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Abstract1

Modeling multivariate time series as temporal signals over a (possibly dynamic)2

graph is an effective representational framework that allows for developing models3

for time series analysis. Spatiotemporal graphs are often highly sparse, with4

time series characterized by multiple, concurrent, and even long sequences of5

missing data, e.g., due to the unreliable underlying sensor network. In this context,6

autoregressive models can be brittle and exhibit unstable learning dynamics. The7

objective of this paper is to tackle the problem of learning effective models to8

reconstruct, i.e., impute, missing data points by conditioning the reconstruction9

only on the available observations. In particular, we propose a novel class of10

attention-based architectures that, given a set of highly sparse discrete observations,11

learn a representation for points in time and space by exploiting a spatiotemporal12

propagation architecture aligned with the imputation task. Representations are13

learned end-to-end to reconstruct observations w.r.t. the corresponding sensor14

and its neighboring nodes. Compared to the state of the art, our model handles15

sparse data without propagating prediction errors or requiring a bidirectional16

model to encode forward and backward time dependencies. Empirical results on17

representative benchmarks show the effectiveness of the proposed method.18

1 Introduction19

Exploiting structure – both temporal and spatial – is arguably the key ingredient for the success of20

modern deep-learning architectures and models. This is the case with spatiotemporal graph neural21

networks (STGNNs) [1–3], which learn to process multivariate time series while taking into account22

underlying space and time dependencies by encoding structural spatiotemporal inductive biases in23

their architectures. However, even when spatiotemporal relationships are present, available data are24

almost always incomplete and irregularly sampled, both spatially and temporally. This is definitely25

true for data coming from real sensor networks (SNs), where missing time series observations are26

usually imputed with simple interpolation strategies before proceeding with the downstream task.27

More advanced methods deal with missing data by autoregressively replacing missing observations28

with predicted ones, eventually using bidirectional architectures [4, 5] to exploit both forward and29

backward temporal dependencies. To account also for spatial dependencies, Cini et al. [6] introduced30

a method, named GRIN, combining a bidirectional autoregressive architecture with message passing31

neural networks [7–10]. Despite being the state of the art in spatiotemporal imputation, GRIN can32

suffer from the error propagation typical of autoregressive models [11, 12]. In fact, we argue that the33

propagation of imputed (biased) values through space and time combined with noisy observations34

might exacerbate error accumulation in highly sparse data and drive the hidden state of GRIN-like35

models to drift away.36

In this paper, we aim at tackling this problem by designing an architecture based on a novel at-37

tention mechanism that takes spatiotemporal sparsity into account while learning representations38

and imputing missing values. Compared with the alternatives discussed so far, our method exploits39

a novel spatiotemporal propagation process to learn a predictive representation for each missing40

observation by relying only on observed values propagated through the spatiotemporal structure. This41

approach achieves the twofold objective of avoiding propagating biased representation – typical in the42
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autoregressive framework – and reconstructing observations at arbitrary nodes in the sensor network.43

In summary, our main contributions are (1) the introduction of a sparse spatiotemporal attention44

mechanism to learn, from sparse data, representations localized in time and space; (2) the design of a45

novel STGNN based on the aforementioned spatiotemporal attention mechanism and equipped with46

inductive biases that make the model tailored for the multivariate time series imputation task; (3)47

an empirical assessment of the proposed method showing how it overcomes the limits of existing48

approaches, particularly in settings with highly sparse data.49

2 Problem formulation and related works50

We denote by Xt ∈ RN×d the matrix collecting the d-dimensional measurements of N sensors (or51

measurement stations) in a SN at time step t, with Xt:t+T being the sequence of T measurements52

collected in the time interval [t, t + T ). We model functional relationships among the sensors as53

graph edges, represented by the weighted adjacency matrix A ∈ RN×N , in which each nonzero entry54

ai,j indicates the weight of the edge going from the i-th node to the j-th. We assume to have available55

sensor-level covariates Qt ∈ RN×dq that act as spatiotemporal coordinates to localize a point in time56

and space (e.g., date/time features and geographic location). To account for data availability, we use57

a binary mask mt ∈ {0, 1}N whose i-th element mi
t is 1 if the measurements associated with the58

i-th sensor are valid at time step t. Conversely, if mi
t = 0, we consider the measurements xi

t to be59

completely missing, with the exogenous variables qi
t being instead available. Finally, we model the60

multivariate, structured time series as a discrete sequence of graphs, where each graph is a tuple61

Gt = ⟨Xt,Qt,mt,A⟩. Denoting by X̃t:t+T the unknown corresponding complete sequence, the62

goal of multivariate time series imputation (MTSI) is to find an estimate X̂t:t+T minimizing the63

reconstruction error over the missing data points.64

Related works. Multivariate time series imputation is a core task in time series analysis and deep65

learning methods are commonly used in this regard. In particular, deep autoregressive models based66

on recurrent neural networkss (RNNs) are currently among the most widely adopted methods [4, 5,67

13, 14]. Several approaches in the literature, then, rely on generative adversarial neural networks [15]68

to generate imputed subsequences by matching the underlying data distribution [14, 16, 17]. Recently,69

several attention-based imputation techniques have also been proposed [18–20]. More related to70

our work, GRIN [6] uses a bidirectional graph RNN with a message passing spatial decoder, to71

impute time series based on spatiotemporal dependencies. The attention mechanism [21, 22] has72

been exploited in several contexts within the graph deep learning literature [23–26]. In particular,73

TraverseNet [27] is specially related to our work, since it relies on spatiotemporal autoregressive74

attention to compute messages exchanged between nodes.75

3 Methodology76

The autoregressive approach to reconstruction consists in directly modeling distributions p
(
xi
t |X<t

)
,77

with X<t being the sequence of observations prior to time step t, and using one-step-ahead forecasting78

as a surrogate objective to learn how to recover missing observations. To also consider X>t, i.e., data79

subsequent to the target time step, it is common to use a bidirectional architecture which models also80

p
(
xi
t |X>t

)
[5, 28]. Moreover, a third component p

(
xi
t | {x

j ̸=i
t }

)
must be introduced to account for81

spatial information at each step. Architectures like GRIN, follow exactly this scheme with different82

components dedicated to model each of these three aspects. While being effective in practice, these83

approaches can have multiple drawbacks. Besides the computational overhead of having three separate84

components and the compounding error in the autoregressive models [11, 12], they can fall short in85

capturing global context, as the processing of the structural information is decomposed. Furthermore,86

merging the information coming from the different modules is also problematic, yielding to further87

compounding of errors. Finally, in the case of highly sparse observations, the spatial processing88

should be dealt with special care as propagating information through partially observed spatiotemporal89

graphs adds another layer of complexity.90

Our approach, named Spatiotemporal Point Inference Network (SPIN), is a graph attention network91

for MTSI, designed to learn representations of discrete points associated with nodes of a sequence of92

spatiotemporal graphs. We denote as observed set Xt:t+T =
{〈

xi
τ , q

i
τ

〉
|mi

τ = 1 ∧ τ ∈ [t, t+ T )
}

93

the set of all observations, paired with their spatiotempotal coordinates. Conversely, we name target94
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set Yt:t+T =
{
qi
τ |mi

τ = 0 ∧ τ ∈ [t, t+ T )
}

the complement set collecting the coordinates of the95

discrete spatiotemporal points for which we want to reconstruct an observation. Then, for all discrete96

points qi
τ ∈ Yt:t+T , SPIN is trained to learn a model97

fθ(q
i
τ | Xt:t+T ,A) ≈ E

[
p
(
xi
τ | qi

τ ,Xt:t+T ,A
)]

. (1)

To this end, SPIN learns a parameterized propagation process where each representation, correspond-98

ing to a node and time step, is updated by aggregating information from all the available observations99

acquired at neighboring nodes, weighted by input-dependent attention scores. The core component of100

SPIN is a novel sparse spatiotemporal attention layer (Figure 1) used to propagate information at the101

level of single observations. Indeed, leveraging on the attention mechanism, we learn representations102

for each i-th node at each τ -th time step by simultaneously aggregating information from (1) the103

observed set of i-th node X i
t:t+T ; (2) the observed set X j

t:t+T of each j ∈ N (i), i.e., the set of104

neighbors of the i-th node.105

Temporal Self-attention

  time  

Spatiotemporal Cross-attention

+ MLP

Valid / missing observation  Encoding (valid / missing observation)

Skip Connection

Spatiotemporal point (missing query / valid key / missing key)/ / //

Figure 1: Example of the sparse spatiotemporal attention layer acting for updating h
i,(l)
τ , by simulta-

neously performing inter-node spatiotemporal cross-attention and intra-node temporal self-attention.

Let hi,(l)
τ ∈ Rdh be the learned representation for the i-th node and time step τ at the l-th layer. The106

encoding is initialized as MLP
(
xi
τ , q

i
τ

)
if observation xi

τ is valid, or MLP
(
qi
τ

)
otherwise, where107

MLP is a multi-layer perceptron. The next steps involve computations of spatiotemporal messages,108

i.e., representations computed to propagate information from one discrete space-time point to another.109

We indicate the propagation along the temporal dimension from time step s to time step τ as subscripts110

s → τ . Similarly, superscripts j → i indicate messages sent from the j-th node to the i-th. To avoid111

overloading the notation, we omit the layer superscript in the following. The message rj→i
s→τ ∈ Rdh112

from the j-th node at time step s to the i-th node at time step τ is computed with an MLP taking113

as input both source and target representations (Eq. 2). To account for spatial information, this114

mechanism is used to perform an inter-node temporal cross-attention, computing a message to hi
τ115

using encodings in hj
t:t+T associated with a valid observation for every neighbor j ∈ N (i) (Eq. 3).116

rj→i
s→τ = MLP

(
hj
s,h

i
τ

)
(2) Rj→i

τ = {rj→i
s→τ |

〈
xj
s, q

j
s

〉
∈ Xt:t+T } (3)117

Messages in Rj→i
τ are then weighted by message scores αj→i

s→τ , computed by a linear projection of118

the messages in Rj→i
τ followed by a softmax layer, and aggregated to obtain an edge-level context119

vector ej→i
τ , encoding the observed sequence at each j-th node w.r.t. the i-th node and time step τ .120

Analogously, to account for the observed sequence of the i-th node itself, we exploit an intra-node121

temporal self-attention mechanism to compute messages from the encodings hi
t:t+T corresponding to122

valid observations, aggregated (weighted by message scores) to obtain a temporal context vector ciτ .123

Then, target representation h
i,(l)
τ is updated with a final aggregation step (Eq. 4), and imputations for124

all spatiotemporal points in Yt:t+T are obtained – after L layers – with a nonlinear readout (Eq. 5).125

hi,(l+1)
τ = MLP

(
hi,(l)
τ , ci,(l)τ ,

∑
j∈N (i)

ej→i,(l)
τ

)
(4)

Ŷt:t+T = {x̂i
τ = MLP

(
hi,(L)
τ

)
| qi

τ ∈ Yt:t+T } (5)

Hierarchical attention. Roughly speaking, the proposed spatiotemporal attention mechanism can126

be viewed as performing attention over the spatiotemporal graph S, obtained by considering the127

product graph between space and time dimensions. Performing graph attention on the surrogate graph128

S has time and memory complexities that scale with O((N + E)T 2), with N,E being the largest129
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Table 1: Performance (MAE) with increasing data sparsity (average over 5 evaluation masks).

METR-LA PEMS-BAY AQI
5 % 10 % 15 % 5 % 10 % 15 % 5 % 10 % 15 %

BRITS 5.87 ± 0.03 7.26 ± 0.06 8.29 ± 0.07 4.14 ± 0.05 5.41 ± 0.08 5.84 ± 0.04 24.09 ± 0.30 31.90 ± 0.26 37.62 ± 0.42
SAITS 4.73 ± 0.07 6.66 ± 0.05 7.27 ± 0.03 3.88 ± 0.09 7.62 ± 0.21 8.01 ± 0.11 20.78 ± 0.30 30.16 ± 0.39 36.34 ± 0.33
Transformer 6.03 ± 0.04 7.19 ± 0.05 8.06 ± 0.05 3.69 ± 0.06 5.09 ± 0.05 6.02 ± 0.04 29.21 ± 0.33 33.62 ± 0.16 37.31 ± 0.14
GRIN 3.05 ± 0.02 4.52 ± 0.05 5.82 ± 0.06 2.26 ± 0.03 3.45 ± 0.06 4.35 ± 0.04 15.62 ± 0.24 22.08 ± 0.39 29.03 ± 0.42

SPIN 2.71 ± 0.02 3.32 ± 0.02 3.87 ± 0.05 1.78 ± 0.03 2.15 ± 0.03 2.41 ± 0.02 14.29 ± 0.24 18.71 ± 0.34 24.34 ± 0.46
SPIN-H 2.64 ± 0.02 3.17 ± 0.02 3.61 ± 0.04 1.75 ± 0.04 2.16 ± 0.03 2.48 ± 0.02 14.55 ± 0.26 19.37 ± 0.36 25.38 ± 0.37

number of nodes and edges, respectively, among graphs in Gt:t+T . To reduce this computational130

burden – which undermines the application of the proposed method to large graphs and long time131

horizons – we propose to rewire the attention mechanism to be hierarchical [29]. We do this by132

adding K dummy nodes that act as hubs for propagating information. In this way, we can reduce the133

spatiotemporal attention complexity to O((N + E)KT ), with K ≪ T , at the cost of introducing an134

information bottleneck. We refer to Appendix B for a detailed explanation of this mechanism.135

4 Empirical evaluation136

In this section, we evaluate our method on three real-world datasets and compare the performance137

against state-of-the-art methods and standard approaches for MTSI. In following experiment, we138

consider both SPIN and the hierarchical version SPIN-H. The figure of merit used is the mean139

absolute error (MAE), averaged across imputation windows. We consider only the out-of-sample140

scenario similarly to previous works [6], in which every parametric model is trained and tested on141

disjoint sets. We consider three openly available datasets coming from real-world SNs. The first142

two, namely PEMS-BAY and METR-LA [2], record traffic measurements and are both widely used143

benchmarks in spatiotemporal forecasting literature. We use the same setup of [6] to inject missing144

data with Point missing policy, in which we randomly drop 25% of the available data. As a third145

dataset, we consider AQI [30, 31], which collects hourly measurements of air pollutants from 437 air146

quality monitoring stations in China. We consider also a smaller version of this dataset (AQI-36) with147

only the 36 sensors in the city of Beijing. We use the same missing data distribution used in [6, 31].148

In all settings, all the valid observations masked out are used as targets for evaluation. We obtain149

an adjacency matrix from the pairwise distance of sensors following previous works [2, 3, 6]. We150

compare our methods against (1) GRIN [6], a graph-based bidirectional RNN for MTSI with state-151

of-the-art performance; (2) a spatiotemporal Transformer, where we alternate temporal and spatial152

Transformer encoder layers from [21] and replace missing values with a [MASK] token (as in [32]); (3)153

SAITS [18], a recent attention-based architecture; (4) BRITS [5], which leverages on a bidirectional154

RNN. We assess how performance changes as the percentage of missing values increases. In practice,155

we change the missing data distribution at test time, simulating the case in which, at each time step,156

every sensor has a constant probability p̄ of going offline for a random number S ∼ U(12, 36) of157

future (consecutive) time steps. Table 1 shows results for all datasets with p̄ = 5%, p̄ = 10%, and158

p̄ = 15%. Note that, depending on the dataset, the portion of valid observations in each of these159

cases amounts to ≈ 25-30%, ≈ 8-10%, and ≈ 3-4%, respectively. SPIN models, differently from160

the baselines, can handle all the considered scenarios. In particular, improvements in performance161

w.r.t. the best performing baseline (GRIN) are more evident as the number of available observations162

decreases. Indeed, the sparse spatiotemporal attention mechanism of SPIN is not autoregressive and163

allows an unbounded memory capacity. Note also that SPIN-H performs on par (and in some cases164

better) with SPIN, making it a valid lightweight alternative to SPIN. In Appendix A, we show that165

SPIN-based models perform on par or better than state-of-the-art methods on standard benchmarks.166

5 Conclusions167

We introduced a graph-based attention network, named SPIN, to reconstruct missing observations in168

sparse spatiotemporal time series. We showed how the time and space complexities of the approach169

can be drastically reduced by considering a novel hierarchical attention mechanism. Empirical170

analysis shows that the proposed method widely outperforms state-of-the-art methods for imputation171

in highly sparse settings. Future works could investigate the application of SPIN in other time series172

analysis tasks (e.g., forecasting), as well as in settings with an underlying dynamic graph topology.173
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Appendix292

A Performance on standard benchmarks293

Table 1, in the main paper, shows the reconstruction error of the different methods as the number294

of valid observations in input sequences decreases. To assess the performance of our model in295

standard settings (denser observations), we test all the methods on the original datasets introduced296

in section 4. For the traffic datasets, we also consider a different evaluation mask, where data are297

removed according to the Block missing policy [6], in which we randomly mask out 5% of the298

available data and, in addition, we simulate failures of S ∼ U(12, 48) consecutive steps with 0.15%299

probability. For this experiment, we consider also additional baselines: (1) node-level sequence mean300

(MEAN); (2) neighbors mean (KNN); (3) Matrix Factorization (MF); (4) MICE [33]; (5) VAR, a vector301

autoregressive one-step-ahead predictor; (6) rGAIN, an adversarial approach which shares similarities302

with GAIN [16] and SSGAN [14]. Table 2 shows the results in terms of MAE. Whenever possible,303

we use results from [6].304

Table 2: Performance (in terms of MAE) averaged over multiple independent runs.

Block missing Point missing Simulated failures

PEMS-BAY METR-LA PEMS-BAY METR-LA AQI-36 AQI

Mean 5.46 ± 0.00 7.48 ± 0.00 5.42 ± 0.00 7.56 ± 0.00 53.48 ± 0.00 39.60 ± 0.00

KNN 4.30 ± 0.00 7.79 ± 0.00 4.30 ± 0.00 7.88 ± 0.00 30.21 ± 0.00 34.10 ± 0.00

MF 3.28 ± 0.01 5.46 ± 0.02 3.29 ± 0.01 5.56 ± 0.03 30.54 ± 0.26 26.74 ± 0.24

MICE 2.94 ± 0.02 4.22 ± 0.05 3.09 ± 0.02 4.42 ± 0.07 30.37 ± 0.09 26.98 ± 0.10

VAR 2.09 ± 0.10 3.11 ± 0.08 1.30 ± 0.00 2.69 ± 0.00 15.64 ± 0.08 22.95 ± 0.30

rGAIN 2.18 ± 0.01 2.90 ± 0.01 1.88 ± 0.02 2.83 ± 0.01 15.37 ± 0.26 21.78 ± 0.50

BRITS 1.70 ± 0.01 2.34 ± 0.01 1.47 ± 0.00 2.34 ± 0.00 14.50 ± 0.35 20.21 ± 0.22

SAITS 1.56 ± 0.01 2.30 ± 0.01 1.40 ± 0.03 2.26 ± 0.00 18.16 ± 0.42 21.33 ± 0.15

Transformer 1.70 ± 0.02 3.54 ± 0.00 0.74 ± 0.00 2.16 ± 0.00 11.98 ± 0.53 18.11 ± 0.25

GRIN 1.14 ± 0.01 2.03 ± 0.00 0.67 ± 0.00 1.91 ± 0.00 12.08 ± 0.47 14.73 ± 0.15

SPIN 1.06 ± 0.01 1.97 ± 0.01 0.71 ± 0.01 1.90 ± 0.01 11.77 ± 0.74 14.00 ± 0.13

SPIN-H 1.06 ± 0.01 2.05 ± 0.03 0.74 ± 0.02 1.96 ± 0.04 11.08 ± 0.06 14.39 ± 0.03

Both SPIN methods outperform the baselines in almost all scenarios. As expected, improvements305

are more evident when entire blocks of data are missing, as in AQI datasets and block missing306

settings. With respect to the spatiotemporal Transformer, SPIN performs better in all settings except307

for AQI-36, which can be attributed to the ineffectiveness of spatial attention alone in determining308

the dependencies among the different spatial locations.309
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B Hierarchical attention310

In section 3 we introduced a hierarchical attention mechanism to reduce the computational complexity311

of the spatiotemporal attention mechanism in SPIN. In particular, such a mechanism acts by adding312

K hub nodes that selectively propagate information through the graph. Let Zi ∈ RK×dz be the hub313

nodes’ representations for central node i, and then, for hub k proceed as follows.314

1. Update zi
k by querying {hi

τ |
〈
xi
τ , q

i
τ

〉
∈ Xt:t+T }, i.e., node encodings associated with valid315

observations, obtaining z̃i
k;316

2. Update node encoding hi
τ by querying updated Z̃i and Z̃j of every j-th neighbor in N (i).317

The spatiotemporal attention is effectively split into two phases. At first, we update each hub node318

representation similarly as done for the edge-level and temporal context vectors:319

riτ,k = MLP
(
hi
τ , z

i
k

)
(6)

Ri
k = {riτ,k |

〈
xi
τ , q

i
τ

〉
∈ Xt:t+T } (7)

cik =
∑

τ : ri
τ,k∈Ri

k

αi
τ,k · riτ,k (8)

z̃i
k = MLP

(
zi
k, c

i
k

)
(9)

320

Then, we obtain context vectors from the updated hub representations as:321

rik,τ = MLP
(
z̃i
k,h

i
τ

)
(10)

ciτ =
∑
k

αi
k,τ · rik,τ (11)

rj→i
k,τ = MLP

(
z̃j
k,h

i
τ

)
(12)

ej→i
τ =

∑
k

αj→i
k,τ · rj→i

k,τ (13)
322

and update node representation hi
τ as in Eq. (4). We initialize the hub representations at layer l = 0323

with random trainable parameters. While similar methods to amortize the cost of the attention layer324

have been explored in different contexts [29, 34], to the best of our knowledge there are no analogous325

methods tackling efficient computation of spatiotemporal attention coefficients in STGNNs.326

C Detailed experimental setup327

In this appendix, we discuss in detail the experimental settings. We use the same setup of Cini et al.328

[6]1,2. We refer to [6] for details on these baselines.329

For SPIN, we use the same hyperparameters in all datasets: L = 4 layers; hidden size dh = 32; 2330

layers with hidden size 32 for every MLP; ReLU activation functions. Masking out tokens in the331

target set allows SPIN to propagate only valid information. As a downside, this results in blocking332

the flow of information on paths through points in the target set. This can be problematic when333

the input observations are extremely sparse. Nonetheless, it is reasonable to assume that, after only334

a few propagation steps, the available information has already been partially diffused to locations335

with missing observations. At this point, blocked paths can be unlocked, allowing for reaching336

higher-order neighborhoods. In practice, we introduce a hyperparameter η = 3 to control the number337

of layers with masked connections and effectively split the propagation process into two phases. It is338

important to notice that what is being propagated in the second phase are learned representations, not339

observations (unavailable for masked tokens).340

For SPIN-H, we use similar hyperparameters, but 5 layers (with η = 3); K = 4 hubs per node with341

dz = 128 units each. These hyperparameters have been selected among a small subset of options on342

the validation set; we expect far better performance to be achievable with further hyperparameter343

tuning. Depending on the dataset, the number of parameters ranges from ≈ 55K to ≈ 95K for344

SPIN and ≈ 540K to ≈ 800K for SPIN-H. We use Adam optimizer [35], learning rate lr = 0.0008345

and a cosine scheduler with a warm-up of 12 steps and (partial) restarts every 100 epochs. We train346

our models with 300 mini-batches of 8 random samples per epoch, fixing the maximum number of347

epochs to 300 and using early stopping on the validation set with patience of 40 epochs. Due to348

constraints on memory capacity on some of the GPUs (see the description of the hardware resources349

below), for SPIN-H we set the batch size to 6 and 16 in AQI and AQI-36, respectively.350

1https://github.com/Graph-Machine-Learning-Group/grin
2https://github.com/TorchSpatiotemporal/tsl
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Figure 2: The architecture of SPIN. At first, we encode observations Xt:t+T and spatiotemporal
coordinates Qt:t+T , obtaining initial representations H(0)

t:t+T . The representations are updated by a
stack of L sparse spatiotemporal attention blocks. Final imputations are obtained from H

(L)
t:t+T with

a nonlinear readout.

To train SPIN-based models, we minimize the following loss function:351

L =

L∑
l=1

∑
qi
τ∈Yt:t+T

ℓ
(
x̂
i,(l)
τ ,xi

τ

)
|Yt:t+T |

, (14)

where ℓ ( · , · ) is the absolute error and x̂
i,(l)
τ is l-th layer imputation for the i-th node at time step τ .352

Note that, to provide more supervision to the architecture, the loss is computed and backpropagated353

w.r.t. representations learned at each layer, not only at the last one. The error is computed only on354

data not seen by the model at each forward pass. For this reason, we randomly remove p ratio of the355

input data for each minibatch sample, with p sampled uniformly from [0.2, 0.5, 0.8], and use them to356

compute the loss. We never use data masked for evaluation to train any model.357

For the spatiotemporal Transformer baseline, we use the same training strategy and a similar hyperpa-358

rameters configuration of SPIN-H: L = 5 layers; 4 attention heads; hidden size and feed-forward359

size of 64 and 128 units, respectively. For SAITS, we use the code provided by the authors3. Hy-360

perparameters for SAITS have been selected on the validation set with a random search by using361

hyperparameter ranges from the original paper.362

We recall that the time and memory complexities of SPIN and SPIN-H scale with O((N + E)T 2)363

and O((N + E)KT ), respectively. For the sake of comparison, here we also report the asymptotic364

complexities of the spatiotemporal Transformer and GRIN. The Transformer alternates temporal365

attention (i.e., O(NT 2)) and spatial attention (i.e., O(TN2)), with a resulting O((N + T )NT )366

complexity. Let R be the spatial receptive field (i.e., number of graph convolution layers) of the367

inner MPGRU cell, the time complexity required to process a single direction in GRIN scales368

with O(TRE). Note also that while most of the operations in the attention-based models can be369

executed in parallel, GRIN would need to process the entire sequence recurrently, with a consequent370

performance slowdown at execution time.371

All the models were developed in Python [36] using PyTorch [37], PyG [38] and Torch Spatiotempo-372

ral [39]. We use Neptune4 [40] for experiments tracking. The code to reproduce the experiments of373

the paper is available as supplementary material. All the experiments have been run in a cluster using374

GPU-enabled nodes with different hardware setups. Running times of SPIN-H training on a node375

equipped with a 12GB NVIDIA Titan V GPU range from 4 to 14 hours (depending on the dataset).376

For SPIN we used a node with 40GB NVIDIA A100 GPU, with running times ranging from 4 to 26377

hours.378

D Datasets379

In this appendix, we provide details on datasets and preprocessing used for the experiments. We380

use temporal windows of T = 24 steps for all datasets except AQI-36, for which we set T = 36.381

For traffic datasets, we split the data sequentially as 70% for training, 10% for validation, and 20%382

for testing. For air quality datasets, following Yi et al. [31], we consider as the test set the months383

of March, June, September, and December and we use valid observation xi
τ as ground-truth if the384

value is missing at the same hour and day in the following month. For data preprocessing we use the385

same approach of Cini et al. [6], by normalizing data across the feature dimension (graph-wise for386

graph-based models) to zero mean and unit variance.387

3https://github.com/WenjieDu/SAITS
4https://neptune.ai/
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Table 3: Ablation study to assess the contribution of the single components in the spatiotemporal
attention block. Performance averaged over multiple independent runs.

METR-LA (P) AQI-36

MAE MRE (%) MAE MRE (%)

SPIN 1.90 ± 0.01 3.29 ± 0.01 11.77 ± 0.74 16.56 ± 1.05

SPIN-H 1.96 ± 0.04 3.39 ± 0.06 11.08 ± 0.06 15.60 ± 0.09

Without cross-attention 2.18 ± 0.01 3.78 ± 0.01 15.36 ± 0.09 21.62 ± 0.13

Without self-attention 2.24 ± 0.09 3.88 ± 0.16 13.63 ± 0.23 19.19 ± 0.32

Transformer 2.16 ± 0.00 3.74 ± 0.01 11.98 ± 0.53 16.87 ± 0.75

In line with [3, 6], we obtain the adjacency matrix from the node pairwise geographical distances388

using a thresholded Gaussian kernel [41]389

ai,j =

{
exp

(
−dist(i,j)2

γ

)
dist (i, j) ≤ δ

0 otherwise
, (15)

where dist ( · , · ) is the geographical distance operator, γ is a shape parameter and δ is the threshold.390

Note that we considered settings where the topology is static. The extension to dynamic graphs,391

where A = At and N = Nt, can be an interesting future work while being outside the scope of this392

paper.393

E Ablation study394

Table 3 shows the results of an ablation study on METR-LA (Point missing) and AQI-36. Here, we395

evaluate the performance in terms of mean absolute error (MAE) and mean relative error (MRE). We396

consider two different versions of SPIN-H in which we remove the spatiotemporal cross-attention397

and the temporal self-attention components, respectively. We also report the performance of SPIN,398

SPIN-H and the Transformer for reference. Results clearly show that both components contribute399

positively to imputation accuracy. We also point out that in METR-LA (P) observations are masked400

out uniformly at random while the mask in AQI-36 reflects the empirical distribution of missing data401

in the dataset.402
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