 Update the weight λt acording to (17);
15 Update the policy parameter θt+1 according to (18);
16 end
17 Output: πθ

T̂
with T̂ chosen uniformly from {1, · · · , T}

Algorithm 3 incorporates linear function approximation in Algorithm 1 and distributed consensus-
based adjustment of multiplier objective weights in Algorithm 2 into a unified framework. The
primary advantages are as follows: (1) each agent relies solely on state information from its κ-hop
neighbors, thereby avoiding the exponential expansion of the centralized joint state-action space (ref.
Line 9); (2) Each agent in Line 13 only uses the policy gradient estimations of its direct neighbors,
which eliminates the requirement for a central coordinator while supporting collaborative multi-
objective optimization.

4 PARETO-STATIONARY CONVERGENCE OF ALGORITHM 3

Before the convergence analysis of the algorithm, some assumptions are introduced in the following.

Assumption 1 In the MOMARL problem, for any joint policy parameter θ and objective m ∈ M,
ξθ,mρ (s,a) satisfies that

inf
θ

min
(s,a)∈S×A

ξθ,mρ (s,a) > 0. (19)

Assumption 2 In the MOMARL problem, for any agent i ∈ N and objective m ∈ M, there exists
constant R > 1 such that the instantaneous reward rmi,t at time t ≥ 0 satisfies |rmi,t| ≤ R.

Assumption 3 In the MOMARL problem, the network G(N , E) among agents is connected graph.

Assumption 1 ensures that for any joint policy πθ, (s,a) ∈ S × A is visited with a non-zero
probability, Assumption 2 provides an upper bound on the reward, and Assumption 3 is provided
for designing distributed algorithm. Assumptions 1-2 are standard prerequisite for the convergence

7
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analysis of RL algorithms (e.g. (Zhou et al., 2023; Zhang et al., 2022)) and Assumption 3 is com-
monly in (Olfati-Saber & Murray, 2004).
Our process to prove the Pareto-stationary convergence of Algorithm 3 is as follows: (i) We start es-
tablish the smoothness of objective function (i.e., 2); (ii) We from the definition of Pareto-stationarity
in Definition 2 and analyze the error between the true gradient ∇θiJm(θt) and the calculated gra-
dient gmi,t in (13) (i.e., Lemma 3); (iii) We control λt by setting the step size ηθ,t to ensure that
Algorithm 3 converges to Pareto-stationary solution in Theorem 2.

Lemma 2 In the MOMARL problem, define LJ = maxm∈M
6N

(1−γm)3 . For any objective m ∈ M,
the objective Jm(θ) is LJ -smooth.

The detailed proof of Lemma 2 can be found in Appendix A.3. Lemma 2 establishes that each
individual objective in the MOMARL problem is LJ -smooth with respect to the joint policy pa-
rameters. This smoothness property implies that the gradient of Jm(θ) does not change abruptly
when the policy parameters are slightly perturbed, which is crucial for analyzing the stability and
convergence of gradient-based algorithms. In particular, LJ -smoothness allows us to control the
error propagation when using approximate gradients or local updates in a distributed setting, and it
forms a key technical result for deriving convergence rates toward Pareto-stationary solutions.
Define εcritic below as the linear approximation error in Algorithm 1:

εcritic = sup
m∈M

sup
θ

sup
i∈N

E
[
sup
s,ai

∣∣∣Q̂i(sNκi , ai;wmi,K)− Q̂mi (s, ai;θ)
∣∣∣2]. (20)

Based on εcritic, we further define the gradient approximation error in Section 3.3 as

εmactor =
8R2

(1− γm)4
(γm)2κ+2︸ ︷︷ ︸

Truncation error

+
32

(1− γm)2B
+

8(γm)2H

(1− γm)4︸ ︷︷ ︸
Sampling error

+
8εcritic

(1− γm)2︸ ︷︷ ︸
Linear approximation error

. (21)

Lemma 3 In Algorithm 3, for joint policy parameter θt, any agent i ∈ N , and objective m ∈ M,
we have

E[‖∇θiJm(θt)− gmi,t‖22] ≤ εmactor.

The proof of the Lemma 3 is given in Appendix A.4. Lemma 3 provides an upper bound on the error
between the true policy gradient and the estimated gradient gmi,t used by each agent in Algorithm 3.
This result quantifies the approximation error induced by the use of a critic or a finite-horizon esti-
mator in computing policy gradients. Importantly, the bound εmactor captures the combined effects of
truncation, sampling, and linear function approximation errors. Based on Lemma 3, the convergence
of Algorithm 2 is established in the following theorem.

Proposition 1 In Algorithm 2, for any iteration t, we define Gt = (g1t , · · · , gmt ) ∈
RM×

∑N
i=1 |Si||Ai| and have the following result:

(i) In Line 10 of Algorithm 2, ymi,t(k) =
1
N

∑N
i=1〈

∑M
m=1 λi,m(k)gmi,t, g

m
i,t〉;

(ii) In Problem 15, Jgt (·) is Lgt -Lipschitz continuous with Lgt = 2σ2
max(Gt), where σmax(Gt) is the

largest singular value of Gt;

(iii) |Jgt (λ̂t)− J
g
t (λ

∗
t )| ≤

4Lgt
Kλ+1 .

The proof of Proposition 1 is presented in Appendix A.5. Proposition 1 guarantees that, despite the
distributed nature of the update and the use of only local gradient information from neighbors, the
agents can collectively achieve a close approximation to the globally optimal weight allocation for
combining multiple objectives. This property is fundamental for ensuring the cooperative conver-
gence of the distributed algorithm toward a Pareto-stationary solution. Based on Proposition 1, the
Pareto-stationary convergence of Algorithm 3 is presented in the following theorem.

Theorem 2 In Algorithm 3, let ηθ,t = 1
3LJ

, and ηλ,t = 1
(t+1)2 . Our policy parameter sequences

{θt}Tt=1 generated by Algorithm 3 satisfies:

1

T

T∑
t=1

E[‖∇θJ(θt)>λ̂t‖22] ≤
216N

(1− ‖γ‖∞)3T

(
1 +

T∑
t=1

ηλ,t

)
+ 5 max

m∈M
εmactor

+
8

Kλ + 1

(
max
m∈M

(εmactor)
2 + max

m∈M

2R2

(1− γm)4

)
. (22)
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The proof of Theorem 2 can be found in Appendix A.6. Theorem 2 shows that Algorithm 3 can
converge to an approximate Pareto-stationary solution at a rate of O(1/T ) with some approximate
error terms. These errors are not significant, as we can control the upper bound of their upper bounds
by setting the feature vector in the linear approximation, sample batch B, sample size H for policy
gradient approximation, and the Kλ for the calculation of objective weights.

5 SIMULATION EXPERIMENTS

In this section, we employ a path planning for multiple robotics to travel environment analogous to
the one described in (Zhou et al., 2023). While (Zhou et al., 2023) examines a road network com-
prising 8 nodes, our simulation focuses on a larger network containing 18 nodes. Specifically, the
path planning problems of N robots (i.e., agents) on a typical acyclic path network in Fig. 1, where
the “blue” nodes in {b1, b2, · · · , b5} represent the set of starting nodes for agents. “purple” node, “o-
range” node, and “green” node in sthe right-hand-side represent the destination nodes of objective 1,
objective 2, and objective 3, respectively. In the path planning problem, the local state space Si of
agent i ∈ N is defined as Si = {b1, b2, b3, b4, b5, c1, c2, c3, c4, c5, d1, d2, d3, d4, d5, e1, e2, e3}, and
the local action space of agent i ∈ N is defined as Ai = {0, 1, 2, 3} with 3 being the maximum out
degree of nodes in path network.

Network 3-2-1
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(a) Network 5-5-5-3
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Figure 1: (a) Acyclic network. (b,c) The evolution of the objective performance J(θt) and the norm
of policy gradient ‖gt‖2 of the policy sequence generated by Algorithm 3, respectively.

In Network 5-5-5-3, consider agent i at node b2 for illustration, the action “0” means that the agent
i remains stationary at the current node for one time step, while “1”, “2”, and “3” indicate that the
agent i follows the edge (b2, c1), edge (b2, c2), and edge (b2, c3), respectively. It should be noted
that the agent i remains at the current node even when the action selected by it exceeds the out
degree of the current node. For example, if agent j ∈ N selects the action “3” at node b1, then it
will remain stationary at b1 for one time step.
The reward settings of each agent include: (i) the time run cost −0.5 at each step; (ii) the collision
penalty when the agents share a path to move; (iii) the additional rewards for achieving different
objectives. Specifically, when an agent reaches objective 1, objective 2, and objective 3, it receives
the additional rewards of 0.5, 1.5, and 1, respectively. In this path planning problem, the agents want
to efficiently reach the destinations while avoiding collision. The objective of agents is to find a joint
policy parameter θ to maximizes (3).
Our robot path planning problem includes 10 agents, whose initial positions are set to
{b1, b2, b3, b4, b5, b1, b2, b3, b4, b5}. In this simulation, both the proposed Algorithm 3 and the latest
MORL centralized algorithm from (Zhou et al., 2024) are tested under different random seeds. The
discounted average cumulative reward {Jm(θt)}m∈{1,2,3} of the policy sequence generated by Al-
gorithm 3 and the centralized algorithm are depicted in Fig. 1(b), where Algorithm 3 outperforms
the centralized algorithm on performance of each objective. The main reason is that the centralized
algorithm applies linear approximation to the global state-action space, causing large errors, whereas
our distributed algorithm only approximates local Q-functions, leading to higher accuracy.
Moreover, the norm of policy gradients (i.e., ‖gt‖2) generated by Algorithm 3 and the centralized
algorithm are showed in Fig. 1(c). The norm of the policy gradient in Algorithm 3 exhibits a fast
convergence trend towards to 0. However, the policy gradient in the centralized algorithm does
not converge but fluctuates over many iterations from 0 due to the excessively large state-action
dimension, resulting in a substantial approximation error in the linear approximation.

6 CONCLUSIONS

We propose a distributed algorithm for MOMARL and prove its convergence to a close-to-Pareto-
stationary point. Each agent only requires state-action information (sNκi , ai), ensuring scalability.
This framework itself is a significant contribution and may inspire other scalable RL methods in
networked systems

9
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A APPENDIX

A.1 PRELIMINARY DEFINITIONS FOR THEOREM 1

In this subsection, we introduce the formal definition of the exponential decay property in the MO-
MARL problem.
Different from the definition of the global Q-function in (4), for each agent i ∈ N , its local Q-
function Qmi (s,a;θ) in m-th objective is defined as

Qmi (s,a;θ) = Eπθ

[ ∞∑
t=0

(γm)trmi,t|s0 = s,a0 = a
]
. (23)

Based on the definitions of the global Q-function (4) and the local Q-function (23), we have

Qm(s,a;θ) =
1

N

N∑
i=1

Qmi (s,a;θ), (24)

which shows the global Q-function can be decomposed into the sum of the local Q-functions of all
agents.

Definition 3 The MOMARL satisfies the (ϑ,%)-exponential decay property with ϑ =
(ϑ1, · · · , ϑM )> ∈ RM ,% = (%1, · · · , %M )> ∈ RM , if for any joint policy πθ, agent i ∈ N ,
objective m ∈ M, sNκi ∈ SNκi , aNκi ∈ ANκi , sNκ−i , s

′
Nκ−i

∈ SNκ−i , and aNκ−i , a
′
Nκ−i

∈ ANκ−i ,
Qmi (s,a;θ) satisfies∣∣∣Qmi (sNκi , sNκ−i , aNκi , aNκ−i ;θ)−Q

m
i (sNκi , s

′
Nκ−i , aN

κ
i
, a′Nκ−i ;θ)

∣∣∣ ≤ ϑm(%m)κ+1. (25)

The exponential decay property of the MOMARL problem indicates that the dependence of agen-
t i’s local Q-function Qmi (s,a;θ) on other agents shrinks rapidly as the distance between them
increases. By Assumption 2, we can directly obtain the following lemma.

Lemma 4 The MOMARL problem satisfies
(
( R
1−γ1 , · · · , R

1−γM )>,γ
)
-exponential decay property.

Proof. For any objective m ∈ M and agent i ∈ N , by using Lemma 3 in (Qu et al., 2020a), we
have that∣∣∣Qmi (sNκi , sNκ−i , aNκi , aNκ−i ;θ)−Q

m
i (sNκi , s

′
Nκ−i , aN

κ
i
, a′Nκ−i ;θ)

∣∣∣ ≤ R

1− γm
(γm)κ+1,

which can further deduce that the MOMARL problem satisfies the
(
( R
1−γ1 , · · · , R

1−γM )>,γ
)
-

exponential decay property. �
Lemma 4 provides a possibility for agents to approximate Qmi (s,a;θ) by only using its κ-hop
neighbors’ information. Inspired by exponential decay property in Lemma 4, we design a proper
class of graph-truncated Q-functions:

Qmtru,i(sNκi , aNκi ;θ) =
∑

sNκ−i
,aNκ−i

ξθ,mρ (sNκ−i , aNκ−i |sNκi , aNκi )

Qmi (sNκi , sNκ−i , aNκi , aNκ−i ;θ), (26)

where ξθ,mρ (sNκ−i , aNκ−i |sNκi , aNκi ) is the weight coefficient and satisfies

ξθ,mρ (sNκ−i , aNκ−i |sNκi , aNκi )

=
ξθ,mρ (sNκi , sNκ−i , aNκi , aNκ−i)∑

s′Nκ−i
,a′Nκ−i

ξθ,mρ (sNκi , s
′
Nκ−i

, aNκi , a
′
Nκ−i

)
. (27)

Using (26), we define the graph-truncated policy gradient∇θiJmtru,i(θ) as

∇θiJmtru,i(θ) =Es∼dθ,mρ ,a∼πθ

[ ∑
j∈Nκi

Qmtru,j(sNκj , aNκj ;θ)

∇θi log πθi(ai|si)
] 1

(1− γ)N
. (28)

The graph-truncated policy gradient approximation error is presented in the following.

12
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Lemma 5 In the MOMARL problem, for any agent i ∈ N and objective m ∈M, we have∥∥∥∇θiJmtru,i(θ)−∇θiJm(θ)
∥∥∥
2
≤

√
2R

(1− γm)2
(γm)κ+1. (29)

The proof of Lemma 5 is similar to Lemma 4 in (Qu et al., 2020a), therefore omitted here. Lemma 5
shows that the graph-truncated Q-functions {Qmtru,j(sNκj , aNκj ;θ)}j∈Nκi can effectively approxi-
mate the policy gradient∇θiJm(θ) through the state-action (sNκi , aNκi ).
Unlike the graph-truncated policy gradient∇θiJmtru,i(θ) in (28) that requires aNκi , (8) only requires
the local action ai. Next, we establish the equivalence between graph-truncated policy gradient
∇θiJmtru,i(θ) and approximated policy gradient∇θiJmapp(θ) in the following proposition.

Proposition 2 In the MOMARL problem, given a joint policy πθ, for any agent i ∈ N and objective
m ∈M, it holds

∇θiJmtru,i(θ) = ∇θiJmapp,i(θ). (30)

Proof. By the definition of Qmtru,i(sNκi , aNκi ;θ) in (26), we have

Es∼dθ,mρ ,a∼πθ

[ 1
N

∑
j∈Nκi

Qmtru,j(sNκj , aNκj ;θ)∇θi log πθi(ai|si)
]

=Es∼dθ,mρ ,a∼πθ

[ 1
N

∑
j∈Nκi

∑
s̃−Nκ

j
,ã−Nκ

j

ξθ,mρ (s̃−Nκj , ã−Nκj |sNκj , ai, aUκj,−i)Q
m
j (sNκj , s̃−Nκj , ai, aUκj,−i , ã−Nκj ;θ)

∇θi log πθi(ai|si)
]

=Es∼dθ,mρ ,a∼πθ

[ 1
N

∑
j∈Nκi

Qmj (sNκj , s−Nκj , ai, aUκj,−i , a−Nκj ;θ)∇θi log πθi(ai|si)
]

(31)

=Es∼dθ,mρ ,ai∼πθi

[
1

N
Eπθ

[ ∞∑
t=0

(γm)t
∑
j∈Nκi

rmj (sj,t, aj,t)|s0 = s, ai,0 = ai

]
∇θi log πθi(ai|si)

]
(32)

=Es∼dθ,mρ ,ai∼πθi

[
Q̂mi (s, ai;θ)∇θi log πθi(ai|si)

]
, (33)

where the second equality (31) is obtained from the definition of ξθ,mρ (sNκ−i , aNκ−i |sNκi , aNκi ) in
(27), the third equality (32) comes from the definition of the local Q-function in (23), and the last
equality (33) can be achieved by the definition of Q̂mi (s, ai;θ) in (7). �

Proposition 2 provides an equivalence between Qmtru,i(sNκi , aNκj ;θ) and Q̂mi (s, ai;θ) in policy
gradient approximation.

A.2 THE PROOF OF THEOREM 1

Proof. By the definition of∇θiJmapp,i(θ) in (8), we have

‖∇θiJmapp,i(θ)−∇θiJm(θ)‖2 =‖∇θiJmapp,i(θ)−∇θiJmtru,i(θ) +∇θiJmtru,i(θ)−∇θiJm(θ)‖2
=‖∇θiJmtru,i(θ)−∇θiJm(θ)‖2 (34)

≤
√
2R

(1− γm)2
(γm)κ+1, (35)

where the second equality comes from Proposition 2 and last inequality achieved by Lemma 5.
Hence, the proof is completed. �

A.3 PROOF OF LEMMA 2

In the MOMARL problem, for any i ∈ N , denote s−i = s \ si as the state of agents other than
agent i and a−i = a \ ai as the action of agents other than agent i. For any joint policy πθ, denote
dθ,mρ,i (si) and dθ,mρ,−i(s−i) as the discounted state visitation distribution of si and s−i in m-objective,
respectively. For each agent i ∈ N , define its local value function V mi (s;θ) in m-th objective as

V mi (s;θ) =
∑
a

πθ(a|s)Qmi (s,a;θ). (36)

13
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Define the averaged value function, the averaged Q-function, and the averaged advantage function
of agent i ∈ N in the objective m ∈M as

V mi (si;θ) =
1

N

∑
s′−i

dθ,mρ,−i(s
′
−i)

∑
j∈N

V mj (si, s
′
−i;θ), (37)

Qmi (si, ai;θ) =
1

N

∑
s′−i,a

′
−i

dθ,mρ,−i(s
′
−i)πθ−i(a

′
−i|s′−i)

∑
j∈N

Qmj (si, s
′
−i, ai, a

′
−i;θ), (38)

Ami (si, ai;θ) = Qmi (si, ai;θ)− V mi (si;θ). (39)

Lemma 6 (Softmax policy gradient) In the MOMARL problem, for any joint policy πθ, agent i ∈
N , and objective m ∈M, the gradient of Jm(θ) with respect to θi,si,ai is represented as

∂Jm(θ)

∂θi,si,ai
=

1

1− γm
dθ,mρ,i (si)πθi(ai|si)Ami (si, ai;θ). (40)

Proof. According to the policy gradient lemma 1 and (24), we have
∂Jm(θ)

∂θi,si,ai

=
1

1− γm
∑
s′,a′

dθρ(s
′)πθ(a

′|s′)∂ logπθ(a
′|s′)

∂θi,si,ai( 1

N

N∑
j=1

Qmj (s′,a′;θ)
)

=
1

1− γm
∑
s′i,a

′
i

dθ,mρ,i (s
′
i)πθi(a

′
i|s′i)

∑
s′−i,a

′
−i

dθ,mρ,−i(s
′
−i)πθ−i(a

′
−i|s′−i)

(
1{s′i = si, a

′
i = ai}

− 1{s′i = si}πθi(ai|si)
) 1

N

(∑
j∈N

Qmj (si, s
′
−i, ai, a

′
−i;θ)

)
(41)

=
1

1− γm
dθ,mρ,i (si)πθi(ai|si)Qmi (si, ai;θ)

− 1

1− γm
dθ,mρ,i (si)πθi(ai|si)

∑
ai

πθi(ai|si)Qmi (si, ai;θ)

=
1

1− γm
dθ,mρ,i (si)πθi(ai|si)

(
Qmi (si, ai;θ)− V mi (si;θ)

)
=

1

1− γm
dθ,mρ,i (si)πθi(ai|si)Ami (si, ai;θ), (42)

where the second equality (41) comes from the fact that
∂ logπθ(a

′|s′)
∂θi,si,ai

=
∂ log πθi(a

′
i|s′i)

∂θi,si,ai
=1{s′i = si, a

′
i = ai} − 1{s′i = si}πθi(ai|si), (43)

and the last equality (42) can be obtained from the definition of the averaged advantage function
Ami (si, ai;θ). � Based on Lemma 6, the proof of Lemma 2 are represented as follows.
Consider that for any different policies πθ and πθ′ , we have

‖∇θJm(θ′)−∇θJm(θ)‖22

14
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≤
N∑
i=1

‖∇θiJm(θ′)−∇θiJm(θ)‖22

≤
N∑
i=1

‖∇θiJm(θ′)−∇θiJm(θ)‖21. (44)

By Lemmas 6, we have
‖∇θiJm(θ′)−∇θiJm(θ)‖1

=
1

1− γm
∑
si,ai

∣∣∣dθ′,mρ,i (si)πθ′i(ai|si)A
m
i (si, ai;θ

′)

− dθ,mρ,i (si)πθi(ai|si)Ami (si, ai;θ)
∣∣∣

≤ 1

1− γm
∑
s,a

|dθ
′,m
ρ (s)πθ′(a|s)Am(s,a;θ′)

− dθ,mρ (s)πθ(a|s)Am(s,a;θ)| (45)

≤ 1

1− γm
∑
s,a

(
|dθ
′,m
ρ (s)πθ′(a|s)

− dθ,mρ (s)πθ(a|s)|
)
Am(s,a;θ′)

+ dθ,mρ (s)πθ(a|s)|Am(s,a;θ′)−Am(s,a;θ)|

≤ 1

1− γm
∑
s,a

1

1− γm
(
|dθ
′,m
ρ (s)πθ′(a|s)

− dθ,mρ (s)πθ(a|s)|
)
+max

s,a
|Am(s,a;θ′)−Am(s,a,θ)|, (46)

where the first inequality (45) can be obtained from the definition of Ami (si, ai;θ) in (39) and the
fact that |

∑N
i=1 xi −

∑N
i=1 yi| ≤

∑N
i=1 |xi − yi|,∀xi, yi ∈ R, and the last inequality (46) comes

from the fact that Am(s,a;θ) ≤ 1/(1− γm).
For the right side of (46), we can use Corollary 35 and Lemma 32 in Zhang et al. (2022) to further
obtain ∑

s

|dθ
′,m
ρ (s)πθ′(a|s)− dθ,mρ (s)πθ(a|s)|

≤ 1

1− γm
max
s
‖πθ′(·|s)− πθ(·|s)‖1 (47)

and
|Am(s,a;θ′)−Am(s,a;θ)|

≤ 2

(1− γm)2
max
s
‖πθ′(·|s)− πθ(·|s)‖1. (48)

Substituting (47) and (48) into (46), we have
‖∇θiJm(θ′)−∇θiJm(θ)‖1

≤ 3

(1− γm)3
max
s
‖πθ′(·|s)− πθ(·|s)‖1

=
3

(1− γm)3

N∑
i=1

max
si
‖πθ′i(·|si)− πθi(·|si)‖1 (49)

≤ 6

(1− γm)3

N∑
i=1

‖θ′i − θi‖2, (50)

where the last inequality (50) is obtained from Corollary 37 in Zhang et al. (2022) that for any two
difference softmax policies πθi and πθ′i , and si ∈ Si, ‖πθi(·|si)− πθ′i(·|si)‖1 ≤ 2‖θi − θ′i‖2.

15
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Combining (44) and (50), we further have
‖∇θJm(θ)−∇θJm(θ′)‖22

≤
N∑
i=1

( 6

(1− γm)3

N∑
i=1

‖θ′i − θi‖2
)2

=
36N

(1− γm)6

( N∑
i=1

‖θ′i − θi‖2
)2

≤ 36N2

(1− γm)6

N∑
i=1

‖θ′i − θi‖22 (51)

≤ 36N2

(1− γm)6
‖θ′ − θ‖22, (52)

where the second inequality (51) is obtained from that
(∑N

i=1 xi
)2 ≤ N(

∑N
i=1 x

2
i ),∀xi ∈ R.

According to LJ = maxm∈M
6N

(1−γm)3 and (52), we further have that Jm(θ) is LJ -smooth for all
m ∈M.

A.4 PROOF OF LEMMA 3

The detailed proof of Lemma 3 is provided in the following.
Proof. By the update of gmi,t(b+ 1) in (13) and gmi,t = gmi,t(B), we have

∇θiJm(θt)− gmi,t
=∇θiJm(θt)−∇θiJmapp,i(θt) +∇θiJmapp,i(θt)− gmi,t
=∇θiJm(θt)−∇θiJmapp,i(θt)

+

∞∑
h=0

(γm)hE
[
∇θi log πθi,t(ai,h|si,h)Q̂mi (sh, ai,h;θt)

]
− 1

B

B−1∑
b=0

H−1∑
h=0

(γm)hφi(s
b
Nκi ,h, a

b
i,h)
>wi,t

∇θi log πθi,t(abi,h|sbi,h) (53)

=∇θiJm(θt)−∇θiJmapp,i(θt)︸ ︷︷ ︸
T1

+

H−1∑
h=0

(γm)hE
[
∇θi log πθi,t(ai,h|si,h)Q̂mi (sh, ai,h;θt)

]
︸ ︷︷ ︸

T2

+

∞∑
h=H

(γm)hE
[
∇θi log πθi,t(ai,h|si,h)Q̂mi (sh, ai,h;θt)

]
︸ ︷︷ ︸

T3

− 1

B

B−1∑
b=0

H−1∑
h=0

(γm)h∇θi log πθi,t(abi,h|sbi,h)Q̂mi (sbh, a
b
i,h;θt)︸ ︷︷ ︸

T4

+
1

B

B−1∑
b=0

H−1∑
h=0

(γm)h∇θi log πθi,t(abi,h|sbi,h)︸ ︷︷ ︸
T5
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(
Q̂mi (sbh, a

b
i,h;θt)− φi(sbNκi ,h, a

b
i,h)
>wi,t

)
︸ ︷︷ ︸

T5

, (54)

where the equality (53) can be obtained by the policy gradient theorem variant (i.e., Lemma F.1
in Zhou et al. (2023)). Based on (54), we have

E[‖∇θiJm(θt)− gmi,t‖22]
=E[‖T1 + T2 + T3 − T4 + T5‖22]
≤4E[‖T1‖22 + ‖T2 − T4‖22 + ‖T3‖22 + ‖T5‖22]. (55)

≤ 8R2

(1− γm)4
(γm)2κ+2 +

32

(1− γm)2B
+

8(γm)2H

(1− γm)4

+
8εθtcritic

(1− γm)2
. (56)

where (56) can be obtained by (35) and the definition of εθtcritic in (20). �

A.5 PROOF OF 1

Proof. Based on (Olfati-Saber & Murray, 2004), the results of (i) and (ii) are straightforward;
therefore, we will focus on proving (iii). Since Jgt is Lgt -Lipschitz continuous and λi(k) = λj(k)
for all i, j ∈ N , we define λ(k) = λi(k) and have

Jgt
(
λ(k + 1)

)
≤Jgt

(
λ(k)

)
+ αk

〈
∇Jgt

(
λ(k)

)
, eu∗i,t(k) − λ(k)

〉
+
Lgt
2
α2
k‖eu∗i,t(k) − λ(k)‖

2

≤Jgt
(
λ(k)

)
+ αk

〈
∇Jgt

(
λ(k)

)
, eu∗i,t(k) − λ(k)

〉
+ α2

kL
g
t , (57)

where the last inequality can be obtained by the fact that ‖eu∗i,t(k) − λ(k)‖ ≤
√
2. Since u∗i,t(k) =

argminm y
m
i,t(k), we can obtain that〈

∇Jgt
(
λ(k)

)
, eu∗i,t(k) − λ(k)

〉
≤
〈
∇Jgt

(
λ(k)

)
,λ∗t − λ(k)

〉
≤Jgt (λ∗t )− f

(
λ(k)

)
. (58)

Combining (58) with (57), we have

Jgt
(
λ(k + 1)

)
− Jgt (λ∗t ) ≤(1− αk)

(
Jgt
(
λ(k)

)
− Jgt (λ∗t )

)
+ α2

kL
g
t . (59)

By induction, (59) implies that Jgt
(
λ(k + 1)

)
− Jgt (λ∗t ) ≤

4Lgt
k+1 . By the fact that λ̂t = λ(Kλ), we

can obtain Jgt (λ̂t)− J
g
t (λ

∗
t ) ≤

4Lgt
Kλ+1 . �

A.6 PROOF OF THEOREM 2

Proof. According to the smoothness of Jm(θ) in Lemma 2 and LJ = maxm∈M
6N

(1−γm)3 , we can
have

Jm(θt+1) ≥Jm(θt) + 〈∇θJm(θt),θt+1 − θt〉

− LJ
2
‖θt+1 − θt‖22,∀m ∈M. (60)

Taking λt weighted summation over (60), we have

λ>t J(θt+1)

≥λ>t J(θt) + 〈∇θJ(θt)>λt,θt+1 − θt〉

− LJ
2
‖θt+1 − θt‖22

=λ>t J(θt) + ηθ,t

〈
∇θJ(θt)>λt,

M∑
m=1

λmt g
m
t

〉
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−
LJη

2
θ,t

2

∥∥∥ M∑
m=1

λmt g
m
t

∥∥∥2
2

(61)

=λ>t J(θt) + ηθ,t

〈
∇θJ(θt)>λt,

M∑
m=1

λmt
(
gmt −∇θJm(θt) +∇θJm(θt)

)〉
−
LJη

2
θ,t

2

∥∥∥ M∑
m=1

λmt g
m
t

∥∥∥2
2

=λ>t J(θt) + ηθ,t

〈
∇θJ(θt)>λt,

M∑
m=1

λmt ∇θJm(θt)
〉

+ ηθ,t

〈
∇θJ(θt)>λt,

M∑
m=1

λmt
(
gmt

−∇θJm(θt)
)〉
−
LJη

2
θ,t

2

∥∥∥ M∑
m=1

λmt g
m
t

∥∥∥2
2

≥λ>t J(θt) +
ηθ,t
2
‖∇θJ(θt)>λt‖22

− ηθ,t
2

∥∥∥ M∑
m=1

λmt
(
gmt −∇θJm(θt)

)∥∥∥2
2

−
LJη

2
θ,t

2

∥∥∥ M∑
m=1

λmt
(
gmt −∇θJm(θt) +∇θJm(θt)

)∥∥∥2
2

(62)

≥λ>t J(θt) +
(ηθ,t

2
− LJη2θ,t

)
‖∇θJ(θt)>λt‖22

−
(ηθ,t

2
+ LJη

2
θ,t

)∥∥∥ M∑
m=1

λmt
(
gmt −∇θJm(θt)

)∥∥∥2
2
, (63)

where the equality (61) comes from (18), the inequality (62) can be obtained by the fact that 〈x, y〉 ≥
− 1

2 (‖x‖
2 + ‖y‖2),∀x, y ∈ R

∑N
i=1 |Si||Ai|, and the inequality (63) can be get by the fact that ‖x +

y‖22 ≤ 2(‖x‖22 + ‖y‖22),∀x, y ∈ R
∑N
i=1 |Si||Ai|. By (63), we have

‖∇θJ(θt)>λt‖22

≤
2
(
λ>t J(θt+1)− λ>t J(θt)

)
ηθ,t − 2η2θ,tLJ

+
ηθ,t + 2η2θ,tLJ

ηθ,t − 2η2θ,tLJ

∥∥∥ M∑
m=1

λmt
(
∇θJm(θt)− gmt

)∥∥∥2
2
. (64)

Consider that λ̂t is the optimal of problem (15), we have

‖∇θJ(θt)>λ̂t‖22 ≤ ‖∇θJ(θt)>λt‖22 +
4Lgt

Kλ + 1
. (65)

Using the setting of the learning rate as ηθ,t = 1
3LJ

and taking expectation on both side of (64), we
further have

E[‖∇θJ(θt)>λ̂t‖22]

≤18LJE[λ>t J(θt+1)− λ>t J(θt)] + E
[ 4Lgt
Kλ + 1

]
+ 5E

[ M∑
m=1

λmt
∥∥∇θJm(θt)− gmt

∥∥2
2

]
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≤18LJE[λ>t J(θt+1)− λ>t J(θt)]

+ 5 max
m∈M

εmactor +
8

Kλ + 1

(
max
m∈M

(εmactor)
2 + max

m∈M

2R2

(1− γm)4

)
, (66)

where the last inequality comes from Lemma 3. Taking average of (66) over T , we have

1

T

T∑
t=1

E[‖∇θJ(θt)>λ̂t‖22]

≤ 1

T

T∑
t=1

18LJE[λ>t J(θt+1)− λ>t J(θt)]

+ 5 max
m∈M

εmactor +
8

Kλ + 1

(
max
m∈M

(εmactor)
2 + max

m∈M

2R2

(1− γm)4

)
. (67)

Considering that
T∑
t=1

E[λ>t J(θt+1)− λ>t J(θt)]

=E
[ T−1∑
t=1

(−λt+1 + λt)
>J(θt+1)− λ>1 J(θ1)

+ λ>T J(θT+1)
]

≤E
[ T−1∑
t=1

‖ − λt+1 + λt‖1‖J(θt+1)‖∞ + |λ1|1‖J(θ1)‖∞

+ |λT |∞‖J(θT+1)‖∞
]

(68)

≤
T−1∑
t=1

[
ηλ,tE[‖λt − λ̂t‖1]

1

1− ‖γ‖∞

]
+

2

1− ‖γ‖∞
(69)

≤ 2

1− ‖γ‖∞

(
1 +

T∑
t=1

ηλ,t

)
, (70)

where the inequality (68) comes from the fact that x>y ≤ ‖x‖1‖y‖∞,∀x, y ∈ RM and the inequal-
ity (69) is obtained from the update of λt in (17). Taking (70) into (67), we can prove this theorem.
�
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