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Abstract
Detecting which nodes in graphs are outliers is a relatively new machine learning
task with numerous applications. Despite the proliferation of algorithms developed
in recent years for this task, there has been no standard comprehensive setting for
performance evaluation. Consequently, it has been difficult to understand which
methods work well and when under a broad range of settings. To bridge this gap,
we present—to the best of our knowledge—the first comprehensive benchmark for
unsupervised outlier node detection on static attributed graphs called BOND, with
the following highlights. (1) We benchmark the outlier detection performance of
14 methods ranging from classical matrix factorization to the latest graph neural
networks. (2) Using nine real datasets, our benchmark assesses how the different
detection methods respond to two major types of synthetic outliers and separately
to “organic” (real non-synthetic) outliers. (3) Using an existing random graph
generation technique, we produce a family of synthetically generated datasets of
different graph sizes that enable us to compare the running time and memory usage
of the different outlier detection algorithms. Based on our experimental results, we
discuss the pros and cons of existing graph outlier detection algorithms, and we
highlight opportunities for future research. Importantly, our code is freely available
and meant to be easily extendable:
https://github.com/pygod-team/pygod/tree/main/benchmark

1 Introduction
Outlier detection (OD) on a graph refers to the task of identifying which nodes in the graph are
outliers. This is a key machine learning (ML) problem that arises in many applications, such as social
network spammer detection [77], sensor fault detection [27], financial fraudster identification [22],
and defense against graph adversarial attacks [33]. Unlike classical OD on tabular and time-series
data, graph OD has additional challenges: (1) the graph data structure in general carries richer
information, and thus more powerful ML models are needed to learn informative representations, and
(2) with more complex ML models, training can be more computationally expensive in terms of both
running time and memory consumption [35, 47], posing challenges for time-critical (i.e., low time
budget) and resource-sensitive (e.g., limited GPU memory) applications.

Despite the importance of graph OD and many algorithms being developed for it in recent years,
there is no comprehensive benchmark on graph outlier detection, which we believe has hindered
the development and understanding of graph OD algorithms. In fact, a recent graph OD survey
calls for “system benchmarking” and describes it as “the key to evaluating the performance of graph
OD techniques” [55]. We remark that there already are benchmarks for general graph mining (e.g.,
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OGB [30]), graph representation learning [26], graph robustness evaluation [95], graph contrastive
learning [97], graph-level anomaly detection [85],1 as well as benchmarks for tabular OD [6] and
time-series OD [46]. These do not cover the specific task we consider, which we now formally define:

Definition 1 (Unsupervised Outlier Node Detection on Static Attributed Graphs (abbreviated as
OND)) A static attributed graph is defined as G = (V,E,X), where V = {1, 2, . . . , N} is the set of
vertices, E ⊆ {(i, j) : i, j ∈ V s.t. i 6= j} is the set of edges, and X ∈ RN×D is the node attribute
matrix (the i-th row of X is the feature vector in RD corresponding to the i-th node in the graph).
Given the graph G, the goal of the problem OND is to learn a function f : V → R that assigns a
real-valued outlier score to every node in G. The outlier nodes are then taken to be the k nodes
with the highest outlier scores, for a user-specified value of k. This problem is unsupervised since in
learning f , we do not have any ground truth information as to which nodes are outliers or not.

Note that there are other graph OD problems (e.g., feature vectors could be time-dependent, there
could be supervision in terms of some outliers being labeled, the nodes and edges could change over
time, etc) but we focus on the problem OND stated above as it is the most prevalent [16, 55]. For
OND, the status quo for how algorithms are developed has the following limitations:

• Lack of a comprehensive benchmark: often, only a limited selection of OND algorithms is
tested on only a few datasets, making it unclear to what extent the empirical results generalize to a
wider range of settings. Here, we remark that this issue of generalization is exacerbated by the fact
that across different applications, what constitutes an outlier can vary drastically and, at the same
time, also be difficult to precisely define in a manner that domain experts agree upon.

• Limited outlier types taken into account: typically, only a few types of outliers are considered
(e.g., specific kinds of synthetic outliers are injected into real datasets), making it difficult to
understand how graph OD algorithms respond to a wider variety of outlier nodes, including ones
that are “organic” (non-synthetic).

• Limited analyses of computational efficiency in both time and space: Existing work mainly
focuses on detection accuracy, with limited analyses of running time and memory consumption.

To address all the above limitations, we establish the first comprehensive benchmark for the problem
of OND that we call BOND (short for benchmarking unsupervised outlier node detection on static
attributed graphs). To accommodate many algorithms, we specifically create an open-source Python
library for Graph Outlier Detection (PyGOD)2, which provides more than ten of the latest graph
OD algorithms, all with unified APIs and optimizations. Meanwhile, PyGOD also includes multiple
non-graph baselines, resulting in a total of 14 representative and diverse methods for OND. We
remark that this library can readily be extended to include additional OD algorithms.

Our work has the following highlights:

1. The first comprehensive node-level graph OD benchmark. We examine 14 OD methods,
including classical and deep ones, and compare their pros and cons on nine benchmark datasets.

2. Consolidated taxonomy of outlier nodes. We group existing notions of outlier nodes into two
main types: structural and contextual outliers. Our results show that most methods fail to balance
the OD performance of these two major outlier types.

3. Systematic performance flaw found for existing deep graph OD methods. Surprisingly, our
experimental results in BOND reveal that most of the benchmarked deep graph OD methods have
suboptimal OD performance on organic outliers.

4. Evaluation of both detection quality and computational efficiency. In addition to common
effectiveness metrics (e.g., ROC-AUC), we also measure the running time and GPU memory
consumption of different algorithms as their efficiency measures.

5. Reproducible and accessible benchmark toolkit. To foster accessibility and fair evaluation for
future algorithms, we make our code for BOND freely available at:
https://github.com/pygod-team/pygod/tree/main/benchmark

We briefly describe existing approaches for OND in §2. We provide an overview of BOND in §3,
followed by detailed experimental results and analyses in §4. We summarize the paper and discuss
future work in §5.

1Graph-level anomaly detection refers to when we have a set of graphs and want to find which graphs are
significantly different from the majority of graphs; in contrast, the graph OD we focus on in this paper is for
detecting outliers at the node level for a specific graph.

2A Python library for Graph Outlier Detection (PyGOD): https://pygod.org/
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2 Related Work
In this section, we briefly introduce related work on outlier node detection. Please refer to [2] and [55]
for more comprehensive reviews of classical and deep-learning-based graph outlier detectors. We
have implemented most of the discussed algorithms in this section in the PyGOD.

Classical (non-deep) outlier node detection. Real-world evidence suggests that the outlier nodes
are different from regular nodes in terms of structure or attributes. Thus, early work on node outlier
detection employs graph-based features such as centrality measures and clustering coefficients to
extract the anomalous signals from graphs [2]. Instead of handcrafting features, learning-based
methods have been used to more flexibly encode graph information to spot outlier nodes. Examples
of these learning-based methods include ones based on matrix factorization (MF) [3, 50, 60, 69],
density-based clustering [7, 29, 75], and relational learning [42, 63]. As most of the methods above
have constraints on graph/node types or prior knowledge, we only include SCAN [75], Radar [50]
and ANOMALOUS [60] in BOND to represent methods in this category.

Deep outlier node detection. The rapid development of deep learning and its use with graph data
has shifted the landscape of outlier node detection from traditional methods to neural network
approaches [55]. For example, the autoencoder (AE) [38], which is a neural network architecture
devised to learn an encoding of the original data by trying to reconstruct the original data from the
encoding, has become a popular model in detecting outlier nodes [16, 25, 39, 64, 70, 80]. AEs can
be learned in an unsupervised manner as we are aiming to reconstruct the original data without
separately trying to predict labels. The heuristic behind AE-based outlier detection is that we can use
the AE reconstruction error as an outlier score; a data point that has a higher reconstruction error is
likely more atypical.

More recently, graph neural networks (GNNs) have attained superior performance in many graph
mining tasks [17, 18, 40, 71, 82]. GNNs aim to learn an encoding representation for every node in
the graph, taking into account node attributes and also the underlying graph structure. The encoding
representations learned by GNNs turn out to capture complex patterns that are useful for OD. As
a result, GNNs have also become popular in detecting outlier nodes in graphs [19, 72, 87, 54, 76].
Note that GNNs can be combined with AEs; in constructing an AE, we need to specify encoder and
decoder networks, which could be set to be GNNs.

We point out that it is also possible to adopt a Generative Adversarial Network (GAN) for outlier
node detection [11]. GANs learn how to generate fake data that resemble real data by simultaneously
learning a generator network (that can be used to randomly generate fake data) and a discriminator
network (that tries to tell whether a data point is real or fake). Naturally, outliers could be deemed to
be data points that are considered more “fake”.

Among the many deep outlier node detectors, we have thus far implemented nine (see Table 2) for
inclusion in BOND, where we have tried to have these be somewhat diverse in their methodology.

3 BOND
In this section, we provide an overview of BOND. We begin by defining two outlier types in §3.1.
We then elaborate on the datasets (§3.2), algorithms (§3.3), and evaluation metrics (§3.4) in BOND.

3.1 Outlier Types
Many researchers have defined fine-grained outlier node types from different perspectives [2, 3, 16,
33, 50, 55]. In this paper, we group existing outlier node definitions into two major types according
to real-world outlier patterns: structural outliers and contextual outliers, which are illustrated in
Figure 1 and defined below.

Definition 2 (Structural outlier) Structural outliers are densely connected nodes in contrast to
sparsely connected regular nodes.

Structural outliers arise in many real-world applications. For example, members of organized fraud
gangs who frequently collude in carrying out malicious activities can be viewed as forming dense
subgraphs of an overall graph (with nodes representing different people) [2]. As another example,
coordinated bot accounts retweeting the same tweet will form a densely-connected co-retweet
graph [29, 58]. Note that some papers [50, 55] also regard isolated nodes that do not belong to any
communities as structural outliers (i.e., they have only a few edges connecting to any communities),
which is different from our definition above. Since there is no existing OD method that we are aware
of for detecting these isolated outlier nodes, we do not cover this type of outlier in BOND.
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Definition 3 (Contextual outlier) Contextual outliers are nodes whose attributes are significantly
different from their neighboring nodes.

(1) Structural Outlier (2) Contextual Outlier

Outlier node Normal node Node attributes

Figure 1: An illustration of structural vs. con-
textual outliers.

An example of a contextual outlier is a compromised
device in a computer network [2]. The definition
of a contextual outlier is similar to how outliers are
defined in classical proximity-based OD methods [1].

Some researchers call a node whose attributes differ
from those of all other nodes as a global outlier [55]
or a contextual outlier [50]. We do not consider these
outliers in BOND as we find that they do not actually
use the graph structure; instead, these outliers could
be detected using tabular outlier detectors [28, 92].

What we defined as a contextual outlier in Defini-
tion 3 is also referred to as an attribute outlier [16] or a community outlier [50, 55] in previous work.
We argue that calling these contextual outliers is a more accurate terminology. The reason is that
an “attribute outlier” sounds like it only depends on attributes (i.e., feature vectors), which would
correspond to a global outlier [55], but confusingly this is not what is meant by the terminology.
Meanwhile, the terminology of a “community” in graph theory has often been in reference to the
density of edges among nodes and so a “community outlier” might be misconstrued to be what
we call a structural outlier as in Definition 2. For the remainder of the paper, by “structural” and
“contextual” outliers, we always go by Definitions 2 and 3 respectively.

Importantly, note that in real datasets, the organic (non-synthetic) outlier nodes present do not need to
strictly be either a structural or a contextual outlier. In fact, what precisely makes them an outlier need
not be explicitly stated and they could be neither a structural nor a contextual outlier, or they could
even appear as a mixture of these two types! This makes detecting organic outliers more difficult
than detecting synthetic outliers that follow a specific pattern such as those of Definitions 2 and 3.

3.2 Datasets
To comprehensively evaluate the performance of existing OND algorithms, we have investigated
various real datasets with organic outliers used in previous literature. Note that some standard datasets
are beyond the scope of the problem OND that we consider or do not make use of either the graph
structure or node attributes/feature vectors. For example, YelpChi-Fraud [22], Amazon-Fraud [22],
and Elliptic [74] are three graph datasets designed for supervised node classification; however, the
fraudulent nodes have limited outlier pattern in terms of graph structure. Bitcoin-OTC, Bitcoin-Alpha,
Epinions, and Amazon-Malicious from [43] are four bipartite graphs where nodes do not have
attributes. DARPA [78], UCI Message [94], and Digg [94] are three dynamic graphs with organic
edge outliers which are also out of our problem scope.

In BOND, we use the following datasets. First, since there are a limited number of open-source
graph datasets with organic outlier nodes, we include three real datasets with no organic outliers that
we inject synthetic outlier nodes into. Specifically, we use node classification benchmark datasets
(Cora [66], Amazon [67], and Flickr [81]) from three domains with different scales. Next, we use
six real datasets that contain organic outliers (Weibo [86], Reddit [44, 73], Disney [65], Books [65],
Enron [65], and DGraph [32]). Finally, we also use purely synthetic data generated using the random
algorithm by [36] that is able to produce graphs with varying scales; this random generation procedure
provides a controlled manner in which we can evaluate different OD algorithms’ computational
efficiency in terms of both running time and memory usage. Some basic statistics for the real datasets
used are given in Table 1 with more dataset details available in Appx. A.1.

To make synthetic outlier nodes of the two types we defined in §3.1 and to “camouflage” them so
that they are more difficult to detect using simple OD methods, we slightly modify a widely-used
approach [16, 25, 11, 80] (described below). These synthetic outliers are used with the real datasets
that lack organic outliers (Cora, Amazon, Flickr) and also with the randomly generated graph data.
In the random outlier injection procedures to follow, for the given graph G that we are working with,
we treat the vertex set as fixed. To inject structural outliers, we modify the edges present, whereas to
inject contextual outliers, we modify the feature vectors of randomly chosen nodes.

Injecting random structural outliers. The basic strategy is to create n non-overlapping densely
connected groups of nodes, where each group has exactly m nodes (so that there are a total of m× n
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Table 1: Statistics of real datasets used in BOND (∗ indicates that outliers are synthetically injected).
Dataset #Nodes #Edges #Feat. Degree #Con. #Strct. #Outliers Ratio
Cora∗ [66] 2,708 11,060 1,433 4.1 70 70 138 5.1%
Amazon∗ [67] 13,752 515,042 767 37.2 350 350 694 5.0%
Flickr∗ [81] 89,250 933,804 500 10.5 2,240 2,240 4,414 4.9%
Weibo [86] 8,405 407,963 400 48.5 - - 868 10.3%
Reddit [44, 73] 10,984 168,016 64 15.3 - - 366 3.3%
Disney [65] 124 335 28 2.7 - - 6 4.8%
Books [65] 1,418 3,695 21 2.6 - - 28 2.0%
Enron [65] 13,533 176,987 18 13.1 - - 5 0.4‰
DGraph [32] 3,700,550 4,300,999 17 1.2 - - 15,509 0.4%

Table 2: Algorithms implemented in BOND and their characteristics: whether designed for graphs
(row 3), whether neural networks are used (row 4), and what the core idea for the method (row 5).

Alg. LOF IF MLPAE SCAN Radar ANOMA-
LOUS GCNAE DOMI-

NANT
DONE/
AdONE

Anomaly-
DAE GAAN GUIDE CONAD

Year 2000 2012 2014 2007 2017 2018 2016 2019 2020 2020 2020 2021 2022
Graph 7 7 7 3 3 3 3 3 3 3 3 3 3
Deep 7 7 3 7 7 7 3 3 3 3 3 3 3
Core N/A Tree MLP+AE Cluster MF MF GNN+AE GNN+AE MLP+AE GNN+AE GAN GNN+AE GNN+AE
Ref. [5] [52] [64] [75] [50] [60] [39] [16] [4] [25] [11] [80] [76]

structural outliers injected). To do this, for each i = 1, . . . , n, we randomly sample m nodes to
form the i-th group (these m nodes are sampled uniformly at random from nodes that have not been
previously chosen to form a group); for these m nodes, we first make them fully connected and then
drop each edge independently with probability p.

Injecting random contextual outliers. To inject a total of o contextual outliers, we first sample o
nodes from the vertex set V without replacement; these are the nodes whose attributes we aim to
modify as to turn them into contextual outliers. We denote the set of these o nodes as Vc (so that
o = |Vc|), and refer to the remaining nodes Vr := V \Vc as the “reference” set. For each node i ∈ Vc,
we randomly choose q nodes without replacement uniformly at random from the reference set Vr.
Among these q reference nodes chosen, we find the one whose attributes deviate the most (in terms
of Euclidean distance) from those of node i. We then change the attributes of node i to be the same
as those of this most dissimilar reference node found.

For more details about synthetic outlier injection, see Appx A.1.3.

3.3 Algorithms
Table 2 lists the 14 algorithms evaluated in the benchmark and their properties. Our principle for
selecting algorithms to implement in BOND is to cover representative methods in terms of the
published time (“Year”), whether they use the graph structure (“Graph”), whether they use neural
networks (“Deep”), and what the core idea is behind the method (“Core”). By including non-graph
OD algorithms (LOF, IF, MLPAE), we can investigate the advantages and deficiencies of graph-based
vs. non-graph-based OD algorithms in detecting outlier nodes. Similarly, incorporating three classical
OD methods (clustering-based SCAN, MF-based Radar, and ANOMALOUS) helps us understand
the performance of classical vs. deep OD methods. We select a wide array of GNN-based methods
including the vanilla GCNAE; the classic DOMINANT; AnomalyDAE, an improved version of
DOMINANT; and also GUIDE and CONAD, two state-of-the-art methods in this category with
different data augmentation techniques. Besides GNN-based BOND methods, two methods encoding
graph information using other models (DONE/AdONE and GAAN) are also included. Please refer to
Appx. A.2 for a more detailed introduction of the methods benchmarked in BOND.

3.4 Evaluation Metrics
Detection quality measures. We follow the extensive literature in graph OD [15, 69, 87] to com-
prehensively evaluate the outlier node detection quality with three metrics: (1) ROC-AUC reflects
detectors’ performance on both positive and negative examples, while (2) Average Precision focuses
more on positive examples, and (3) Recall@k evaluates the examples with high predicted outlier
scores. See Appx. A.3 for more details.

Efficiency measures in time and space. Another important aspect of graph-based algorithms is
their high time and space complexity [20, 35], which imposes additional challenges for large, high-
dimensional datasets on hardware like GPUs with limited memory (e.g., out-of-memory errors).
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Table 3: ROC-AUC (%) comparison among OD algorithms on three datasets with synthetic outliers, where we
show the avg perf. ± the STD of perf. (max perf.) of each. The best algorithm by expectation is shown in bold,
while the max performance per dataset is marked with underline. OOM denotes out of memory with regard to
GPU (_G) and CPU (_C).

Algorithm Cora Amazon Flickr
LOF 69.9±0.0 (69.9) 55.2±0.0 (55.2) 41.6±0.0 (41.6)
IF 64.4±1.5 (67.4) 51.3±3.0 (57.9) 57.1±1.1 (58.8)
MLPAE 70.9±0.0 (70.9) 74.2±0.0 (74.2) 72.4±0.0 (72.5)

SCAN 62.8±4.5 (72.6) 62.2±4.9 (71.1) 62.4±12.4 (75.0)
Radar 65.0±1.3 (66.0) 71.8±1.1 (73.4) OOM_G
ANOMALOUS 55.0±10.3 (68.0) 72.5±1.5 (75.5) OOM_G

GCNAE 70.9±0.0 (70.9) 74.2±0.0 (74.2) 71.6±3.1 (72.4)
DOMINANT 82.7±5.6 (84.3) 81.3±1.0 (82.2) 78.0±12.0 (84.6)
DONE 82.4±5.6 (87.9) 82.8±8.8 (93.7) 84.7±2.5 (89.0)
AdONE 81.5±4.5 (87.4) 86.6±5.6 (92.3) 82.8±3.2 (89.0)
AnomalyDAE 83.4±2.3 (85.3) 85.7±2.9 (90.8) 65.6±3.5 (70.4)
GAAN 74.2±0.9 (76.1) 80.8±0.3 (81.5) 72.4±0.2 (72.5)
GUIDE 74.7±1.3 (77.5) OOM_C OOM_C
CONAD 78.8±9.6 (84.3) 80.5±4.0 (82.2) 65.1±2.5 (67.4)

Table 4: ROC-AUC (%) comparison among OD algorithms on six datasets with organic outliers, where we
show the avg perf. ± the STD of perf. (max perf.) of each. The best algorithm by expectation is shown in bold,
while the max performance per dataset is marked with underline. OOM denotes out of memory with regard to
GPU (_G) and CPU (_C). TLE denotes time limit of 24 hours exceeded.

Algorithm Weibo Reddit Disney Books Enron DGraph
LOF 56.5±0.0 (56.5) 57.2±0.0 (57.2) 47.9±0.0 (47.9) 36.5±0.0 (36.5) 46.4±0.0 (46.4) TLE
IF 53.5±2.8 (57.5) 45.2±1.7 (47.5) 57.6±2.9 (63.1) 43.0±1.8 (47.5) 40.1±1.4 (43.1) 60.9±0.7 (62.0)
MLPAE 82.1±3.6 (86.1) 50.6±0.0 (50.6) 49.2±5.7 (64.1) 42.5±5.6 (52.6) 73.1±0.0 (73.1) 37.0±1.9 (41.3)

SCAN 63.7±5.6 (70.8) 49.9±0.3 (50.0) 50.5±4.0 (56.1) 49.8±1.7 (52.4) 52.8±3.4 (58.1) TLE
Radar 98.9±0.1 (99.0) 54.9±1.2 (56.9) 51.8±0.0 (51.8) 52.8±0.0 (52.8) 80.8±0.0 (80.8) OOM_C
ANOMALOUS 98.9±0.1 (99.0) 54.9±5.6 (60.4) 51.8±0.0 (51.8) 52.8±0.0 (52.8) 80.8±0.0 (80.8) OOM_C

GCNAE 90.8±1.2 (92.5) 50.6±0.0 (50.6) 42.2±7.9 (52.7) 50.0±4.5 (57.9) 66.6±7.8 (80.1) 40.9±0.5 (42.2)
DOMINANT 85.0±14.6 (92.5) 56.0±0.2 (56.4) 47.1±4.5 (54.9) 50.1±5.0 (58.1) 73.1±8.9 (85.0) OOM_C
DONE 85.3±4.1 (88.7) 53.9±2.9 (59.7) 41.7±6.2 (50.6) 43.2±4.0 (52.6) 46.7±6.1 (67.1) OOM_C
AdONE 84.6±2.2 (87.6) 50.4±4.5 (58.1) 48.8±5.1 (59.2) 53.6±2.0 (56.1) 44.5±2.9 (53.6) OOM_C
AnomalyDAE 91.5±1.2 (92.8) 55.7±0.4 (56.3) 48.8±2.2 (55.4) 62.2±8.1 (73.2) 54.3±11.2 (69.1) OOM_C
GAAN 92.5±0.0 (92.5) 55.4±0.4 (56.0) 48.0±0.0 (48.0) 54.9±5.0 (61.9) 73.1±0.0 (73.1) OOM_C
GUIDE OOM_C OOM_C 38.8±8.9 (52.5) 48.4±4.6 (63.5) OOM_C OOM_C
CONAD 85.4±14.3 (92.7) 56.1±0.1 (56.4) 48.0±3.5 (53.1) 52.2±6.9 (62.9) 71.9±4.9 (84.9) 34.7±1.2 (36.5)

Therefore, we measure efficiency in time and space respectively, we use (1) wall-clock time and (2)
GPU memory consumption. We provide more details in Appx. A.3.

4 Experiments
We design BOND to understand the detection effectiveness and efficiency of various OD algorithms
in addressing the problem OND. Specifically, we aim to answer: RQ1 (§4.1): How effective are the
algorithms on detecting synthetic and organic outliers? RQ2 (§4.2): How do algorithms perform
under two types of synthetic outliers (structural and contextual)? RQ3 (§4.3): How efficient are
algorithms in terms of time and space? Note that due to space constraints, for detection quality, we
focus on the ROC-AUC metric, deferring results using the AP and Recall@k metrics to Appx. C.

Model implementation and environment configuration. Most algorithms in BOND are imple-
mented via our newly released PyGOD package [53], and non-graph OD methods are imported from
our earlier work [92]. Although we tried our best to apply the same set of optimization techniques,
e.g., vectorization, to all methods, we suspect that further code optimization is possible. For more
implementation details and environment configurations, see Appx. B.

Hyperparameter grid. In real-world settings, it is unclear how to do hyperparameter tuning and
algorithm selection for unsupervised outlier detection due to the lack of ground truth labels and/or
universal criteria that correlates well with the ground truth [55, 93]. For fair evaluation, when we
report performance metrics in tables, we apply the same hyperparameter grid (see Appx. B) to each
applicable algorithm and report its avg. performance (i.e., “algorithm performance in expectation”),
along with the standard deviation (i.e., “algorithm stability”) and the max (i.e., “algorithm potential”).

4.1 Experimental Results: Detection Performance on Synthetic and Organic Outliers
Using the nine real datasets described in §3.2, we report the ROC-AUC score of different OD
algorithms in Tables 3 and 4. Below are the key findings from these tables.
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In terms of avg. performance, no outlier node detection method is universally the best on all
datasets. Tables 3 and 4 show that only three of 14 methods evaluated (AnomalyDAE, Radar,
ANOMALOUS) have the best avg. performance (for the ROC-AUC metric) on two datasets (Cora
and Books for AnomalyDAE; Weibo and Enron for Radar and ANOMALOUS). The classical
methods Radar and ANOMALOUS both have the best performance on Weibo and Enron (see
Table 4) but they are worse than many deep learning methods on detecting synthetic outliers (see
Table 3). Additionally, there is a substantial performance gap between the best- and worst-performing
algorithms, e.g., DONE achieves 2.06× higher average ROC-AUC compared to LOF on Flickr.

Most methods evaluated fail to detect organic outliers. Since most methods we evaluated are
designed to handle structural and contextual outliers as defined in §3.1, to figure out the reason behind
the failure and success in detecting organic outliers, we analyze the organic outlier patterns in terms
of metrics related to the definitions of structural and contextual outliers. We first show that the success
of most methods on Weibo (see Table 4) is because the outliers in Weibo exhibit the properties of
both structural and contextual outliers. Specifically, in Weibo, the average clustering coefficient [24]
of the outliers is higher than that of inliers (0.400 vs. 0.301), meaning that these outliers correspond
to structural outliers. Meanwhile, the average neighbor feature similarity [22] of the outliers is far
lower than that of inliers (0.004 vs. 0.993), so that the outliers also correspond to contextual outliers.
In contrast, the outliers in the Reddit and DGraph datasets have similar average neighbor feature
similarities and clustering coefficients for outliers and inliers. Therefore, their abnormalities rely more
on outlier annotations with domain knowledge, and so supervised OD methods are more effective
than unsupervised ones on Reddit (best AUC: 0.746 in [73] vs. 0.604 in Table 4) and DGraph (best
AUC: 0.792 in [32] vs. 0.620 in Table 4) than unsupervised ones.

Deep learning methods and other methods using SGD may be sub-optimal on small graphs.
The outliers on Disney, Books, and Enron also have similar outlier patterns defined in §3.1. However,
most of the deep learning methods evaluated do not work particularly well on Disney and Enron
compared to classical baselines. The reason is that Disney and Books have small graphs in terms of
#Nodes, #Edges, and #Feat. (see Table 1). The small amount of data could make it difficult for the
deep learning methods to encode the inlier distribution well and could also possibly lead to overfitting
issues. Meanwhile, classical methods Radar and ANOMALOUS also perform poorly on Disney and
Books; these methods use SGD, which we suspect could be problematic for such small datasets.

Different categories of methods evaluated are good at detecting different types of outliers. Ac-
cording to Tables 3 and 4, many deep graph-based methods are good at detecting synthetic outliers
but are useless in detecting organic outliers. Meanwhile, non-graph-based methods have advantages
when outliers do not follow taxonomies (Reddit and DGraph). These observations corroborate our un-
derstanding of unsupervised OD algorithms—their effectiveness depends on whether the underlying
data distribution satisfies structural properties that the algorithms exploit.

In terms of standard deviation of the ROC-AUC metric, among the deep learning methods,
some are noticeably less stable than others.1 Certain deep learning methods, e.g., GAAN, ex-
hibit insensitivity to hyperparameters, where the ROC-AUC standard deviation is mostly below 1%.
Meanwhile, the methods that are unstable tend to involve more complex loss terms (e.g., weighted
combination of multiple losses); for instance, DONE and AdONE achieve the highest max perfor-
mance (i.e., the numbers in parentheses in Tables 3 and 4, and not the avg. performance) among
deep graph methods on three datasets, while showing high ROC-AUC standard deviation across
hyperparameters tested. Here, we emphasize that in practice for unsupervised OD, there being no
labels means that hyperparameter tuning is far less straightforward, so stability (in OD detection
quality) across hyperparameters is a desirable property of an algorithm.

4.2 Experimental Results: Detection Performance on Structural and Contextual Outliers
We report the ROC-AUC metric of different algorithms on three datasets with two types of injected
synthetic outliers (contextual and structural outliers from §3.2) in Table 5. Note that we only consider
synthetic outliers here since we have generated them so that we know exactly which nodes are
contextual vs. structural outliers. Our main findings are as follows.

1For a specific method, the standard deviation of the method’s ROC-AUC scores across hyperparameters
(what we have called “algorithm stability”) and the maximum (“algorithm potential”) are in general monotonically
related (i.e., when the standard deviation increases, then the maximum minus the mean also tends to increase;
and vice versa), so that our finding here is both for algorithm stability and potential.
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Table 5: ROC-AUC (%) comparison among OD algorithms on three datasets injected with contextual and
structural outliers, where we show the avg perf. ± the STD of perf. (max perf.) of each. The best algorithm by
expectation is shown in bold, while the max performance per dataset is marked with underline. OOM denotes
out of memory with regard to GPU (_G) and CPU (_C). Reconstruction-based MLPAE and GCNAE perform
best w.r.t contextual outliers, while there is no universal winner for both types of outliers.

Cora Amazon Flickr
Algorithm Contextual Structural Contextual Structural Contextual Structural

LOF 87.1±0.0 (87.1) 52.4±0.0 (52.4) 61.9±0.0 (61.9) 48.0±0.0 (48.0) 34.2±0.0 (34.2) 49.1±0.0 (49.1)
IF 77.5±2.2 (81.8) 51.4±2.3 (56.2) 51.8±6.0 (64.3) 50.9±0.8 (52.2) 63.1±2.1 (66.5) 50.9±0.3 (51.5)
MLPAE 88.9±0.0 (88.9) 52.5±0.0 (52.5) 98.6±0.0 (98.6) 49.0±0.0 (49.0) 94.4±0.1 (94.5) 50.0±0.1 (50.3)

SCAN 49.8±0.5 (51.7) 80.0±13.4 (95.9) 48.7±1.1 (49.9) 78.0±11.9 (94.0) 50.2±0.1 (50.3) 86.8±21.1 (99.7)
Radar 50.2±0.6 (51.0) 78.4±3.4 (81.6) 84.9±3.7 (88.2) 59.0±1.7 (61.3) OOM_G OOM_G
ANOMALOUS 51.1±1.3 (53.5) 69.3±16.2 (90.8) 85.4±0.9 (87.2) 59.5±2.5 (62.7) OOM_G OOM_G

GCNAE 88.9±0.0 (88.9) 52.5±0.0 (52.5) 98.6±0.0 (98.6) 49.0±0.0 (49.0) 88.7±9.2 (94.5) 50.0±0.2 (50.3)
DOMINANT 71.9±6.6 (74.4) 93.0±4.6 (95.3) 69.0±3.6 (71.3) 93.6±2.8 (94.4) 69.0±4.5 (71.0) 96.3±10.4 (98.9)
DONE 70.2±8.3 (80.0) 92.8±5.6 (99.8) 82.4±11.1 (95.1) 90.2±8.0 (99.4) 85.7±2.1 (88.7) 85.5±3.1 (89.1)
AdONE 73.9±5.0 (78.0) 91.3±4.8 (97.3) 78.0±10.6 (95.1) 85.7±11.8 (97.0) 80.2±4.3 (88.1) 87.1±1.9 (89.7)
AnomalyDAE 80.2±2.8 (87.2) 90.2±4.6 (95.9) 88.2±9.6 (98.3) 85.5±10.1 (94.3) 80.0±7.4 (93.3) 56.6±1.7 (59.0)
GAAN 88.7±0.1 (88.8) 61.0±0.8 (62.5) 98.5±0.1 (98.6) 64.2±2.0 (67.3) 94.1±0.3 (94.4) 50.3±0.3 (50.9)
GUIDE 88.3±0.8 (88.7) 61.8±2.4 (71.1) OOM_C OOM_C OOM_C OOM_C
CONAD 72.5±5.8 (74.4) 93.6±4.8 (95.4) 69.4±2.8 (71.3) 94.1±0.4 (94.3) 65.8±0.9 (67.4) 68.3±0.6 (69.1)

For GNNs, the reconstruction of the structural information appears to play a significant role
in detecting structural outliers. Specifically, the performance gap on structural outliers between
GCNAE and DOMINANT is over 40%. By taking a closer look into these two algorithms, they differ
only in that DOMINANT has a structural decoder that aims to reconstruct the adjacency matrix of
the graph. That DOMINANT performs significantly better than GCNAE suggests that reconstructing
information on graph structure is helpful in identifying structural outliers, which intuitively makes
sense as these outliers are defined in terms of graph structure.

Low-order structural information (i.e., one-hop neighbors) is sufficient for detecting structural
outliers. DOMINANT and DONE achieve similar mean ROC-AUC scores (∼92%) on detecting
structural outliers in the Cora and Amazon datasets even though DOMINANT encodes 4-hop
neighbor information whereas DONE only encodes 1-hop neighbor information. This observation
could facilitate outlier node detection model design since encoding high-order information usually
imposes a higher computational cost, and multi-hop neighbor aggregation may even lead to the
over-smoothing problem in GNNs [8].

No method achieves high detection accuracy for both structural and contextual outliers. For
instance, none of the methods reaches 85% detection AUC on both structural and contextual outliers.
Moreover, on Flickr with structural outliers injected, most attributed graph OD methods that are
supposed to detect structural outliers have worse average ROC-AUC scores than that of SCAN,
whereas SCAN is a non-attributed graph OD method detecting structural outliers by clustering on
nodes. The above result suggests that the common approach that arbitrarily combines the structural
and contextual loss terms with fixed weights (that are hyperparameters) can struggle to balance
performance in detecting both outlier types. How to detect these two different types of outliers
consistently well remains an open question.

We visualize the efficiency in time (wall clock running time) and space (GPU memory consumption)
of selected algorithms in Figure 2. The complete results are available in Appx. C.3. All algorithms
are evaluated under randomly generated graphs with the same sets of injected outliers to guarantee
fairness. The running time in Figure 2 (left) is the sum of training and computing outlier scores.
We only measure the GPU memory consumption of the different methods (as opposed to the CPU
memory consumption) because it is often the bottleneck of OD algorithms [89]. For more details
on the generated graphs and experimental settings of this section, see Appx. A.1.2 and Appx. B,
respectively. Our key findings from Figure 2 are as follows.

4.3 Experimental Results: Computational Efficiency
Time efficiency. Classical methods that we evaluated take less time than the deep learning ones,
which tend to be more complicated and learn more flexible models. Among the GNN-based methods,
GUIDE consumes far more time compared to others. The reason is that GUIDE uses a graph motif
counting algorithm (which is #P-complete [13]) to extract the structural features and consumes much
more time on the CPU. CONAD takes the second-most amount of time due to its use of contrastive
learning (which uses pairwise comparisons within mini-batches).

8



10 100 200 300 400
Number of Epochs

0.01

0.1

1

10

100

Ti
m

e 
(s

)

100 500 1000 5000 10000
Graph Size (Number of Nodes)

21

24

27

210

GP
U 

M
em

or
y 

(M
B)

Radar
ANOMALOUS

GCNAE
DOMINANT

DONE
AdONE

AnomalyDAE
GAAN

GUIDE
CONAD

*

*

*

*
*

*

* **

*

Figure 2: Wall-clock running time (left) and GPU memory consumption (right) of different methods.
(∗ denotes the best performance of each method among five different numbers of epochs.)
Space efficiency. According to Figure 2 (right), GCNAE and GUIDE consume much less GPU
memory than the other methods as the graph size increases. GCNAE saves more memory due to its
simpler architecture. GUIDE consumes more CPU time and RAM to extract low-dimensional node
motif degrees, thereby saving more GPU memory. Though classical methods have the advantage in
terms of running time, most of them cannot be deployed in a distributed fashion due to the limitation
of “global” operators like matrix factorization and inversion. One advantage of deep models is
that they can be easily extended to minibatch and distributed training via graph sampling. Another
advantage is that deep methods can be easily integrated with existing deep learning pipelines (e.g.,
graph pretraining module that obtains node embeddings).

5 Discussion
We have established BOND, the first comprehensive benchmark for unsupervised outlier node
detection on static attributed graphs. Our benchmark has empirically examined the effectiveness
of a diverse collection of OD algorithms in terms of synthetic vs. organic outliers, structural vs.
contextual outliers, and computational efficiency. Importantly, a major goal in our development of
BOND is to make it easy to extend so that further progress can be made in better understanding
existing algorithms and developing new ones to address OND. We conclude this paper by discussing
future research directions for OND in general (§5.1), and then specific to benchmarking (§5.2).

5.1 Future Directions in Addressing the Problem OND
Our experimental results on real data (§4.1 and §4.1) reveal substantial detection performance differ-
ences between algorithms, with none of them being the universal winner. Even for a single algorithm,
there is also the issue of hyperparameter tuning (e.g., the detection performance of AnomalyDAE on
Weibo varies by as much as 14% across hyperparameters). However, the fundamental problem is that
because the problem OND is unsupervised, it is not straightforward deciding on the “right” choice of
algorithm or hyperparameter setting. Any quantitative metric we define to help with model selection
or hyperparameter tuning will require assumption(s). Separately, the available computational budget
and the size of the dataset to be analyzed can limit what methods can even be used (our results in
§4.3 show that some methods are much more computationally expensive than others).

Opportunity 1: designing “type-aware” detection algorithms. A major finding of our experimental
results is that which OD algorithm works best heavily depends on the type of outlier encountered
(synthetic vs. organic, structural vs. contextual). Put another way, if we expect to see a particular type
of outlier, then this should inform the choice of OD algorithm to apply (e.g., MLPAE and GCNAE
for contextual outliers). Of course, this would require us to have some a priori knowledge or guess
as to what the outliers look like in a dataset. Importantly, in real applications, we might not need to
detect all outliers. For example, practitioners may want to focus only on high-value or high-interest
outliers (e.g., illegal trades that affect revenue the most [37] can be considered as contextual outliers,
so MLPAE and GCNAE could be good choices). Following recent advances in categorizing outlier
types in tabular data [34], we call for attention to identifying more fine-grain outlier types in OND
and figuring out which algorithms are well-suited to these different outlier types. Once we have this
sort of information, there could be opportunities for automatically choosing a single or combining
multiple OD algorithms, accounting for outlier types (e.g., using an ensembling approach like [91]).

Opportunity 2: synthesizing more realistic and flexible outlier nodes. The organic outliers encoun-
tered in our real data experiments (§4.1) can be complex and composed of multiple outlier types
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(possibly including types beyond just the structural and contextual ones we focused on). Our experi-
mental results show that there is a wide detection performance gap on synthetic vs. organic outliers,
calling for more realistic outlier generation approaches. To improve existing generation methods in
BOND, we could use a generative model to fit the normal samples, and then perturb the generative
model to generate different types of outliers. This approach has been successful in tabular OD [68].

Opportunity 3: understanding the sensitivity of OND algorithms to hyperparameters and design-
ing more stable methods. We had pointed out in §4.1 that some deep learning methods are more
stable (across hyperparameters) than others in terms of standard deviation in achieved ROC-AUC
scores. This phenomenon extends of course to classical methods as well. Better understanding the
drivers of these algorithms’ (in)sensitivity to hyperparameters would help us better design algorithms
that are more stable with respect to hyperparameter settings. In turn, this could help ease the burden
of unsupervised hyperparameter tuning. In tabular OD tasks, researchers have developed methods for
outlier detection that are more stable with respect to hyperparameters such as the robust autoencoder
[96], RandNet [9], ROBOD [21], and ensemble frameworks [91]. Perhaps some techniques from
these tabular OD methods could be incorporated into specific methods for OND to improve stability.

Opportunity 4: developing more efficient OND algorithms. Our results on computational efficiency
(§4.3) show that some algorithms take substantially more time and/or memory to execute than others.
Meanwhile, most algorithms tested ran out of memory on the million-scale DGraph dataset (Table 4).
We suggest developing more scalable algorithms for OND, which could mean more optimized
implementations of existing algorithms and also the development of new algorithms. We point out
several lines of work that could be helpful in this endeavor. First, there are existing approaches for
making GNNs more scalable [35, 49] but these have yet to be specialized to address OND. Separately,
most existing autoencoder-based methods that we tested reconstruct a complete graph adjacency
matrix (e.g., DOMINANT, DONE, AnomalyDAE, GAAN), which is memory intensive (scaling
quadratically with the number of nodes). Developing a more memory-efficient implementation of this
step would be interesting. Next, approximating the node motif degree in GUIDE is possible, which
can significantly reduce both computation time and space [10, 79]. Lastly, we mention that some
recent work [90, 89] accelerates tabular OD via distributed learning, data and model compression,
and/or quantization. These ideas could be extended to algorithms for OND.

Opportunity 5: meta-learning to assist model selection and hyperparameter tuning. Recent work
on general graph learning [59] and unsupervised OD model selection on tabular data [93] shows that
under meta-learning frameworks, we can identify good OD models to use for a new task (or dataset)
based on its similarity to meta-tasks where ground truth information is available. A similar approach
also works for unsupervised hyperparameter tuning [88]. We suggest exploring a meta-learning
framework for algorithm selection and hyperparameter tuning in solving OND, including quantifying
task similarity between graph OD datasets. Such a framework would require some but not all datasets
to have ground truth, and that datasets with ground truth can be related to the ones without.

5.2 Future Directions in Improving Our Benchmark System BOND

Extending detection tasks to different “levels”. In BOND, we focus on node-level detection with
static attributed graphs due to their popularity, while there are more detection tasks at different levels
of a graph. Recent graph OD algorithms extend to edge- [83], subgraph- [70], and graph-level [62, 85]
detection. Future comprehensive graph OD benchmarks can include these emerging graph OD tasks.

Incorporating supervision. Although BOND focuses on unsupervised methods, there can be cases
where a small set of labels (either for OD or relevant tasks) are available so that (semi-)supervised
learning is possible (e.g., [22, 84]). Extending BOND to handle supervision would particularly be
beneficial in addressing algorithm selection and hyperparameter tuning challenges.

Curating more datasets. Thus far, we have only included nine real datasets in BOND. Adding more
datasets over time would be beneficial, especially ones with organic outliers. With a much larger
collection of datasets (e.g., ≥ 20), one could run statistical tests for comparison [14], which has been
used in OD tasks with tabular datasets [51, 93]. Similar to tabular OD [23], one can convert existing
multi-classification graph datasets (e.g., ones from Open Graph Benchmark (OGB) [30]) into OD
datasets by treating one or combining several small classes to be treated as a single “outlier” class,
with all other classes considered “normal”.
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A Additional Details on BOND

A.1 Additional Dataset Information

A.1.1 Real Data

Cora [66] is a citation graph with nodes representing machine learning papers and edges representing
papers’ citation relationships. The node features are sparse bag-of-words (BoW) vectors extracted
from the paper document, and their labels represent one of the seven classes.

Amazon [67] is a segment of the Amazon co-purchase graph [56], where nodes represent goods and
edges indicate that two goods are frequently bought together. Notably, node features are BoW-encoded
product reviews, and class labels are given by the product category.

Flickr [81] datasets originates from NUS-wide[12], a real-world web image database from the
National University of Singapore. The SNAP website1 collected Flickr data from four different
sources including NUS-wide, and generated an undirected graph. A node in the graph represents
one image uploaded to Flickr. If two images share some common properties (e.g., same geographic
location, same gallery, comments by the same user, etc.), one edge is made between these two nodes.
The node feature is composed of a 500-dimensional vector of the images provided by NUS-wide.
Eighty-one tags of each image are manually merged into seven classes, and each image is assigned to
one of the seven classes.

Weibo [86] is a user-posts-hashtag graph from Tencent-Weibo, a Twitter-like platform in China. This
dataset collects information from 8,405 users with 61,964 hashtags. We use the user-user graph 2

provided by the author, which connects users who used the same hashtag. Temporal information was
used to label the users. If a user made at least five suspicious events, he/she is labeled as a suspicious
user; if no suspicious event was made, he/she is a benign user. There are a total of 868 suspicious
users and 7,537 benign users. The suspicious users are regarded as outliers in the graph. Since the
ground truth was generated using time information, the timestamps are not used to create raw user
features. Therefore, the raw feature vector has two parts: (1) for each user, the one-hot vectors of
his/her posts are summed where each one-hot vector represents the location where a post was made.
Then the #dimension of the summed vector is reduced to 100 using SVD and (2) for each user, the
#dimension of the BoW vectors extracted from post texts is reduced to 300. The final node feature is
the concatenation of the location vector and the BoW vector. Note that Weibo is a directed graph; the
remaining datasets used in our benchmark are undirected graphs.

Reddit [44, 73] is a user-subreddit graph extracted from a social media platform, Reddit 3. This
public dataset consists of one month of user posts on subreddits 4. The 1,000 most active subreddits
and the 10,000 most active users are extracted as subreddit nodes and user nodes, respectively. This
results in 168,016 interactions. Each user has a binary label indicating whether it has been banned by
the platform. We assume that the banned users are outliers compared to normal Reddit users. The
text of each post is converted into a feature vector representing their LIWC categories [61] and the
features of users and subreddits are the feature summation of the posts they have, respectively.

Disney [57] and Books [65] come from the Amazon co-purchase networks [48]. Disney is a co-
purchase network of movies, where the attributes include prices, ratings, number of reviews, etc. The
ground truth labels (i.e., whether it is an outlier) are manually labeled by high school students by
majority vote. The second dataset, Books, is a co-purchase network of books on Amazon, which has
similar attributes to the Disney dataset. The ground truth labels are derived from amazonfail tag
information. More information about the datasets can be found on the project website 5.

Enron [65] is an email network dataset extracted from [41]. Each email is regarded as a node, and the
messages between email addresses represent edges. The email addresses having sent spam messages
are taken as outliers. Each node contains 20 attributes describing aggregated information about the
average content length, the average number of recipients, or the time range between two emails.

1http://snap.stanford.edu/
2https://github.com/zhao-tong/Graph-Anomaly-Loss/tree/master/data/weibo_s
3https://www.reddit.com/
4http://files.pushshift.io/reddit/
5https://www.ipd.kit.edu/~muellere/consub/
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DGraph [32] is a large-scale attributed graph with 3M nodes, 4M dynamic edges, and 1M ground-
truth nodes. The nodes represent user accounts in a financial company providing personal loan
services, and the edge between two nodes represents one account that has added another account as
an emergency contact. For all the accounts with at least one borrowing record, the outliers are the
accounts with overdue history, and the inliers are the accounts without overdue. Note there are also
2M accounts/nodes without any borrowing at all. The 17 node features are encoded from the user
profile information like age and gender.

A.1.2 Random Graph Generation Method

We leverage a random graph generation method used in [36] to create an arbitrary OND
graph for benchmarking. Specifically, the implementation in PyG 1 is used with 2 classes,
node_homophily_ratio=0.5, average_degree=5 and num_channels=64. We use the generated random
graphs to benchmark algorithms’ efficiency and scalability. We generate a random graph Gen_Time
with num_nodes_per_class=500 (1000 in total) as the graph data to test the runtime. To benchmark
the scalability, we generate multiple random graphs Gen_100, Gen_500, Gen_1000, Gen_5000 and
Gen_10000 with num_nodes_per_class equal to 50, 250, 500, 2500 and 5000, respectively.

A.1.3 Outlier Injection Details

For injecting structural outliers, we use p = 0.2. For contextual outliers, we set q equal to m in
structural outlier injection. The other parameters used in outlier injection are shown in Table 6. Note
that m is set to be approximate twice the degree of the graph. For real datasets, we keep a similar
outlier ratio (i.e., the number of outliers injected is approximately 5% of the total number of nodes;
as a reminder, for structural outliers, we inject m× n outliers and for contextual outliers, we inject o
outliers; o = m×n in our setting). We keep a similar number of outliers for generated graph datasets
of various sizes. The statistics of the generated graphs are shown in Table 7.

Table 6: Parameters used in synthetic outliers injection.
Cora Amazon Flickr Gen_Time Gen_100 Gen_500 Gen_1000 Gen_5000 Gen_10000

Degree 4.1 37.5 10.6 5 5 5 5 5 5
n 70 350 2240 10 1 1 1 1 1
m 10 70 20 10 10 10 10 10 10

Table 7: Statistics of generated datasets in BOND.
Dataset #Nodes #Edges #Feat. Degree #Con. #Strct. #Outliers Ratio
Gen_Time 1,000 5,746 64 5.7 100 100 189 18.9%
Gen_100 100 618 64 6.2 10 10 18 18.0%
Gen_500 500 2,662 64 5.3 10 10 20 4.0%
Gen_1000 1,000 4,936 64 4.9 10 10 20 2.0%
Gen_5000 5,000 24,938 64 5.0 10 10 20 0.4%
Gen_10000 10,000 49,614 64 5.0 10 10 20 0.2%

A.2 Description of algorithms in the benchmark

LOF [5]. LOF is short for the Local Outlier Factor. LOF computes the degree of an object as
abnormality, and the degree depends on how isolated the object is with respect to its surrounding
neighborhood. Note that LOF only uses node attribute information, and the neighborhood is composed
of k-nearest-neighbors.

IF [52]. Isolation Forest (IF) is a classic tree ensemble method used in outlier detection. It builds an
ensemble of base trees to isolate the data points and defines the decision boundary as the closeness of
an individual instance to the root of the tree. It only uses node attributes of data.

MLPAE [64]. The MLPAE is a vanilla autoencoder with multiple layer perceptron (MLP) as encoder
and decoder. The encoder takes the node attribute as the input to learn its low-dimensional embedding

1https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_
geometric.datasets.RandomPartitionGraphDataset
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and a decoder reconstructs the input node attribute from the node embedding. The outlier score of a
node is the reconstruction error of the decoder.

SCAN [75]. SCAN is a structural clustering algorithm to detect clusters, hub nodes, and outlier
nodes in a graph. Since the structural outliers exhibit clustering patterns on graphs, we use SCAN
to detect clusters and the nodes in detected clusters are regarded as structural outliers in the graph.
SCAN only takes the graph structure as the input.

Radar [50]. Radar is an anomaly detection framework for attributed graphs. It takes the graph
structure and node attributes as the input. It detects outlier nodes whose behaviors are singularly
different from the majority by characterizing the residuals of attribute information and its coherence
with network information. The outlier score of a node is decided by the norm of its reconstruction
residual.

ANOMALOUS [60]. ANOMALOUS performs joint anomaly detection and attribute selection to
detect node anomalies on attributed graphs based on the CUR decomposition and residual analysis. It
takes the graph structure and node attribute as the input, and the outlier score of a node is decided by
the norm of its reconstruction residual.

GCNAE [39]. GCNAE is the autoencoder framework with GCNs [40] as the encoder and decoder. It
takes the graph structure and node attributes as input. The encoder is used to learn a node’s embedding
by aggregating its neighbor information. The decoder reconstructs the node attribute by applying
another GCN to node embeddings and graph structures. Similar to MLPAE, the outlier score of a
node is the reconstruction error of the decoder.

DOMINANT [16]. DOMINANT is one of the first works that leverage GCN and AE for outlier node
detection. It uses a two-layer GCN as the encoder, a two-layer GCN decoder to reconstruct the node
attribute, and a one-layer GCN and dot product as the structural decoder to reconstruct the graph
adjacency matrix. The reconstruction errors of both decoders are combined as the outlier scores of
the nodes.

DONE [4]. DONE leverages a structural and an attribute AE to reconstruct the adjacency matrix and
node attribute. The encoders and decoders are composed of MLPs. The node embeddings and outlier
scores are optimized simultaneously with a unified loss function.

AdONE [4]. AdONE is a variant of DONE, which uses an extra discriminator to discriminate the
learned structure embedding and attribute embedding of a node. The adversarial training approach
supposes to better align the two different embeddings in the latent space.

AnomalyDAE [25]. AnomalyDAE also utilizes a structure AE and attribute AE to detect outlier
nodes. The structure encoder of AnomalyDAE takes both the adjacency matrix and node attribute
as input; the attribute decoder reconstructs the node attribute using both structure and attribute
embeddings.

GAAN [11]. GAAN is a GAN-based outlier node detection method. It employs an MLP-based
generator to generate fake graphs and an MLP-based encoder to encode graph information. A
discriminator is trained to recognize whether two connected nodes are from the real or fake graph.
The outlier score is obtained by the node reconstruction error and real-node identification confidence.

GUIDE [80]. GUIDE is similar to DONE and AdONE with two different AEs, but it pre-processes
the structure information before feeding it into the structure encoder. Specifically, node motif degree
is used to represent the node structure vector which could encode higher-order structure information.

CONAD [76]. CONAD is one of the BOND methods that leverage graph augmentation and con-
trastive learning techniques. It imposes prior knowledge of outlier nodes via generating augmented
graphs. After encoding the graphs using Siamese GNN encoders, the contrastive loss is used to
optimize the encoder, and the outlier score of the node is obtained by two different decoders like
DOMINANT.

A.3 Description of Evaluation Metrics

ROC-AUC (AUC). AUC computes the Area Under the Receiver Operating Characteristic Curve
(ROC-AUC) from predicted outlier scores. The ROC curve is created by plotting the true positive rate
(TPR) against the false positive rate (FPR) at various threshold settings. In the BOND benchmark,
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we regard the outlier nodes as the positive class and compute the AUC for it. AUC equals 1 means
the model makes a perfect prediction, and AUC equals 0.5 means the model has no class-separation
capability. AUC is better than accuracy when evaluating the outlier detection task since it is not
sensitive to the imbalanced class distribution of the data.

Average Precision (AP). AP summarizes the precision-recall curve as the weighted mean of preci-
sions achieved at each threshold, with the increase in recall from the previous threshold used as the
weight. AP is a metric that balances the effects of recall and precision, and a higher AP indicates a
lower false-positive rate (FPR) and false-negative rate (FNR). FPR and FNR have equal importance
for most outlier detection applications as more misclassified normal samples could worsen legit users’
experience.

Recall@k. The outliers are usually rare in contrast to enormous normal samples in the data, and
the outliers are of the most interest to outlier detection practitioners. We propose to use Recall@k
to measure how well the detectors rank outliers over the normal samples. We set k as the number
of ground truth outliers in each dataset. The Recall@k is computed by the number of true outliers
among the top-k samples in the outlier ranking list divided by k. A higher Recall@k score indicates a
better detection performance, and Recall@k equals 1 means the model perfectly ranks all outliers
over the normal samples.

Runtime. Due to the coverage of both classical algorithms and neural network methods, we consis-
tently measure the model runtime as the duration between the experiment starts and ends, mimicking
the real-world applications without specific differentiation between CPU and GPU time.

GPU Memory. Notably, GPU memory is often the bottleneck of machine learning algorithms due
to its limitation in extension. In BOND, we report the max active GPU memory for running an
algorithm.

B Additional Experimental Settings and Details

Environment. The key libraries and their versions used in the experiment are as follows: Python=3.7,
CUDA_version=11.1, torch=1.10, pytorch_geometric>=2.0.3, networkx=2.6.3, numpy=1.19.4,
scipy=1.5.2, scikit-learn=0.22.1, pyod=1.0.1, pygod=0.3.0.

Hardware configuration. All the experiments were performed on a Linux server with a 3.50GHz
Intel Core i5 CPU, 64GB RAM, and 1 NVIDIA GTX 1080 Ti GPU with 12GB memory.

More model implementation details. To include a large number of algorithms, we build Python
Graph Outlier Detection (PyGOD)1 [53], which provides more than 10 latest graph OD algorithms;
all with unified APIs and optimizations. We tried our best to apply the same set of optimization
techniques to each dataset. For Radar and ANOMALOUS, we use gradient descent instead closed-
form optimization provided in official implementation due to fairness and efficiency concerns. For all
deep algorithms, we implement sampling and minibatch training on large graphs (e.g., Flickr). See
our library source code for more details. Meanwhile, we also include multiple non-graph baselines
(LOF and IF) from our early work Python Outlier Detection (PyOD) [92].

Hyperparameter grid

The hyperparameter space is shown in Table 8. The candidates of hyperparameters are listed in square
brackets. In each trial, a value is randomly chosen among candidates. The results (mean, std, max)
are reported among 20 trials.

Due to the large graph size, full batch training on Flickr cannot fit in single GPU memory. Minibatch
training and different batch size, sampling size, and the number of epochs are used on Flickr. Because
of the complexity of real datasets, automated balancing by the standard deviation for weight alpha
cannot balance well. Thus, three candidates are attempted. As Reddit has a lower feature dimension,
we reduce hidden dimension values on Reddit.

How we determine the optimal performance in runtime comparison.

The optimal performance is determined by the ROC-AUC score. Taking the computational cost into
account, we expect a reasonable score within as few training epochs as possible. Thus, when the

1PyGOD: https://pygod.org/
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Table 8: Hyperparameters in different algorithms. The values in "[]" are candidates. We present
these common hyperparameters shared by multiple algorithms on the top, and also specify some
algorithm-specific hyperparameters at the bottom. Refer to PyGOD doc for more details.

Algorithm Hyperparameter Cora Amazon Flickr Weibo Disney Books Enron DGraph Reddit Gen

Common

dropout [0, 0.1, 0.3]
learning rate [0.1, 0.05, 0.01]
weight decay 0.01

batch size full batch 64 full batch 64 full batch
sampling all neigh. 3 all neigh. 3 all neigh.

epoch 300 2 300 2 300
alpha auto [0.8, 0.5, 0.2] auto

hid. dim. [32, 64, 128, 256] [8, 12, 16] [32, 48, 64]

SCAN eps [0.3, 0.5, 0.8]
mu [2, 5, 10]

AnomalyDAE theta [10, 40, 90]
eta [3, 5, 8]

GAAN noise dim. [8, 16, 32]
GUIDE struct. hid. [4, 5, 6]

score converges (i.e., the score increment of consequence epochs is less than 0.5%), we mark the
current epoch as optimal.
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C Additional Experimental Results

C.1 Additional Results on Real Dataset Detection Performance

Table 9: Average Precision (%) comparison among OD algorithms on three datasets with synthetic outliers,
where we show the avg perf. ± the STD of perf. (max perf.) of each. The best algorithm by expectation is shown
in bold, while the max performance per dataset is marked with underline. OOM denotes out of memory with
regard to GPU (_G) and CPU (_C).

Algorithm Cora Amazon Flickr
LOF 12.2±0.0 (12.2) 5.6±0.0 (5.6) 5.4±0.0 (5.4)
IF 10.1±0.7 (11.5) 6.2±1.3 (9.5) 8.2±0.6 (9.3)
MLPAE 13.2±0.0 (13.2) 34.8±0.0 (34.9) 18.7±0.0 (18.7)

SCAN 12.0±5.8 (21.6) 13.8±10.5 (33.8) 24.6±20.6 (50.4)
Radar 7.5±0.4 (7.9) 12.3±1.5 (14.2) OOM_G
ANOMALOUS 5.9±1.7 (8.8) 11.7±1.3 (15.3) OOM_G

GCNAE 13.2±0.0 (13.2) 34.8±0.0 (34.9) 18.0±2.8 (18.6)
DOMINANT 20.0±3.0 (20.8) 16.0±0.9 (16.6) 28.6±11.8 (36.4)
DONE 25.0±8.8 (42.4) 19.3±7.7 (36.5) 20.0±2.7 (24.9)
AdONE 19.3±4.2 (29.2) 23.7±4.7 (31.2) 18.2±3.5 (25.1)
AnomalyDAE 18.3±2.1 (21.3) 24.0±7.2 (33.4) 12.3±3.8 (18.2)
GAAN 14.6±0.4 (15.1) 34.5±0.3 (34.8) 18.6±0.1 (18.7)
GUIDE 14.0±0.5 (14.8) OOM_C OOM_C
CONAD 17.1±5.5 (20.7) 15.5±2.0 (16.6) 8.8±1.1 (10.0)

Table 10: Average Precision (%) comparison among OD algorithms on six datasets with organic outliers, where
we show the avg perf. ± the STD of perf. (max perf.) of each. The best algorithm by expectation is shown
in bold, while the max performance per dataset is marked with underline. OOM denotes out of memory with
regard to GPU (_G) and CPU (_C). TLE denotes time limit of 24 hours exceeded.

Algorithm Weibo Reddit Disney Books Enron DGraph
LOF 15.8±0.0 (15.8) 4.2±0.0 (4.2) 5.2±0.0 (5.2) 1.5±0.0 (1.5) 0.0±0.0 (0.0) TLE
IF 12.9±2.6 (19.8) 2.8±0.1 (2.9) 10.1±4.5 (22.6) 1.9±0.2 (2.7) 0.1±0.0 (0.1) 1.8±0.0 (1.9)
MLPAE 52.8±9.9 (64.5) 3.4±0.0 (3.4) 5.9±0.8 (7.9) 1.8±0.3 (2.5) 0.1±0.0 (0.1) 0.9±0.0 (1.0)

SCAN 17.3±3.4 (20.5) 3.3±0.0 (3.3) 5.0±0.3 (5.5) 2.0±0.1 (2.1) 0.0±0.0 (0.1) TLE
Radar 92.1±0.7 (92.9) 3.6±0.2 (3.9) 7.2±0.0 (7.2) 2.2±0.0 (2.2) 0.2±0.0 (0.2) OOM_C
ANOMALOUS 92.1±0.7 (92.9) 4.0±0.6 (5.1) 7.2±0.0 (7.2) 2.2±0.0 (2.2) 0.2±0.0 (0.2) OOM_C

GCNAE 70.8±5.0 (80.9) 3.4±0.0 (3.4) 4.8±0.7 (5.8) 2.1±0.4 (3.5) 0.1±0.0 (0.1) 1.0±0.0 (1.0)
DOMINANT 18.0±10.2 (36.2) 3.7±0.0 (3.8) 7.6±5.0 (23.2) 2.2±0.6 (4.1) 0.1±0.1 (0.4) OOM_C
DONE 65.5±13.4 (77.3) 3.7±0.4 (4.5) 5.0±0.7 (6.4) 1.8±0.3 (2.6) 0.1±0.0 (0.1) OOM_C
AdONE 62.9±9.5 (74.4) 3.3±0.4 (4.0) 6.1±1.5 (11.7) 2.5±0.3 (3.2) 0.1±0.0 (0.1) OOM_C
AnomalyDAE 38.5±22.5 (77.3) 3.7±0.1 (3.8) 5.7±0.2 (6.3) 3.5±1.4 (7.8) 0.1±0.0 (0.1) OOM_C
GAAN 80.3±0.2 (80.7) 3.7±0.1 (3.9) 5.6±0.0 (5.6) 2.6±0.8 (5.6) 0.1±0.0 (0.1) OOM_C
GUIDE OOM_C OOM_C 4.8±0.9 (6.9) 1.9±0.3 (3.1) OOM_C OOM_C
CONAD 15.6±6.9 (31.7) 3.7±0.3 (4.6) 6.0±1.4 (11.5) 2.5±0.8 (4.9) 0.1±0.0 (0.3) 0.9±0.0 (0.9)
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Table 11: Recall@k (%) comparison among OD algorithms on three datasets with synthetic outliers, where we
show the avg perf. ± the STD of perf. (max perf.) of each. The best algorithm by expectation is shown in bold,
while the max performance per dataset is marked with underline. k is set as the number of outliers in labels.
OOM denotes out of memory with regard to GPU (_G) and CPU (_C).

Algorithm Cora Amazon Flickr
LOF 15.2±0.0 (15.2) 5.2±0.0 (5.2) 8.4±0.0 (8.4)
IF 14.6±1.7 (18.1) 5.0±2.0 (9.9) 12.6±1.2 (14.7)
MLPAE 18.8±0.0 (18.8) 45.0±0.0 (45.1) 28.0±0.1 (28.1)

SCAN 17.5±8.9 (32.6) 16.1±11.2 (32.7) 27.3±22.5 (51.9)
Radar 4.2±0.5 (5.1) 18.0±5.2 (23.8) OOM_G
ANOMALOUS 3.4±2.3 (10.1) 13.6±4.6 (25.1) OOM_G

GCNAE 18.8±0.0 (18.8) 45.0±0.1 (45.1) 26.8±5.0 (28.1)
DOMINANT 23.8±4.0 (26.1) 19.4±0.9 (20.2) 38.9±17.2 (48.4)
DONE 27.9±9.8 (44.9) 20.6±9.4 (39.6) 23.6±2.3 (26.6)
AdONE 22.0±5.9 (34.8) 26.9±5.9 (38.2) 19.3±4.4 (27.0)
AnomalyDAE 21.6±1.9 (25.4) 30.1±12.0 (44.8) 17.7±7.7 (27.8)
GAAN 19.6±0.3 (20.3) 45.4±0.1 (45.7) 28.0±0.1 (28.1)
GUIDE 18.8±0.6 (20.3) OOM_C OOM_C
CONAD 19.8±7.3 (25.4) 18.6±3.0 (20.2) 12.1±2.4 (14.3)

Table 12: Recall@k (%) comparison among OD algorithms on six datasets with organic outliers, where we
show the avg perf. ± the STD of perf. (max perf.) of each. The best algorithm by expectation is shown in bold,
while the max performance per dataset is marked with underline. OOM denotes out of memory with regard to
GPU (_G) and CPU (_C). TLE denotes time limit of 24 hours exceeded.

Algorithm Weibo Reddit Disney Books Enron DGraph
LOF 22.0±0.0 (22.0) 4.4±0.0 (4.4) 0.0±0.0 (0.0) 0.0±0.0 (0.0) 0.0±0.0 (0.0) TLE
IF 13.8±6.4 (24.3) 0.1±0.1 (0.3) 9.2±8.3 (16.7) 1.1±1.6 (3.6) 0.0±0.0 (0.0) 0.1±0.1 (0.4)
MLPAE 48.9±11.0 (62.1) 3.0±0.0 (3.0) 0.0±0.0 (0.0) 0.9±1.6 (3.6) 0.0±0.0 (0.0) 0.5±0.1 (0.6)

SCAN 23.8±7.0 (30.5) 2.7±0.3 (3.0) 7.5±11.2 (33.3) 0.7±1.4 (3.6) 0.0±0.0 (0.0) TLE
Radar 86.4±0.8 (87.4) 2.1±0.8 (3.5) 0.0±0.0 (0.0) 0.0±0.0 (0.0) 0.0±0.0 (0.0) OOM_C
ANOMALOUS 86.4±0.8 (87.4) 4.0±1.9 (7.9) 0.0±0.0 (0.0) 0.0±0.0 (0.0) 0.0±0.0 (0.0) OOM_C

GCNAE 67.6±5.2 (77.3) 3.0±0.0 (3.0) 0.0±0.0 (0.0) 0.7±1.8 (7.1) 0.0±0.0 (0.0) 0.4±0.0 (0.4)
DOMINANT 19.7±13.8 (37.4) 0.9±0.4 (2.7) 3.3±6.7 (16.7) 1.6±3.1 (10.7) 0.0±0.0 (0.0) OOM_C
DONE 65.4±12.4 (76.3) 2.8±1.6 (5.7) 0.0±0.0 (0.0) 1.1±1.6 (3.6) 0.0±0.0 (0.0) OOM_C
AdONE 64.3±7.6 (74.3) 1.0±1.2 (3.8) 1.7±5.0 (16.7) 3.0±1.7 (7.1) 0.0±0.0 (0.0) OOM_C
AnomalyDAE 42.2±23.7 (75.7) 0.9±0.5 (3.0) 0.0±0.0 (0.0) 2.7±2.2 (7.1) 0.0±0.0 (0.0) OOM_C
GAAN 77.1±0.2 (77.4) 1.1±0.4 (2.2) 0.0±0.0 (0.0) 1.8±1.8 (3.6) 0.0±0.0 (0.0) OOM_C
GUIDE OOM_C OOM_C 0.0±0.0 (0.0) 0.4±1.1 (3.6) OOM_C OOM_C
CONAD 20.3±13.3 (37.1) 1.3±1.6 (7.6) 0.8±3.6 (16.7) 1.7±2.9 (10.7) 0.0±0.0 (0.0) 0.4±0.1 (0.6)
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C.2 Additional Results on Performance Variation under Different Types of Outliers

Table 13: Average Precision (%) comparison among OD algorithms on three datasets injected with contextual
and structural outliers, where we show the avg perf. ± the STD of perf. (max perf.) of each. The best algorithm
by expectation is shown in bold, while the max performance per dataset is marked with underline. OOM denotes
out of memory with regard to GPU (_G) and CPU (_C).

Cora Amazon Flickr
Algorithm Contextual Structural Contextual Structural Contextual Structural

LOF 12.2±0.0 (12.2) 3.1±0.0 (3.1) 3.2±0.0 (3.2) 2.6±0.0 (2.6) 3.5±0.0 (3.5) 2.5±0.0 (2.5)
IF 9.2±1.1 (11.7) 3.0±0.3 (3.6) 4.7±2.1 (10.5) 2.6±0.1 (2.7) 7.2±1.0 (9.1) 2.6±0.0 (2.6)
MLPAE 13.7±0.0 (13.7) 3.1±0.0 (3.1) 56.7±0.1 (56.9) 2.5±0.0 (2.5) 24.8±0.0 (24.9) 2.6±0.0 (2.6)

SCAN 2.6±0.0 (2.7) 21.6±17.1 (61.0) 2.5±0.0 (2.5) 22.4±24.4 (71.0) 2.5±0.0 (2.5) 59.1±36.8 (94.8)
Radar 2.5±0.1 (2.6) 5.7±0.8 (6.6) 12.5±2.3 (14.3) 3.4±0.1 (3.6) OOM_G OOM_G
ANOMALOUS 2.7±0.2 (3.4) 5.1±2.5 (13.5) 10.4±1.4 (13.7) 3.4±0.4 (4.0) OOM_G OOM_G

GCNAE 13.7±0.0 (13.7) 3.1±0.0 (3.1) 56.8±0.1 (56.9) 2.5±0.0 (2.5) 18.9±9.1 (24.9) 2.6±0.0 (2.6)
DOMINANT 6.3±1.1 (6.9) 19.2±4.7 (22.1) 4.7±0.5 (5.2) 16.5±2.4 (17.4) 4.8±0.5 (5.1) 61.3±13.7 (66.9)
DONE 7.0±2.2 (11.9) 31.9±25.9 (89.0) 12.0±4.9 (20.6) 23.0±18.1 (69.1) 14.9±2.2 (18.0) 9.8±2.0 (13.6)
AdONE 8.9±1.3 (10.9) 16.2±6.2 (32.8) 14.5±7.4 (32.5) 13.1±8.3 (34.1) 11.4±2.6 (16.5) 10.2±1.5 (13.0)
AnomalyDAE 9.3±1.7 (13.2) 14.8±4.9 (24.7) 21.9±17.7 (47.7) 11.6±5.4 (17.2) 9.4±6.6 (24.2) 3.1±0.4 (3.8)
GAAN 14.1±0.1 (14.2) 4.5±0.1 (4.7) 52.5±1.4 (56.2) 3.6±0.2 (4.0) 24.7±0.2 (24.9) 2.6±0.0 (2.6)
GUIDE 13.7±0.5 (14.0) 3.9±0.2 (4.8) OOM_C OOM_C OOM_C OOM_C
CONAD 6.5±1.1 (6.9) 20.0±4.6 (22.2) 4.8±0.5 (5.2) 16.9±1.0 (17.4) 4.5±0.3 (4.9) 5.4±0.3 (5.8)

Table 14: Recall@k (%) comparison among OD algorithms on three datasets injected with contextual and
structural outliers, where we show the avg perf. ± the STD of perf. (max perf.) of each. The best algorithm by
expectation is shown in bold, while the max performance per dataset is marked with underline. k is set as the
number of each type of outliers in labels. OOM denotes out of memory with regard to GPU (_G) and CPU (_C).

Cora Amazon Flickr
Algorithm Contextual Structural Contextual Structural Contextual Structural

LOF 12.9±0.0 (12.9) 5.7±0.0 (5.7) 1.1±0.0 (1.1) 3.7±0.0 (3.7) 9.0±0.0 (9.0) 2.2±0.0 (2.2)
IF 13.1±3.3 (20.0) 3.8±2.0 (8.6) 4.4±3.5 (13.4) 2.1±0.7 (3.1) 13.8±1.9 (17.7) 2.5±0.3 (3.0)
MLPAE 15.7±0.0 (15.7) 7.1±0.0 (7.1) 55.1±0.1 (55.1) 2.3±0.0 (2.3) 29.8±0.1 (30.0) 2.9±0.0 (2.9)

SCAN 2.8±1.1 (4.3) 25.9±19.9 (61.4) 2.2±0.4 (2.9) 25.1±26.8 (70.3) 2.8±0.2 (3.1) 59.7±37.1 (96.4)
Radar 1.4±0.0 (1.4) 0.6±0.7 (1.4) 15.1±6.5 (20.6) 1.5±1.1 (2.3) OOM_G OOM_G
ANOMALOUS 1.8±1.4 (4.3) 1.2±2.4 (8.6) 5.9±5.4 (19.1) 0.6±1.4 (4.6) OOM_G OOM_G

GCNAE 15.7±0.0 (15.7) 7.1±0.0 (7.1) 55.1±0.1 (55.1) 2.3±0.0 (2.3) 21.6±12.7 (30.1) 2.8±0.2 (3.0)
DOMINANT 8.4±3.1 (10.0) 17.2±5.2 (30.0) 4.9±0.8 (6.0) 10.1±1.9 (10.9) 3.6±0.2 (4.0) 70.6±15.7 (76.0)
DONE 8.6±3.9 (18.6) 31.4±26.2 (82.9) 11.6±4.0 (21.1) 23.7±19.9 (73.1) 22.4±3.0 (25.8) 5.1±1.0 (6.7)
AdONE 11.4±3.1 (17.1) 13.4±7.2 (35.7) 18.1±7.4 (30.6) 10.4±9.8 (30.9) 17.7±3.2 (23.9) 4.4±1.4 (7.7)
AnomalyDAE 12.0±2.9 (17.1) 16.0±4.2 (22.9) 23.5±21.4 (53.4) 8.8±2.9 (12.9) 10.1±10.5 (30.2) 3.6±1.7 (6.9)
GAAN 15.9±0.4 (17.1) 8.2±0.6 (8.6) 54.9±0.6 (56.3) 3.8±0.3 (4.6) 29.8±0.1 (30.1) 2.9±0.0 (3.0)
GUIDE 16.9±0.6 (17.1) 8.5±0.3 (8.6) OOM_C OOM_C OOM_C OOM_C
CONAD 9.1±2.4 (10.0) 17.2±3.9 (18.6) 5.3±0.8 (6.0) 10.2±1.2 (10.9) 7.8±1.9 (10.1) 8.3±1.4 (9.7)
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C.3 Additional Results on Efficiency and Scalability Analysis

Table 15: Time consumption (s) comparison among OD algorithms on five different numbers of epochs. For
non-iterative algorithms, i.e., LOF, IF, and SCAN, we report the total runtime.

Algorithm 10 100 200 300 400

LOF 0.10 0.10 0.10 0.10 0.10
IF 0.09 0.09 0.09 0.09 0.09
MLPAE 0.04 0.46 0.82 1.37 1.74

SCAN 0.02 0.02 0.02 0.02 0.02
Radar 0.02 0.10 0.19 0.34 0.36
ANOMALOUS 0.02 0.09 0.17 0.26 0.36

GCNAE 0.06 0.49 0.96 1.45 1.94
DOMINANT 0.08 0.70 1.41 2.10 2.79
DONE 0.08 0.77 1.53 2.30 3.08
AdONE 0.10 0.91 1.81 2.71 3.62
AnomalyDAE 0.43 0.64 1.28 1.92 2.55
GAAN 0.06 0.49 0.98 1.47 1.97
GUIDE 50.77 51.92 53.40 54.27 55.21
CONAD 0.11 1.04 2.07 3.07 4.10

Table 16: GPU memory consumption (MB) comparison among deep algorithms on five different graph sizes
(number of nodes). Note that GPU memory measurement does not apply to algorithms like LOF, IF, and SCAN.

Algorithm 100 500 1000 5000 10000

MLPAE 0.66 2.10 3.90 19.41 38.52
GCNAE 0.92 3.40 6.38 31.18 62.11
GUIDE 0.96 3.46 6.47 31.45 62.60
Radar 0.49 9.32 36.73 871.32 3450.88
ANOMALOUS 0.44 5.03 20.50 482.47 2293.76
DOMINANT 1.09 7.58 27.15 591.74 2324.48
DONE 1.95 10.93 32.74 624.41 2385.92
AdONE 1.99 11.38 33.60 657.54 2447.36
AnomalyDAE 1.21 10.54 36.94 794.81 3112.96
GAAN 0.90 9.51 36.87 871.17 3450.88
CONAD 1.39 8.77 29.48 604.32 2344.96
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D Long-term Maintenance and Development Plan

We commit to maintaining and developing BOND and PyGOD in the long run, as many of our open-
source outlier detection works (e.g., PyOD [92], SUOD [90], and TODS [45]). More specifically,
we will focus on improving on two aspects of graph OD tasks, namely datasets (Appx. D.1) and
algorithms (Appx. D.2)

D.1 Enriching Graph OD Datasets

We will keep monitoring the coming datasets suited for BOND tasks, and enrich our testbed with
more datasets. There are three main approaches for this:

1. Directly including new graph OD datasets. We will keep checking graph OD papers to include
their newly introduced datasets.

2. Adapting graph datasets for graph OD tasks. As we have discussed in future directions in §5,
we could repurpose existing graph datasets for OD. For instance, given a graph dataset with
multiple types of transactions for node classification, we could combine the rare classes together
as anomalies, and the common transactions as the normal class. Most of the time, we could find
some semantic meaning for the combined rare classes, e.g., fraud and mistakes. This adaptation
process has been widely used in tabular OD [23] and has proven to be useful [6]. Specifically,
Open Graph Benchmark (OGB) [30], and therapeutic data commons (TDC) [31] can serve as
natural sources for building graph OD datasets, and we will start from these repositories.

3. Planting more types of synthesized outliers into plain graphs. Our experimental results and
analysis suggest that the existing synthesizing approaches are too naive and not similar to most
organic outliers. Our future plan includes: 1) adopting other outlier generation approaches
from [75, 3]; 2) generating outliers using learning-based methods like GAN [68].

With more graph OD datasets (e.g., # datasets >= 20), we could conduct more in-depth (group-wise
and pairwise) statistical analysis [14], which has not been possible in BOND works. We will keep
updating the benchmark site1 for newly added datasets.

D.2 Emerging Graph OD Algorithms

Regarding graph OD algorithms, we will keep maintaining and improving PyGOD in multiple
aspects:

1. Monitoring and adding outlier node methods to PyGOD for both benchmark and general usage.
2. Optimizing its accessibility and scalability with the latest development in graph learning [35],

which may bring us new insights into outlier node detection’s scalability.
3. Incorporating automated machine learning to enable intelligent model selection and hyperpa-

rameter tuning [59, 93], which may unlock some interesting perspectives of graph OD.
4. Extending the scope from static attribute outlier node detection to more graph tasks, e.g., outlier

detection in edges and sub-graphs. This will lead to other interesting aspects of graph OD.

Robustness and Quality. While building PyGOD, we follow the best practices of system design and
software development. First, we leverage the continuous integration by GitHub Actions2 to automate
the testing process under various Python versions and operating systems. In addition to the scheduled
daily test, both commits and pull requests trigger the unit testing. Notably, we enforce all code to
have at least 90% coverage3. Following the PEP8 standard, we enforce a consistent coding style and
naming convention, which facilitates community collaboration and code readability.

In the long term, we envision PyGOD could keep evolving to support more comprehensive bench-
marking, as well as other graph detection tasks and benchmarks.

1https://github.com/pygod-team/pygod/tree/main/benchmark
2Continuous integration by GitHub Actions: https://github.com/pygod-team/pygod/actions
3Code coverage by Coveralls: https://coveralls.io/github/pygod-team/pygod
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