
Learnable Fourier Features for Multi-Dimensional Spatial Positional Encoding: Appendix

A Attention-Based Models

We review positional encoding in the context of Transformer models [38]. The central building block
of these models is multi-head attention and each attention head is calculated as follows:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (7)

where queries Q ∈ RN×dk , keys K ∈ RN×dk , and values V ∈ RN×Dv . N is the number of items
to consider, e.g., the number of tokens in a sequence or the number of pixel patches in an image. dk
is the dimension of a key and query, and Dv is the dimension of a value vector. Queries, keys and
values are acquired via a linear projection of the input at each attention layer. For self-attention, they
share the same input:

Q = EXMQ;K = EXMK ;V = EXMV (8)

where MQ ∈ R|EX |×dk , MK ∈ R|EX |×dk and MV ∈ R|EX |×dv are the linear projection. EX ∈
RN×|EX | is the embedding of input X , which is jointly represented by its content embedding, CX ,
and its positional encoding, PX .

EX = CX ⊕ PX (9)

where ⊕ can be either concatenation or element-wise addition. Previous work has investigated
different combinations and decomposition of positional encoding and content embedding [13]. While
concatenation and addition provide comparable results, the lack of positional encoding, PX , will
cause a significant drop in accuracy [38, 3, 20]. In this paper, we investigate methods for realizing
PX . Note that for all the models except DETR, PX joins the content embedding as the input to the
first layer. For DETR, PX is added to the input of every Transformer encoder layer, i.e., the activation
of the previous Transformer layer.

B Learned Positional Encoding Analysis

Our positional encoding is seeded with Fourier features whose dot product approximates L2

distances—that brings the inductive bias to the model, which then evolves as learning progresses. In
this section, we analyze the positional encodings learned from the image generation, object detection
and widget Captioning tasks. Note that the following analysis is focused on the output of Equation 2
instead of that of Equation 6. The Fourier features directly represent the position while the MLP
is trained to modulate the positional encoding to merge with the content embedding. It is less
informative to analyze the MLP output because it neither directly represents the position nor directly
participates in dot product attention (Equation 7). In all the image benchmarks, the MLP output will
be added to the content embedding and the addition is further processed by the transformation with
Mk in Equation 8. In the widget captioning benchmark, the MLP output will be concatenated with
the content embedding and then projected by a dense layer to a hidden dimension required by the
Transformer, which is further transformed by Mk before dot product attention.

B.1 PE Analysis for Image Generation Tasks

Figure 5 visualizes the similarity of a given position on a 64× 64 image to the rest of the positions
on the image, at the initial stage and the end of the training. The similarity is computed based on
the dot product of the positional encoding of each position. The first row, Init, shows the similarity
heatmap resulted from the initially seeded Fourier features based on γ = 1.0. The second row,
Trained, shows the similarity from the positional encoding learned after 100K steps when the model
converges. As we can see, the positional relationship becomes less concentrated than the initialization,
i.e., the "ball" becomes larger. To further understand the impact of having the MLP modulator on
the positional encoding, we compare the learned positional encoding with and without the MLP
modulator. When there is no MLP modulator (Figure 6), the learned positional encoding is less clean

15

Figure 5: The positional similarity, rx · ry, of different positions on an image, to the rest of the
positions on an image, as learned by Learnable-Fourier+MLP in Reformer. The Fourier features are
initialized with weights drawn from a normal distribution: γ = 1.0. The Top-Left, Top-Right, Center,
Button-Left, and Bottom-Right positions are at (4, 4), (4, 57), (31, 31), (57, 4), (57, 57) on the image
pixel grid.

Figure 6: The positional similarity learned by Learnable-Fourier without using the MLP modulator
in Reformer. The Fourier features are initialized with weights drawn from a normal distribution:
γ = 1.0.

than the one with MLP. We suspect it is because without MLP, the positional encoding needs to
directly participate in the addition with the content embedding (Equation 9). As a result, the encoding
is not only learning to represent positions but also pressured to work with content embedding. As we
show in our experiments, the lack of the MLP modulator results in a decrease in accuracy in this task.

B.2 PE Analysis for Object Detection Tasks

We visualize the initial and the learned positional relationships of each method in DETR for the object
detection task (see Figures 7-10). Similar to the previous analysis, we analyze several representative
positions on the 42× 42 grid in DETR, including the Top-Left (5, 5), Top-Right (5, 38), Center (21,
21), Button-Left (38, 5), and Bottom-Right (38, 38) positions, and the heatmaps show the positional
similarity of these positions to the rest positions on the grid.

By comparing the similarity heatmap of its initial and trained embedding weights (Figure 7), we
found Embed-2D slowly learns spatial relationships between positions, as closer positions becomes
more similar (brighter) in the heatmaps. Because the method concatenates independently embedded
dimensions, it favors orthogonal directions like Sine-2D, as shown in Figure 2(a).

The learned positional similarity of MLP (Figure 8) is skewed towards the bottom and the right
directions based on the five analyzed positions. The heatmap intensity is based on the dot product of
PEs, which is not normalized by their magnitudes like cosine similarities. As a result, the heatmap
intensity towards the left and top edges is generally smaller (darker). Note that MLP does not have
the shift-invariant property and the pattern of these five positions do not necessarily generalize across
the entire grid space.

16

Figure 7: Positional similarity visualization of Embed-2D positional encoding in DETR for object
detection.

Figure 8: Positional similarity visualization of MLP positional encoding in DETR for object detection.

For Sine-2D, its similarity heatmap obeys the "cross" pattern that we see in Figure 2(a). In DETR,
position normalization allows positional encoding to concentrate on the center area of the cross
(Figure 9). As a result, the orthogonal bias is much reduced. Finally, we see Learnable-Fourier+MLP
was able to mostly maintain ball-shaped similarity pattern throughout the training (Figure 10).

B.3 PE Analysis for Widget Captioning Tasks

Positional relationships are more complex in the widget captioning task, because each position is
defined as a four-coordinate bounding box. We consider point-wise similarity a building block for
bounding box similarity as discussed in the paper (Section 4.4). Figure 11 shows the point-wise
positional similarity learned by Learned-Fourier+MLP 2/2, which groups four coordinates into two

Figure 9: Positional similarity visualization of Sine-2D positional encoding in DETR for object
detection. The heatmap of the initial similarity and the "trained" similarity are the same because this
method is parameter free.

17

Figure 10: Positional similarity visualization of Learnable-Fourier+MLP in DETR for object detection.
The Fourier features are initialized with weights drawn from a normal distribution: γ = 1.0.

Figure 11: The positional similarity of a UI screen, learned by Learnable-Fourier+MLP-2/2 for
widget captioning. Note that in this task, each position is defined as a 4-coordinate bounding box. The
heatmap only visualizes the point-wise similarity. The Fourier features are initialized with weights
drawn from a normal distribution: γ = 100.0.

Figure 12: The positional similarity of a UI screen, learned by Learnable-Fourier+MLP-2/2 with the
KL loss (Equation 10 and 11) for widget captioning. The Fourier features are initialized with weights
drawn from a normal distribution: γ = 100.0.

18

groups to represent the top-left corner and the right-bottom corner positions of a bounding box. In
this task, we see a more spread positional relationship than that of the image generation task, because
we seed the Fourier features with γ = 100 in this task. We observed that the positional relation
becomes more concentrated over the course of the training than that of the initial encodings. We also
see the positional relation distribution becomes more skewed (towards the anti-diagonal direction).
To understand whether maintain the symmetry of the distribution would help on accuracy, we conduct
additional experiments by applying a regularizer to the Fourier weights Wr as the follow.

LKL = −1

2
(1− log σ̄2 + log σ2 − σ2 + µ2

σ̄2
) (10)

where µ and σ2 are the mean and variance of Wr. σ̄2 is the target variance that is also learnable,
which is initialized as γ−2. The KL loss ensures Wr to obey a Gaussian distribution centered at 0
thus maintains the symmetry of positional relationships along all the directions. When training the
model, the regularizer loss LKL is added to the overall loss for optimization.

Ltotal = Lmodel + αLKL (11)

In this experiment, we use α = 1. The resulted positional encoding is shown in Figure 12. As we can
see, the symmetry of the positional relation distribution is better maintained with the KL loss, and
the distributions of initial and learned Wr for without and with the KL loss are shown in Figure 13.
We see a clear improvement of accuracy with the use of this KL loss for Learned-Fourier+MLP 2/2.
However, using the KL loss does not seem to impact image-based tasks much, e.g., image generation
and object detection tasks. We suspect that as shown in Figure 5, the symmetry of positional relation
distribution is naturally maintained even without using the KL loss. Thus KL loss is less useful in
such cases.

(a) Initial distribution of Wr . (b) Wr learned w/o the KL loss. (c) Wr learned with the KL loss.

Figure 13: The distribution of Wr.

C Additional Ablation Studies

It is possible to extend traditional sinusoidal positional encoding (Equation 1) for the multi-
dimensional positions by using multi-dimensional frequencies, instead of using the concatenation of
independently encoded spatial dimensions. For 2D positions on an image, we can linearly combine
the vertical and horizontal positions using constant frequencies that are manually determined. In this
ablation, we adapt the original Transformer sinusoidal frequencies for each dimension. Specifically,
for a 2D position (x, y), the multi-dimensional sinusoidal PE, referred as Transformer MD-Sine, is
the follow, where D is the dimension of the PE and 0 ≤ d ≤ D

2 .

PE(p, 2d) = sin (
x

100002d/D
+

y

50002d/D
);PE(p, 2d+ 1) = cos (

x

100002d/D
+

y

50002d/D
)

As shown in Figure 14, Transformer MD-Sine performs poorly in the Reformer Imagenet64 task.
Adding MLP to Transformer MD-Since improves its performance, but it still does not perform as good
as Learnable Fourier. Although it is possible to find better constant frequencies for linearly combining
these dimensions, it can be effort consuming to manually tune these frequencies to perform optimally.

19

Transformer MD-Sine + MLP
Transformer MD-Sine

Learnable-Fourier + MLP

Figure 14: Bits per dim (bpd) w.r.t. training steps on the image generation task with Reformer.
The ablation compares learnable Fourier features with multi-dimensional sinusoidal PE based on
Transformer frequencies. The plot shows the mean and 95% confidence interval based on 3 repeats
of experiments for each method.

Table 5: The performance of Sine-4D when it is enhanced by an MLP for the widget captioning task.

Method BLEU-1 BLEU-2 ROUGE CIDEr METOER SPICE

Sine-4D 44.9 31.9 43.9 94.9 31.0 16.7
Sine-4D+MLP-1/4 45.3 32.4 45.0 97.6 31.9 16.9
Sine-4D+MLP-2/2 45.4 32.1 45.2 98.1 32.0 17.3
Sine-4D+MLP-4/1 45.3 32.3 44.8 97.5 31.9 17.7

In contrast, our approach with learnable Fourier features lets the model learn these frequencies that
are appropriate for the task.

We found MLP is often beneficial when it is added to an existing positional encoding such as
sinusoidal or embedding based methods. For example, the overall accuracy of Sine-4D is improved
when an MLP is used with it for the widget captioning task (Table 5). For certain tasks, a dense
transform or even simpler scaling over Fourier features (Equation 2) can lead to good results, e.g., the
object detection task. Yet, using an MLP seems to consistently offer good results across tasks.

Finally, we compare the performance our positional encoding when Wr is initialized from a different
distribution. In this ablation, we initialize Wr by drawing from a uniform distribution in the range of
[0, 1] in comparison with drawing from a normal distribution (Equation 4). In the object detection
task (Table 6), initializing Wr from the uniform distribution performs worse than from a normal
distribution. When the learnable Fourier features are enhanced by the MLP layers, the performance
of using both initialization distributions are improved and reach a similar level of performance,
although drawing from the normal distribution still has a slight advantage. By examining the learned
Fourier features from uniform initialization, we found the positional relationships, as visualized by
the heatmaps, has become more "round" or towards a ball shape after learning than those at the
initialization (Figure 15), which indicates that the model is more inclined to L2 distances between
positions.

Table 6: Performance for initializing Wr with different distributions, and with and without MLP.

Configuration AP AP50 AP75 APsmall APmedium APlarge

Uniform [0, 1] 38.3 59.4 40.0 17.7 41.9 56.9
Uniform [0, 1] & MLP 40.0 60.5 42.0 18.4 43.5 58.9
N (0, 4−2) 39.1 60.0 40.9 18.1 42.5 58.0
N (0, 4−2) & MLP 40.2 60.7 42.4 20.0 43.3 59.0

20

Figure 15: The initial and learned positional relationships of Fourier features when Wr is initialized
by drawing from a uniform distribution [0, 1]. The Top-Left, Top-Right, Center, Button-Left, and
Bottom-Right positions are at (5, 5), (5, 38), (21, 21), (38, 5), (38, 38) in the 42 × 42 grid. The
Fourier features are initialized with weights drawn from a normal distribution: γ = 4.0.

D Hyperparameters & Parameter Sizes

Table 7: The model parameter sizes of Reformer [16] with different positional encoding methods.

Method Reformer Model Parameter Size

Embed-1D 73.2M
Embed-2D 60.7M
Sine-1D 60.6M
Sine-2D 60.6M
Transformer MD-Sine 60.6M
Transformer MD-Sine + MLP 60.7M
MLP 60.6M
Learnable-Fourier 60.6M
Learnable-Fourier + MLP 60.7M

Table 8: The model parameter sizes of DETR [3] with different positional encoding methods.

Method DETR Model Parameter Size

Embed-2D 41.6M
Sine-2D 41.6M
MLP 41.6M
Learnable-Fourier + MLP 41.6M

For Reformer experiments, each model is based on the Reformer model for the Imagenet64 task [16].
The number of parameters for each Reformer model is summarized in Table 7. We here focus on
the positional encoding part of the model that is where each variant differs. Our positional encoding,
Learnable-Fourier+MLP, uses roughly the same number of trainable parameters as Embed-2D, the
benchmark method used in the original Reformer. All the Fourier-based methods used |F | = 768,
|H| = 32, D = 768 and γ = 1.0. For the MLP, we used LayerNorm before each dense projection,
W1 and W2 (see Algorithm 1). We set G = 1 because vertical and horizontal positions need to be
mapped jointly to model the inductive bias of L2 distances on an image. Embed-1D uses significantly
more parameters because it needs to assign an embedding vector for each position in a flattened
image. Sine-1D and Sine-2D are parameter-free encoding, thus use the least parameters.

The parameter sizes for each DETR model [3] are shown in Table 8. All the variants of DETR
roughly uses the same number of trainable parameters. We used γ = 1.0 for Learnable-Fourier +
MLP in Section 4.2. The MLP uses a dense layer 2× 256 with GeLU as activation.

For UI widget Captioning experiments, the number of parameters of each model variant is shown
in Table 9. The model architecture that is shared by each model variant is summarized in the paper
and detailed in the previous paper [20]. For Fourier-based methods, we used |F | = 128, 64, 32,

21

Table 9: The model parameter sizes of the widget captioning model [20] with different positional
encoding methods.

Method Widget Captioning Model Parameter Size

SOTA [20] 5.11M
Embed-4D 5.11M
MLP 5.08M
Sine-4D 5.07M
Sine-4D+MLP-1/4 5.07M
Sine-4D+MLP-2/2 5.07M
Sine-4D+MLP-4/1 5.08M
Learnable-Fourier-2/2 5.07M
Fixed-Fourier+MLP-1/4 5.10M
Fixed-Fourier+MLP-2/2 5.08M
Fixed-Fourier+MLP-4/1 5.07M
Learnable-Fourier+MLP-1/4 5.11M
Learnable-Fourier+MLP-2/2 5.07M
Learnable-Fourier+MLP-4/1 5.07M

Figure 16: The unseen positions in the test set within the convex hull of all the positions in the
training set of the widget captioning dataset.

G = 1, 2, 4 for position grouping variants: 1/4, 2/2 and 4/1, respectively. We used γ = 100 for
initializing Wr for all the Fourier-based methods. We used a dropout of 20% after the non-linear
activation in the MLP modulator.

For computational complexity, embedding-based approaches generally require less computation than
others. For the Reformer experiments, Embed2D, trains at 1.86 steps/second, Sine2D in contrast
trains at 1.81 steps/second, and our Learnable-Fourier+MLP is slower and trains at 1.22 steps/second.
For the experiments with the object detection and widget captioning tasks, the impact of using
different PE methods on runtime is negligible because the rest computation in the training is more
dominant, e.g., Hungraian matching for computing the minimal loss in DETR for object detection.

E Unseen Position Distribution in the Widget Captioning Dataset

One advantage of the proposed positional encoding method is to generalize to unseen positions. Our
experiments with object detection include unseen positions that require "extrapolation". For the
widget captioning task, we found 2685 of the 2692 unseen positions in the test dataset are inside the
convex hull of all the training positions. To show the distribution of the unseen positions in the test
set, we map all these unseen positions to 2D with PCA (see Figure 16). We plot the 2D convex hull
of all the positions in the training set, which is also mapped via PCA, as the red dashed line. We can
see all the unseen positions are within the convex hull of the training positions for this task.

22

	Introduction
	Background
	Positional Encoding
	Encoding Multi-Dimensional Spatial Positions
	Fourier Features

	Learnable Fourier Features Positional Encoding
	Experiments
	Image Generation
	Object Detection
	Image Classification
	Widget Captioning

	Discussion
	Conclusion
	Attention-Based Models
	Learned Positional Encoding Analysis
	PE Analysis for Image Generation Tasks
	PE Analysis for Object Detection Tasks
	PE Analysis for Widget Captioning Tasks

	Additional Ablation Studies
	Hyperparameters & Parameter Sizes
	Unseen Position Distribution in the Widget Captioning Dataset

