Under review as a conference paper at ICLR 2025

THE GEOMETRY OF PHASE TRANSITIONS IN DIFFUSION
MODELS: TUBULAR NEIGHBOURHOODS AND SINGU-
LARITIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models undergo phase transitions during the generative process where
data features suddenly emerge in the final stages. The current study aims to
elucidate this critical phenomenon from the geometrical perspective. We employ
the concept of “injectivity radius”, a quantity that characterises the structure of the
data manifold. Through theoretical and empirical evidence, we demonstrate that
phase transitions in the generative process of diffusion models are closely related
to the injectivity radius. Our findings offer a novel perspective on phase transitions
in diffusion models, with potential implications for improving performance and
sampling efficiency.

1 INTRODUCTION

Generative models (Bond-Taylor et al.,[2022) address the fundamental challenge of approximating
and sampling from complex probability distributions. Diffusion models (Sohl-Dickstein et al., 2015}
Ho et al.| |2020; Song et al.,|2021), a prominent class of generative models, incorporate two primary
processes: a forward (diffusion) process, wherein data points are perturbed by incrementally adding
noise to the data, mapping a complex distribution into an analytically tractable prior distribution, and
a backward (reverse diffusion) process, where noise is denoised back into a sample from the data
distribution by reversing the noise perturbation. The reverse process involves estimating the “score
vector”, the gradient of the log-density of the perturbed data distribution.

Recent findings report that diffusion models exhibit critical phenomena, the abrupt emergence of
distinctive features during the generative process (Ho et al.| [2020; [Meng et al.l [2022} |Choi et al.|
2022; Zheng et al.,[2023; Raya & Ambrogioni, 2023} |Georgiev et al., 2023} |Sclocchi et al., [2024;
Biroli et al} 2024; [Li & Chen, |2024), a critical phenomenon we refer to as a “phase transition”.
Elucidating phase transitions is expected to help distinguishing between irrelevant information (noise)
and relevant information, or memorisation and generalisation. This distinction offers valuable insights
into optimising the sampling process and developing better conditional diffusion models, such as
for tasks involving language-conditioned image generation. While experimental evidences of such
phenomena have been provided in various studies, theoretical frameworks still remain limited and
under development. |[Raya & Ambrogioni (2023)) have defined local energy and examined its stability;
however, their approach is limited to simple data structures, such as hyperspheres, for which the
potential is known. We extend this inquiry by exploring tubular neighbourhoods, applicable to data
manifolds with more complex geometries, to better understand phase transitions in diverse contexts.

Building on this foundation, we propose a novel geometric interpretation of phase transitions in
diffusion models, grounded in the behaviour of the score vectors. As demonstrated in prior re-
search (Stanczuk et al.| 2024), the score vectors at the final time step of the generative process are
orthogonal to the tangent plane of the data distribution. This implies that score vectors map noisy
data points to their nearest points on the noise-free data distribution at the final stage of the generative
process. However, these points may not always be unique and depend on the data geometry. Moreover,
the uncertainty of such generative trajectories is expected to increase as they move farther from the
data manifold. To address this interpretation, we employ the concept of the “injectivity radius” —
the supremum distance within which the nearest point on the data distribution is always uniquely
determined. We define the region within the injectivity radius as the tubular neighbourhood (Fig. [T).



Under review as a conference paper at ICLR 2025

injectivity radius

== the projection of tubular neighbourhood
L} | th lnpt(mt)
Hm the generation process

Figure 1: Conceptual diagram of our perspective. The Figure 2: Example of phase transitions:
orange path represents the generative process from Gaus- CIFAR-10 late initialisation generation.
sian noise to the data manifold M. A singularity occurs at The critical phenomena known as phase
the endpoint of this path. The grey region represents the transitions or symmetry breaking where
tubular neighbourhood of the data manifold M. We hy- the distinctive data features emerge at
pothesise that transitions of particles within the grey region the certain point of generative process.
play a crucial role in the generative process.

We hypothesise that the boundary between the tubular neighbourhood and the region beyond it plays
a crucial role in the generative dynamics and is intimately connected to phase transitions.

To test our hypothesis, we conduct experiments using synthetic data and demonstrate that, under
conditions of constant curvature, the hypothesis holds true. In contrast, in scenarios where the
curvature of the data manifold is non-constant, singularities corresponding to varying curvatures
can emerge, leading to the possibility of multiple phase transitions. Moreover, we show that the
concept of the tubular neighbourhood corresponds to the final phase transition in the generative
process. Finally, we experimentally demonstrate that by embedding the original data distribution into
a hypersurface, the theory of the tubular neighbourhood can be leveraged to achieve more efficient
sampling. Our code can be found at https://anonymous.4open.science/r/project-anonymous-2024/.

CONTRIBUTIONS

* We present a novel geometrical perspective of diffusion models to understand critical
phenomena, offering a new framework for interpreting the emergence of significant features
during the generative process.

* For a given data manifold, we propose an algorithm to estimate the injectivity radius of
the tubular neighbourhoods (Section 3)). This provides a practical tool for quantifying the
geometric structure of data manifolds.

* We analyse the diffusion dynamics through the theory of tubular neighbourhoods and
empirically demonstrate that phase transitions occur around these regions (Sections [4]
and[3). This combined theoretical and experimental approach strengthens our geometric
interpretation of diffusion models and offers a potential method for optimising sampling
efficiency by identifying critical points in the generative process.

2 PRELIMINARIES

In this section, we briefly introduce some basic mathematical concepts related to the paper.


https://anonymous.4open.science/r/project-anonymous-2024/
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2.1 DIFFUSION MODELS

In|Song et al.|(2021), score-matching Hyvérinen| (2005) and diffusion-based generative models (Sohl{
Dickstein et al.| [2015; Ho et al.l 2020) have been unified into a single continuous-time score-based
framework where the diffusion is driven by a stochastic differential equation (SDE) or Langevin
dynamics. In this context, z; € R? represents the data at time ¢, which evolves through time ¢ € [0, 7.
This framework relies on Anderson’s Theorem (Anderson, |1982), which states that under certain
Lipschitz conditions on the drift coefficient f : R? x R? — R? and on the diffusion coefficient
g:R? xR — R% x R? and an integrability condition on the target distribution pg(zg), a forward
diffusion process governed by the SDE

dzy = fi(@e)dt + gi(we)dwy (D)
has a reverse diffusion process governed by the SDE
2
x
dxy = — | fe(z) — gt(zt) Ve, Inp(zy) | dt + gi(z4)dwy, 2)

where w; is a standard Wiener process in reverse time. We could derive that probability distribution
pt(x) of SDE satisfies the Fokker-Planck equation

0

O i) = Ve, - () flw)) + 5, [g0w)pilan)]. )

Diffusion models are trained by approximating the score function V, In p;(z;) with a neural network
sg(x¢,t) parameterised by 6.

2.2  FROM THE MANIFOLD HYPOTHESIS TO TUBULAR NEIGHBOURHOODS

Data often concentrates around a lower-dimensional manifold, a concept known as the manifold
hypothesis (Fefferman et al.l 2013} |Loaiza-Ganem et al.| [2024)). We work in this paper based on
this hypothesis. For simplicity, we will assume all data manifolds are compact and embedded in the
Euclidean space R¢. In principle, any Riemannian manifolds can be isometrically embedded into
some Euclidean space (the Nash embedding theorem).

A tubular neighbourhood of a manifold is roughly speaking a set of points near the manifold and
every point of the set has a unique projection onto it (see Appendix for the formal definition).
It is theoretically known that every manifold embedded in R has a tubular neighbourhood. In fact
if we take a sufficiently small neighbourhood of a manifold, we may find a tubular neighbourhood.
On the other hand, it is easy to imagine that we cannot take a too large neighbourhood as a tubular
neighbourhood. See also Appendix [A]for previous studies which inspired our perspective.

3 INJECTIVITY RADIUS OF A DATA MANIFOLD

In this section, we present how to estimate the supremum of possible radii of tubular neighbourhoods
— the injectivity radius — of a given data manifold. Based on the theoretical argument in below,
we establish the algorithm for the estimation (see Algorithm [I]in Appendix [F). Throughout this
section, let M denote an n-dimensional manifold (data manifold) in the Euclidean space R<. For the
terminologies of Manifold Theory, see Appendices|C.2]and[C.3]

We refer to (Litherland et al.,|1999) for some notions and the case where (n,d) = (1, 3), i.e., the
manifold M is a knot. The first crucial claim of this section is that many theoretical facts proven in
their paper work for general dimensions as well. The second claim is that the quantities appearing in
their paper can be estimated from a given data cloud and its data manifold. For simplicity, we will
explain the former briefly and focus on the latter.

3.1 ENDPOINT MAPS AND TUBULAR NEIGHBOURHOODS

We explain how to realise a tubular neighbourhood of a manifold embedded in the Euclidean space.
Definition 3.1. The e-neighbourhood of M in R¢ is the set

M(e)= |J{yeR| Jy—=| <e}.
xeM
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Definition 3.2. The normal bundle to M in R? is the set
NM ={(z,v) eR* xR |z € M,v L T, M},

where T, M denotes the tangent space to M at x.

Notice that the set N M forms a d-dimensional manifold. (The dimensions in the direction to M and
its normal are n and d — n, respectively.)

Definition 3.3. Let Fy: RY x R? — RY, (x,v) — x + v be the addition map. We call its restriction
E=FEolnpm: NM = RY (zv) =z +o

the endpoint map (or the exponential map).
Proposition 3.4 (cf. Theorem|C.11). Let € > 0 and consider the subset

NM, ={(xz,v) e NM | ||v| < e} C NM.

Then the image E(N M_.) coincides with the e-neighbourhood M(¢) of M in RY. Furthermore, this
image forms a tubular neighbourhood of M if and only if the map E|n nm. is an embedding.

3.2 INJECTIVITY RADIUS AND ITS ESTIMATION

Definition 3.5. The injectivity radius R(M) of M is the supremum of numbers ¢ > 0 such that
the e-neighbourhood of M in R is also a tubular neighbourhood. If such ¢ does not exist, define
R(M) = 0. We also define the following two quantities.

(1) The first injectivity radius Ry (M) of M is the infimum of the set
{|lv|]|| (=,v) € NM is acritical point of the map E for some point x € M }.

(2) The second injectivity radius Ry (M) of M is the infimum of the set

1”3: —x || x1,x2 € M, 1 # T2,
g 11 2 1 —xy L Ty Mandxy — g L T, M [

Roughly saying, R1(M) is the radius that the endpoint map
fails to be regular at some point; Ry (M) is the radius at which
two separated tubes come into touch each other (see Figure 3).
Thanks to the following assertion, these quantities precisely
measure the injectivity radius, i.e., where the first singularity
for the e-neighbourhoods occurs.

Theorem 3.6 (§2 of Litherland et al.| (1999)).
It holds that R(M) = min{R; (M), R2(M)}.

In this paper, the estimation of Rs(M) is performed following
the definition. See Appendix for some ideas which may
make the estimation easier. Therefore we here argue how to
estimate R;(M). This quantity is closely related to the cur-
vature of M (cf. |[Fefferman| (2020)). Also, it is simple if we
consider the case that n = 1 — the manifold M is a curve in
R? (see Appendix . In general case, it seems to be difficult.
However we show the following (see also Theorem [C.7).

Theorem 3.7. Assume that the manifold M C R? is ex-
pressed by M = F~1(0) = {x € R? | F(z) = 0}, where
F: RY — R4 is a differentiable map of which 0 € R* is a (b) Ra(M)

regular value. In addition, assume that we have vector fields

ti,to, ..., tn (n < N) defined near M such that for every Figure 3: Sketches of the first and
x € M the vectors t1(x), to(x), ..., ty(x) are tangent to M second injectivity radii

and span the tangent space T, M. Then the first injectivity

radius R1(M) coincides with the infinum of the Euclidean
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norms ||[v|| of vectors v € R such that v | Ty M and the
d x (d+ N — n)-matrix

T T T
L(av) = [25(@ (%ﬁ(axv)—%ﬁ(m,v)) (i)ﬁ(w,v)—aaijv(w,v)) ]

“

is degenerate for some point x € M, where
0i: RExRY SR, ¢i(x,v) = (ti(x),v)
fori=1,2,--- N.

This assertion is proven by an application of the Method of Lagrange Multiplier. See Appendix
for its precise proof. We here note some remarks.

Remark 3.8. The condition that the matrix L(x,v) degenerates at (z,v) € NM is equivalent to
that the determinant of the d x d-minor

OF , T [0y, dpi, T dpi, dpi, T
[&B(w) ( i () O w)) (amw)— ¢ <w,v>) )

of L(x,v) vanishes for every n-tuple (i1, ...,1,) satisfying that 1 < ¢; < --- <4, < N. Indeed,

F
the matrix a—(w) is of full-rank for every point x € M = F~1(0).
x

Remark 3.9. It is crucial to find vector fields ¢; satisfying the above condition. For example, (small
extensions of) the gradient vector fields t; = grad z; (¢ = 1,. .., d) satisfies the condition, where
x;: M — R denotes the projection to the i-th axis in R?. In general, we have to take the number N
greater than n.

3.3 EXAMPLE (UNIT CIRCLE S1)

Let us verify Theoremthrough the most typical manifold — the unit circle S*. Define a function
F:R? - Rby
F(z,y) =2? +y> - 1.

Then we have S' = F~1(0). One of the normal vector field on S* is given as grad(F) =

(%—I;, %—5) = (2x,2y), so (—y, ) is a tangent vector field which spans the tangent space to S*

at each point (z,y) € S. Applying Theorem the first injectivity radius R; (S*) is calculated as
follows. For a point (z,y) € S, the matrix

Lo((e) On0m) = 30 210

is degenerate (i.e., its determinant is zero) if and only if (v1,v2) = (—2, —y). Thus, we obtain
Ri(SY) = V(—2)* + (—y)* = 1.

By definition, Ry(S!) is also equal to 1, so the injectivity radius R(S?) is equal to 1.

This result is utilised in Section [5.1]for the experimental validation.

3.4 A PILOT NUMERICAL EXPERIMENT TO VALIDATE THE PROPOSED ALGORITHM

We perform a pilot experiment to verify the algorithm. The detailed setting and the results are present
in the Appendix[F.1] The estimated R for S is 0.999 =+ 0.006.

4 TUBULAR NEIGHBOURHOODS AND DIFFUSION DYNAMICS

In this section, we investigate the relation between tubular neighbourhoods and diffusion dynamics.
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4.1 THE PROPORTION OF PARTICLES WITHIN THE TUBULAR NEIGHBOURHOOD

Let ¢ > 0. Let M(e) be the e-neighbourhood of a compact oriented manifold M in the Euclidean
space R¢ as defined in Definition Suppose p;(x) is a smooth solution to the Fokker-Planck
equation (3) with an initial condition pg () = d¢(2) here d pq () is Dirac’s density function with its
support M. We define a function I () () as follows:

T a(e)(t) 12/ ()pt(fﬂ)dl‘- (6)

Remark 4.1. The readers may understand this function represents the proportion of particles within
the tubular neighbourhood(see also Section [5.1] for the specific cases in numerical experiments).

Proposition 4.2. Assume 3(t) : R>¢o — R is a smooth function and fi(x) = %5(t)f(m), gi(x) =
VB(@) in B) (f(x) is some smooth vector field). We have:

lim;_sg %FM(E) (t) = 0 and lim;_, oo %FM(e)(t) = 0. Thus there exists at least one t. in (0, +00)
02
such that ——T rq(e)(te) = 0. Moreover if 3(t) > 0 and

ot 5L
(Velnp(z) — f(z)) -mn<0 @)
forany x € OM(e) and any t € Ry then I pq()(t) is strictly monotonically decreasing. Here 1 is
an unit outward pointing normal vector field along OM ().

Remark 4.3. In other words, the first term of the SDE (2) at the boundary of the tubular neighbour-
hood is closely related to the behaviour of 'z (¢ (£). We can write "7 (o) (t) in terms of free energies
on the boundary of the tubular neighbourhood. Refer to Appendix [H|for a comprehensive analysis
and additional details.

4.2 THE SCORE VECTOR FIELDS AND TUBULAR NEIGHBOURHOODS

One expresses marginal distribution p;(z) of Variance Preserving (VP-SDE) (DDPM) as follows:
0= [ N, (1= 08 Dol ®)

where 0, = e~ 2 Jo A7 gnd po(y) is the distribution at time ¢ = 0. In this section we investigate
how three quantities(dimension, injectivity radius, time step) affect the behaviour of the score vector
fields V; In p;(z). Let us first consider the case of spheres.

Proposition 4.4. Suppose M = S™ is a n-sphere of radius R in R%. Let e be as R > € > 0. Letn,
be a unit outward pointing normal vector to the boundary of e-neighbourhood OM (e). Assume
e+ (1—0,)(R—¢) > Vi,
V1—6?
x € OM(e) and po(y) is constant C greater than 0 on M. Then:
Velnp(x) -n <0.
Example 4.5. Let M = S in R? and |z| = 0.99 (i.e. € = 0.99). Compute (9) and we understand

that V,, Inp,(x) points toward S? 1f 6, > 0.712. Similar thing can be observed for S? in R3.
Therefore this explains the Figure[21]and Figure

Remark 4.6. This is a kind of generalisation of Theorem D.1 in (Stanczuk et al., 2024)).

Proposition 4.7. Suppose M is a compact oriented manifold embedded in R®. Let ¢, be an
injectivity radius. Let €y > € > 0. Let n be a unit outward pointing normal vector to the boundary of
e-neighbourhood OM (€). Assume

&)

w >/, (10)

Ji-02

x € OM(e) and po(y) is constant C greater than 0 on M. Finally assume a line segment with x and
the origin as its vertices does not intersect M. Then:

Velnp(z) -n <0.
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Remark 4.8. This is simplified statement, see Section [[.2] for details. The smaller the injectivity
radius slower time of the turning of the score vector field becomes. This explains phenomena in
Section[53.21

5 EXPERIMENTS

Remark 5.1. Throughout this section, given a manifold M embedded in R?, the tubular neighbour-
hood of M means that with the injectivity radius R(M), for short.

In this section, we empirically demonstrate the presence of phase transitions at the boundary of the
tubular neighbourhood during the generative process of diffusion models. In particular, we analyse
the proportion of particles outside the tubular neighbourhood at each time step using the standard
DDPM setup (7' = 1000) and investigate the corresponding changes in the Wasserstein distance
between the training data distribution and the generated distribution for varying initial times 7". The
Wasserstein distance is evaluated using the late initialisation scheme (Raya & Ambrogioni} 2023),
where the generation process begins at different initial time steps. During inference, we adopted
values of 7' ranging from 1 to 1000, with the initial state set to x7 ~ N(0, I). Our experiments show
that during late initialisation, the Wasserstein distance undergoes a sharp shift at certain time step,
indicating the onset of phase transitions as particles enter the tubular neighbourhood. The number and
timing of these transitions vary based on the curvature of the underlying manifold. For hyperspheres,
one phase transition occurs, aligned with a rapid decrease in the proportion of particles outside the
tubular neighbourhood and a sharp rise in the Wasserstein distance. For ellipses and tori, the timing of
transitions varies due to regions with higher curvature. In the following subsections, we make detail
experiments on various geometries, including hyperspheres (see[5.1)), ellipses, tori (see[5.2)), and also
disjoint arcs (see[5.3), to provide a comprehensive understanding of how tubular neighbourhoods
affect the generation process. Additionally, we demonstrate that embedding real-world datasets into
a hypersphere improves sampling efficiency(see [5.4). The detailed experimental setup, including
DDPM parameters and configurations, is provided in Appendix

5.1 RELATIONSHIP BETWEEN TUBULAR NEIGHBOURHOOD AND PHASE TRANSITION IN UNIT
HYPERSPHERE

Based on the assumption that entering the particle within the tubular neighbourhoods have strict
relation with occurring the phase transition, we show the several experiments which compared the
proportion within the tubular neighbourhood to the Wasserstein distance of the diffusion model. In
the experiments, we first count the proportion of the particle outside the tubular neighbourhoods (red
line). Here, because we used the unit hypersphere, the injectivity radius in each experiments are 1.
Then, we calculate the Wasserstein distance of diffusion model when doing the late initialisation
(blue line). This experiments show that the Wasserstein distance of diffusion model rise after some
particle entered in the tubular neighbourhoods. Regarding Figure ] our assumption is strictly true,
as the Wasserstein distance increases after a particle enters the tubular neighbourhood. For further
experimental details, refer to Sections [J.2]and

Table 1: Wasserstein distances W for different late initialisation times. pproportion represents the
proportion of particles outside the tubular neighbourhood.

M 0.1 05 09 095 099 099 1.0
ataset

S1 embedded in R*® 0.283 0.073 0.020 0.019 0.018 0.019 0.018
S? embedded in R16 1.344 0343 0.058 0.038 0.030 0.030 0.031
520 embedded in R?* 3.805 1.858 0970 0.882 0.807 0.781 0.759

5.2 RELATIONSHIP BETWEEN TUBULAR NEIGHBOURHOOD AND PHASE TRANSITION IN
OTHER CASES

In this section, we demonstrate that while hyperspheres fail to maintain the hypothesis under high-
dimensional ambient spaces, this failure is due to the increased distance between the data manifold
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Figure 4: The blue line (left axis) depicts the Wasserstein distance between the training data distri-
bution and the generated distribution, measured as a function of the shifted initial diffusion time 7.
The red line (right axis) indicates the proportion of particles outside the tubular neighbourhood at
each diffusion time in a standard diffusion model. The purple dashed line marks the diffusion time
when 99% of particles exit the tubular neighbourhood. Notably, a sharp increase in the Wasserstein
distance is observed as particles enter the tubular neighbourhood.

and the initial Gaussian distribution. Independently, we also show that for tori and ellipsoids, the
hypothesis does not hold due to different underlying reasons specific to their geometric properties.
As shown in the case of S?° embedded in R*® (Figure , the hypothesis breaks down when the
ambient space is increased. This phenomenon can be attributed to the growing distance between
the data manifold and the initial Gaussian distribution as the ambient space dimension increases.
Generally, when the ambient space dimension becomes larger, the expected region where the Gaussian
distribution is concentrated moves further away from the origin, scaling with the square root of the
dimension if the initial state follows a standard normal distribution. In contrast, in our experiments,
the data manifold is a unit hypersphere, and its average position remains fixed at a constant distance
of 1 from the origin. Consequently, a significant discrepancy emerges between the two distributions.
This discrepancy indicates the presence of a phase in the generation process during which the data
distribution experiences a substantial average shift. As a result, when sampling from a Gaussian
distribution under late initialisation, the difference from the expected distribution at the original time
step becomes significantly larger, making accurate reconstruction more challenging (see [I.3)).

We now focus on two manifolds with “mixed” curvatures in some sense — ellipses and tori. We
can verify that the injectivity radius of the ellipse with major axis 2R and minor axis 2r is given by
72/ R, and that of the torus with major radius R and minor radius r is given by min{R — r,r} (see
I-4). During the experiments, we observed multiple phases of increase in the Wasserstein distance
under late initialisation. Moreover, in standard diffusion models, we confirmed that the time at which
particles begin to enter the tubular neighbourhood corresponds to the final sharp increase in the
Wasserstein distance. This suggests that the timing of the last spontaneous symmetry breaking can be
inferred from the particles within the tubular neighbourhood. Furthermore, these findings imply that
the concept of injectivity radius corresponds to a mathematical quantity representing the region of the
data manifold with the highest curvature.

Table 2: Wasserstein distances W for different late initialisation times. pproportion represents the
proportion of particles outside the tubular neighbourhood.

W 0.1 0.5 0.9 0.95 0.99 0.999 1.0
ataset

520 embedded in R*® 21.754 13380 7.964 6978 5366 3.900 0.752
Ellipse (R = 3,7 = 1) embedded in R 7.762 5893 4.016 3.601 2936 2.184 0.479
Torus (R = 3,7 = 1) embedded in R'6 2.597 1.888 1.433 1.335 1.167 0.872 0.272

5.3 DISJOINT ARCS CASE

To test the assumption that the injectivity radius of a manifold is determined by its region with the
highest curvature, we conducted an experiment using two arcs of circles embedded in R'6. One arc
has a radius of 1, centered at the origin, and the other has a radius of 2 (see Figure[6). The injectivity
radii of arcs are 1 and 2, respectively, but the injectivity radius of the manifold itself is 1. Figure[7]
shows that the Wasserstein distance rises in two phases. The first rise corresponds to the arc with a
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Figure 5: (Blue, left axis) and (Red, right axis) show the Wasserstein distance and the proportion of
particles outside the tubular neighborhood, respectively, as described in Figure 4. The purple dashed
line marks the 99% threshold. Unlike Figure 4, the Wasserstein distance increases before the particles
enter the tubular neighborhood.

radius of 2, and the second rise corresponds to the arc with a radius of 1, which begins as particles
start entering the tubular neighbourhood. This experiment confirms that each curvature corresponds
to an injectivity radius and a rise in the Wasserstein distance, representing a phase transition. In
natural datasets, although multiple curvatures exist, only one phase transition is typically observed.

Table 3: Wasserstein distances W for different late initialisation times. pproportion represents the
proportion of particles outside the tubular neighbourhood.

W 01 05 09 095 099 099 1.0
ataset

Disjoint arcs 0283 0.073 0.020 0.019 0.018 0.019 0.018
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Figure 6: Projection of the Figure 7: A second rise in the Figure 8: Fashion MNIST S20
Ist and 2nd dimensions of Wasserstein distance occurs, indi- embedded in R%4,

data embedded in R'6 cating phase transitions.

5.4 EXPLORING TUBULAR NEIGHBOURHOODS IN REAL DATASETS

As shown in the section[5.3] the injectivity radius of a given manifold corresponds to the region of
the manifold with the highest curvature. This implies that the injectivity radius may not capture
the full nature of the phase transition. However, natural datasets like MNIST and Fashion MNIST
exhibit diverse curvature, resulting in a very small injectivity radius, which fails to adequately
represent the datasets’ properties. To address this issue, we embedded the natural dataset into a unit
hypersphere and analysed the relationship between the proportion of the particles outside the tubular
neighbourhood and the Wasserstein distance when doing late initialisation. In the experiments, we
first used Hyperspherical VAE (Davidson et al.,[2018)) to embed each dataset to some hypersphere.
The detailed parameter of the Hyperspherical VAE is given in Appendix [J.6] Here, It is important
to note that these experiments differ from the experiment of [5.1] in that the distribution on the
hypersphere is not uniform. This is because the Hyperspherical VAE used for embedding does not
necessarily produce a uniform distribution in the latent space. However, through our experiments,
we found that this had no significant impact on the results. Figure [§|shows the Wasserstein distance
begin to rise just after the particle begin to enter the tubular neighbourhood. Figure Q)illustrates the
reconstruction process at various time steps when sampling from the latent space constrained to a
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hypersphere using late initialisation and decoding with a Hyperspherical VAE. It can be observed
that the reconstruction accuracy for the Fashion MNIST dataset does not degrade notably, as the
Wasserstein distance in the latent space increases by less than 5% during the diffusion time interval
from 1000 to 200. Further details can be found in Appendix These results suggest that the
concept of the tubular neighbourhood could be leveraged to perform efficient sampling.

Table 4: Measured Wasserstein distances W for different late initialisation times. The variable
Pproportion T€Presents the proportion of particles outside the tubular neighbourhood, and the corre-
sponding W at the respective time points are shown in the table.

W 0.1 0.5 0.9 095 099 0.999 1.0
ataset

MNIST S?° embedded in R4 2254 1.060 0.668 0.632 0.592 0.576 0.559
Fashion MNIST 5?0 embedded in R?*  2.697 1.295 0.673 0.590 0.509 0.472 0.453
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Figure 9: Fashion MNIST images decoded using SVAE after diffusion times of 100
and 1 (from left to right) in the latent space.
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6 DISCUSSION AND CONCLUSION

In this study, we employed the concept of the injectivity radius to understand the generative process
of diffusion models and analysed it theoretically and experimentally from the perspective of the
geometric structure of data manifolds. Specifically, we provided a new perspective on a phenomenon
where certain features emerge rapidly over a short time interval, referred to as a phase transition.

However, the concept of the injectivity radius, which may correspond to the region of the manifold
with the largest curvature, only partially explains the phase transition phenomenon. To address
this limitation, defining a mathematical quantity that corresponds to the smallest curvature of the
manifold may remove the assumption of constant curvature, potentially leading to a more general
theory applicable to a wider range of datasets. This would allow for more efficient sampling methods
that better reflect the geometric properties of the data manifold, thereby enhancing the overall
performance of diffusion models. Moreover, from the perspective of nonequilibrium thermodynamics,
the system’s free energy, defined by weighting the energy at each point with the probability distribution
function, can provide a more comprehensive macroscopic understanding of phase transitions (for
details, see Appendix [G)). This approach could enable a more accurate discussion of phase transitions
as a macroscopic phenomenon, complementing the microscopic geometric analysis.

By exploring the relationship between the data’s geometric structure and the score vectors, as
discussed in Section4.2] it may also be possible to design optimal noise scheduling strategies that
are tailored to the geometry of the data manifold. Clarifying how score vectors interact with the
manifold’s geometric properties could further optimise the generative process. In addition, our
experiments with real-world datasets suggest that modifying the VAE embedding into hyperspheres
could extend the applicability of the tubular neighbourhood concept to more complex datasets. This
modification is expected to not only improve sampling efficiency but also increase the flexibility
of diffusion models in handling a wider variety of real-world data. These discussions lie at the
intersection of concepts from differential geometry, particularly singularities, statistical physics,
especially phase transitions in non-equilibrium thermodynamics, and computer science, specifically
diffusion models. This interdisciplinary approach represents an important step forward, and further
theoretical development and practical applications in this direction hold promising potential.
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A RELATED WORK

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., [2020; |Song et al., [2021) have emerged
as a powerful class of generative models (Bond-Taylor et al. 2022), demonstrating remarkable
performance in various domains including text-to-image synthesis (Nichol & Dhariwal, 2021} Dhari-
wal & Nichol, 2021} [Ding et al., 2021; Ramesh et al.| [2022; |[Nichol et al., [2022; Rombach et al.,
2022; |Saharia et al.l 2022} [Yu et al., |2022; |[Ho et al., |2022a)), text-to-speech (Chen et al., 2021}
Kong et al.l 2021} |Liu et al., 2023)), video generation (Ho et al., 2022bj |Singer et al., 2023} |Xing
et al., 2023)), natural language processing (Li et al., 2022} [Lou et al., 2023} [Li et al., 2023b), robot
manipulations (Janner et al 2022; |Zhu et al., [2023)), inverse problems (Daras et al.| [2024), and
protein interactions modelling (Abramson et al., [2024).

Motivations and related works. Our work is motivated by several recent theoretical advance-
ments (Yegin & Amasyali, |2024) and practical challenges (Chen et al., 2024;|Yang et al., 2024):

* Optimisation of Diffusion Time: Some empirical studies report existence of an optimal
diffusion time that enhances model efficiency (Franzese et al., 2023)).

¢ Critical Phenomena and Statistical Thermodynamics of Diffusion Models: There are some
empirical and theoretical studies report heterogeneity/non-uniformity, critical phenomena during
generation (Ho et al., [2020; [Meng et al., 2022} (Choi et al., 2022; Zheng et al., 2023} Raya &
Ambrogioni, |2023}; |Georgiev et al.,[2023}; |Sclocchi et al., [2024; Biroli et al., 2024} Li & Chen,
2024; |Yu & Huang, |2024; Kadkhodaie et al., [2024; Zhang et al.,|2024). Raya & Ambrogioni
(2023)) reveals a spontaneous symmetry breaking in diffusion models, dividing the generative
dynamics into two phases: a linear steady-state around a central fixed point and an attractor
dynamics towards the data manifold. They linked the fixed points of the Fokker-Planck equations
to moments of spontaneous symmetry breaking in the Hessian of the potential functions and
demonstrated an end-to-end asymptotic analysis in a simple discrete distribution supported on
two points and some other toy examples. The authors also propose a Gaussian late initialisation
scheme which improves model performance, generation efficiency, and increases sample diversity.
The concurrent work (Li & Chenl |2024) introduces a theoretical framework to understand phase
transitions (they coined the term “critical windows” to describe the narrow time intervals in the
generation during which specific features of the final image sample emerge, such as image class
or background colour). The authors propose a formal non-asymptotic framework to study these
windows, focusing on data from a mixture of strongly log-concave densities. They show that
these windows can be provably bounded in terms of certain measures of inter- and intra-group
separation. [Biroli et al.| (2024)) employs statistical physics to identify three distinct dynamical
regimes: initial noise, “speciation” transition, and “collapse” transition. [Sclocchi et al.| (2024))
examines the hierarchical structure of data in diffusion models and identifies phase transitions in
the generative process with sudden drops in high-level feature reconstruction probability whereas
the smooth evolution of low-level feature reconstruction. |Georgiev et al.| (2023) focuses on
data attribution to provide a framework for identifying specific training examples that influence
generated images. These previous approaches, ranging from empirical studies to theoretical
frameworks, provide valuable insights into phase transitions in generative dynamics; however,
many of these methods face the challenge of requiring assumptions about the data. Our method
offers new insights into phase transitions derived uniquely from the geometric structure of
arbitrary data manifolds. Furthermore, our framework is essentially parallel to prior approaches,
and therefore we expect to advance our understanding of phase transitions by deepening the
relationship between the findings of previous research and our theoretical framework. A yet
another recent work (Ikeda et al.|[2024)), while not explicitly addressing phase transitions, outlines
connection between diffusion models and non-equilibrium thermodynamics, featuring interesting
discussions on the relationships between noise scheduling, generation quality, entropy generation
rates, and optimal transport. Other intriguing studies from a physics perspective include path
integral interpretation of stochastic trajectories (Hirono et al.,2024)) and Bayes-optimal denoising
interpretation incorporating a spin-glass perspective (Ghio et al., 2023).

* Geometrical approaches: There are some geometrical perspectives on diffusion models inspired
our work (Chung et al., [2022; Wenliang & Moran, [2023};|Chen et al.,[2023a; [Park et al., [2023};
Ghimire et al.| 2023 |Chen et al., 2023c; |Okawa et al.,|2023; |Oko et al.,[2023)).

* Other theories to understand diffusion and generation processes: A deeper understanding of
these processes is essential for advancing theoretical research and practical applications, such
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C

as generation control through prompting and interpolation. Recent studies have delved into the
underlying mechanisms of diffusion and generation trajectories to identify optimal intervention
points during the generation process, which can help achieve desired data outputs. While
flow-matching algorithms have shown promise, in the practical user cases, diffusion models
surprisingly sometimes outperform the flow-matching, underscoring the need to understand
the factors contributing to this superior performance. There are several works on convergence
guarantees for diffusion models (Bortoli et al., 2021} Bortoli, 2022; Block et al.,|2020; |Chen
et al.,[2023b; [Lee et al., 2022} [Liu et al., [2022; Pidstrigach), 2022; |Wibisono & Yang, 2022} |Chen
et al., 12023¢; [Lee et al., 2023 [L1 et al., 2023a; Benton et al., [2023a3b; (Chen et al., [2023d; |L1
et al.|2024).

Flow matching techniques: Flow matching algorithms (Lipman et al., 2023} [Tong et al., [2024)
are yet another prominent techniques in generative modelling. They are closely related to
diffusion models as flow matching often leverages diffusion paths for training, in which optimal
transport via ordinary differential equations (ODEs) yields straighter trajectories. It is very
interesting to consider the influence on the quality and diversity of generated samples or critical
dynamics such as spontaneous symmetry breaking. Our method may have the potential to
analyse these aspects. Such generative models considering a transport from one distribution to
another are expected to continue to develop, and geometric interpretations will further contribute
to improving interpretability, efficiency, and control to ensure safety.

SociAL IMPACTS

Green Al (Environmental Impact): Reducing the high energy consumption of diffusion mod-
els during both training and generation is crucial. The exponential increase in computational
demands due to the growing use of diffusion models in industry poses significant environmental
concerns. Optimising these models can lead to more sustainable Al practices, addressing the
urgent need for eco-friendly Al technologies. Recent studies emphasise the need for environ-
mental sustainability in Al focusing on reducing the energy consumption and carbon footprint
of Al models|Verdecchia et al.| (2023)).

Fairness, AI Safety and Alignment: Ensuring Al safety and alignment is critical. This includes
improving the mechanistic interpretability of diffusion models, optimising control to prevent
undesirable behaviours, and mitigating risks such as hallucinations and adversarial attacks.
Effective control mechanisms and interpretability can enhance trust and safety in Al applications.
Matsumoto et al.|(2023) report that the diffusion time is the crucial for mitigating the membership
inference attacks (MIAs) on diffusion models (Pang et al.l|2023; |[Pang & Wang] [2023; |Duan
et al.,|2023; Tang et al., 2023} [Fu et al., [2023; [Dubinski et al.| 2024} [Kong et al., [2023). Raya
& Ambrogioni (2023) and |Li & Chen| (2024} show that phase transitions help understanding
and controlling diversity in generation and [Li & Chen|(2024)) also examines some relationship
between phase transitions and MIAs.

MATHEMATICAL SUPPLEMENTARIES

In this appendix, we quickly recall basic mathematical concepts and facts concerned with Linear
Algebra and Manifold Theory. See, e.g.,|Lee|(2013) for a detail of Manifold Theory.

C.1

FORMAL OPERATIONS IN LINEAR ALGEBRA

For the Euclidean space R? and its linear subspace V' C R?, let V+ denote the orthogonal complement
of Vin RY,
Proposition C.1. Let V and W be subspaces of R™. Then the following hold:

(1) V.C Wifand only if V- > W+;
2 vinwt=wv+w)k

C.2 DIFFERENTIABLE MANIFOLDS

In this paper, as manifolds, we treat only ‘submanifolds of the Euclidean space R?’. So we adapt the
following definition.
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Definition C.2. A subset M of R? is called an n-dimensional manifold, if for each point & € M,
there is an open neighbourhood U of x in R, an open subset of V in R? = R™ x R%™", and a
diffeomorphism ¢: U — V such that (M NTU) = V N (R™ x {0}). We call the map ¢ a chart on
M around x.

Definition C.3. Let M C R? be a manifold and & € M be a point. Then the tangent space Ty M to
M at x is defined as the set consisting of all velocity vectors of curves on M through «, that is,

1M ={F 0|75 (.0 - M50 = 2.

dt

Notice that the tangent space forms a linear subspace of R.

Definition C.4. Let M C R¢ and M’ C R‘f’ be manifolds, and let F': M — M’ be a differentiable
map (i.e., there is an extension F': U — R? of F which is a differentiable map on an open set U of
R?). Then the differential dF,, of F at x is defined as the linear map

dFy: ToM — TpgyM',  dF, <f;(0)> = W(O)'

Remark C.5. Take charts ¢: U — V and ¢»: U’ — V' on M and M/’, respectively. Also let

(z1,...,2n) and (y1,. . .,yn) denote the coordinate on V' C R™ and V' C R™, respectively. Then
the diffenrential dF, is represented by the Jacobi matrix

OpoFop™l) -« [OWoFog ')
e R e
of themap o Fo¢~': V — V’ at the point x € M.

Definition C.6. Let F': M — M’ be a differentiable map between manifolds. A point x € M is
called a regular point (resp. a critical point) if the differential dFy, : Tz M — Tp(4) M’ is surjective
(resp. not surjective). A point y € M’ is called a regular value (resp. a critical value) if every point
x € M satisfying that F'(x) = y is a regular point of F' (resp. or not).

The following is essentially a consequence of Implicit Function Theorem.
Theorem C.7 (cf. Lee| (2013)[Corollary 5.14]). Let F': R? — RY be a differentiable map and
RS RY regular value of F'. Then the level set
F'(y)={z eR!| F(z) =y} C R
forms a (d — d')-dimensional manifold.

Remark C.8 (explicit description of the tangent spaces to a manifold). Consider the same setup of
Theorem [C.7]and denote F' = (F}, ..., Fy ). Then the normal to the tangent space Ty, M coincides

with oF OF
T 2\
(@ Gt |
which is spanned by the gradient vectors of components of F'. Therefore the tangent space itself is
noting but its orthogonal complement, i.e.,

OFy | o OFy o\ "
T:l: = a_ y Ty .
M <8w (x) S (x) >R

Definition C.9. A differentiable map F': M — M’ is called an embedding if its differential
dF: To M — Tp5) M’ is injective for every point € M and the restriction F': M — f(M)isa
topological homeomorphism (i.e. there is the inverse map £ !, and both F and F~! are continuous).

C.3 TUBULAR NEIGHBOURHOODS

Let M C R? be a manifold. Recall the normal bundle
NM={(z,v) ERI xR |z € M,v L TpM}
to M and the endpoint map
E:NM —=RY  B(z,v) =z +wv,
which are defined in §3|(Definitions [3.2]and [3:3).
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/ 7, v
x
/ \
X
Figure 10: Image under E and tubular neigh- Figure 11: Tubular neighbourhood of S* em-
bourhood of the cosine curve in R? bedded in R3

Definition C.10 (Tubular neighbourhood). A tubular neighbourhood of M is a neighbourhood of
M in R? that is the diffeomorphic image under E of an open subset V' C N .M of the form

V=A{(=,v) e NM[|v| < (=)}
for some positive continuous function § : M — R.

Theorem C.11 (Theorem 6.24 in Lee| (2013)). Every manifold embedded in R? has a tubular
neighbourhood.

Proof. Let M, denote the subset {(x,0) | x € M} C NM. Fix a point & € M. Since both
differentials dE‘T(m,o)MO : Tz,0)Mo — TeM and dE| N, a1 : NgM — Ny M are isomorphisms,
we have that dE': Tz ) NM — R? is also an isomorphism. By Inverse Function Theorem, the map
E is a diffeomorphism on a neighbourhood of (x,0) € NM. We can take the neighbourhood to
be of the form Vs(x) = {(z/,v") € NM | ||z — '|| < 4, ||v'|| < ¢} for some § > 0. Let p(x)
denote the supremum of all such § < 1. We can prove that the function p: M — R is positive and
continuous.

Now consider the open subset V = {(z,v) € NM | |[v| < 3p(x)} of NM. Then the map

E is injective on V, and hence E|y : V — R? is a smooth embedding. Thus E(V) is a tubular
neighbourhood of M. O

D THEORETICAL SUPPLEMENTARIES OF SECTION 3]

D.1 PROOF OF THEOREM [3.7]
Under the setup of Theorem[3.7] put & = d — n and we define a map ¢: R? x RY — RN*F by
o(@,0) = (F(@),p1(@,0), - o (@,0)).
Notice that the normal bundle N M to M is expressed by
NM = 10) = {(x,v) € R x R? | p(x,v) = 0}.
Hence the tangent space T ) NM C R? x R? to NM at a point (z,v) coincides with the

orthogonal complement of
oo1 T don T
ox - ox
91 TI > | don T
ov ov R

ar T aF, T
oz | e, |0z |,
0 0
22

in R? x R? (cf. Remark (C.8).
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We now employ the Method of Lagrange multiplier. That is, we paraphrase the condition that a point
(z,v) € NM is a critical point of the endpoint map

E = Eo|nym: NM — R?

(i.e., the differential dE(g o) : T(z,0) NM — R?, which is a linear map, is degenerate) as follows.
First, the condition is equivalent to that there exists a non-zero vector of T(,, ,,) N M which vanishes

by the differential (dEo)(z,v) : R4 x RY — R4, je.,
T(w;v)NM N Ker(dEo)(w,v) 2 {0}
Moreover, we have the following:

T(m v)N./\/l N Ker(dEo)(wﬂ,) 2 {0}

1
oF or, T [2eaT aon T e L
— ™ ™ ox “ox L €d
|:80 :|7 7|:80 :|7 %T ) | 9y T ﬁ<|:61:|7 7|:ed:|> 2{0}
v Jv R R

Hz

¢z

or, T o, T [2ea” oo T e e
Dz - wre ox . Ox L I d C R4 d
= (] (R o] () (o) [, e
ov ov R
where {ey,---,e4} denotes the standard basis of R?. Here we used a property on orthogonal

complements (see Appendix [C.I).

Finally, it is equivalent to that the matrix

oFT op T oenT

ox 3mT ox T Eaq
dp1 ... O9¢n

O”ad ov ov Ed

is degenerate. Performing elementary row and column operations, and by the definition of Ry (M),
the conclusion of Theorem 3.7 follows.  [J

D.2 CURVATURE AND THE FIRST INJECTIVITY RADIUS OF A CURVE

Let M be a curve in R, i.e., a one-dimensional manifold embedded in R?. We see that, in this case,
the first injectivity radius Ry (M) is derived from the curvature of M as follows.

dy
ds

Then the curvature k of M at a point p = v(s) € M is defined by the Euclidean norm of the second
2

. odty
order derivative I (s).

Definition D.1. Let v: R — R be an arc-length parametrization of the curve M, i.e.,

Proposition D.2. Assume that n = 1. Let v: R — R? be an arbitrary regular parametrization of the
curve M. Then the curvature k of M is computed by

VI @RI ()12 = (3 (w), v (w))?
I (W)l ’

r(y(w) =

(11)
where ' denotes the differential by u.

Although this is a well-known fact, we show it briefly as follows.

Proof. Let s and u denote an arc-length parameter and an arbitrary regular parameter of the curve
M. Since it holds that

dy
=g L 12
V=8 (12)
we also have that
dy
//: 1 13
gl ds+( )k, (13)



Under review as a conference paper at ICLR 2025

2 d
where v denotes the normalization of the vector d—z Since two vectors d;Y and v form an orthonor-
s s

mal frame of the curve M, it holds that
||'Y//||2 _ (8//)2 + (SI)4 . /€2. (14)

Now notice the following: it holds that

11 = (') (1)

by Equation (12)), and hence
(Y, ") =s"s" (16)
Applying Equations (I3)) and (16) to Equation (I4), we have the claim. O

Theorem D.3. Assume that n = 1. Let  denote the curvature of M. Then Ry1(M) coincides with
the infimum of radii of curvature 1/k.

Proof. See Lemma 1 of [Litherland et al.[(1999). O

D.3 COMMENTS ON THE COMPUTATION OF THE SECOND INJECTIVITY RADIUS

In this paper we used the definition of Ry (M) as-is for the numerical estimation.

We note that one can weaken the condition appearing to the definition of Ro (M) as follows.

Proposition D.4. The second injectivity radius R2(M) coincides with the infimum of the set

1”$ _x H £B17IB2€M7IB17£2132,
2 1 2 and 1 — T 1 Tml/\/l ’

Proof. See §4 of |Litherland et al.|(1999). O]

We also have a comment on Rs(M). Numerically, it seems to be possible to compute Ry(M) by
using the persistent homology of the given data cloud. Indeed, the topology of the e-neighbourhood
of the data cloud might change when two tubes touch each other.

E OTHER EXAMPLES OF INJECTIVITY RADII

We have already seen that Theorem works in the case that a data manifold is the unit circle
S1 c R2. In this appendix, we verify the theorem by observing other typical manifolds.

E.l ToORuUS T2

Let 7’ > r > 0, and define a function F': R? — R by
F(x,y,2) = (Va2 +y2 — )2 + 2% —r2
Then we have a torus 72 = F~1(0) embedded in R®. We can see that vector fields

tl :(_y73/‘,0), t2:(xz7yzvrlvx2+y2_m2_y2)

satisfy the assumption in Theorem[3.7] Then the matrix L2 ((x,y, z), (v1, v2, v3)) is calculated as
follows:

LTQ((%yaZ)7(Ul’U27U3))
222 + 92 — 1) =2 va+y 20y — 2w — w7 + —E
Ve Vot
= [2(V2% + % — 1)L —v —z 209 — 2yvg — Yz + —1U
Vai+y? N
z 0 zvy 4 yug + 22 + 32 — '\ /2? + 42
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We now parametrise the torus T2 by (x,y,2) = ((r' + rcost) cosu, (7' + rcost) sinu, cost) of
T? C R3. Then the vector (v1,v2,v3) makes L2 ((x,y, 2), (v1, v, v3)) degenerate if and only if
(v1,v2,v3) = —(rcostcosu,rcostsinu,rsint) or

r' 4+ rcost

T
(v1,vg,v3) = — (rcostcosu,rcostsinu,rsint) (t # ii) .

rcost
Hence we obtain R;(7?) = min{r,r’ — r}. Moreover we can see that Ry(7T?) = min{r,r’ —r}.
Thus the injectivity radius is R(7T?) = min{r,r’ —r}.

E.2 UNIT SPHERE S2

Define a function F: R? — R by
F(x,y,2) = 2> +y* + 2% — 1.
Then we have S? = F~1(0). Considering the rotation in R? around coordinate axes, we see that
vector fields
tl = (—y,m,0)7 t2 = (_Z>va)7 t3 = (07 _Zay)'
satisfy the assumption of Theorem[3.7} (Here notice that the number of vector fields which we desire

is needed to be greater than 2, by topological reason.) Then the matrix Lg2((x,y, 2), (v1, v2, v3)) is
calculated as follows:

LSQ((xvya Z)v ('Ula 'UQ,’Ug))

2 va+ty v3 + 2 0
=12y —v1—= 0 v3 + 2
2z 0 v —x —vVy—Y

This matrix is degenerate on ((x,y,z2), (v1,v2,v3)) € NS? if and only if (vi,ve,v3) =
(—z,—y, —2). Hence we obtain R1(S?) = \/(—2)2 + (—y)2 + (—22) = 1. Moreover it is clear
that R5(S?) = 1. Thus the injectivity radius is R(S?) = 1.

E.3 UNIT n-SPHERE S"

As the final example, we observe the unit n-sphere. Define a function F: R"t! — R by

F(l‘l,xg,...,.%‘n+1) :l‘%+l‘§++xi+l —1.
Then we have S = F~!(0). Considering gradient vector fields of the height functions
(x1,22,...,Tpy1) = x; (j =1,2,...,n+ 1), we see that vector fields
tj = (—,:Ell‘j, ceey, X125, 1-— CE?, L 41Tgy ey —:En+11‘j) (] = 1, 2, Lo,n+ 1)

satisfy the assumption of Theorem [3.7] Then the matrix Lgn (x, v) is calculated as follows:
Lgn(x,v)
201 2z — Z#l Tiv; + 23— 1 —Tpa1V1 + T
—T1v2 + T1T2
: : —Tp41Vn + Tnr1Tn
2Tp11 —T1Upt1 + T1Tpa1 —2Tp 4 1Vna1 — Z#nﬂ Tiv; + x%H -1

where € = (z1, 22, ,Tpt1),v = (v1,v2, -+ ,Upt1). Now notice that for a point € S™ and
a normal vector v to x, there exists a scalar ¢ € R such that v = cz. Using it and performing the
elementary row and column operations, the matrix Lgn (2, v) is transformed as follows:

ry  —cy,zi—1 0 - 0
. 0 . . .
: : o 0
Tnt1 0 e 0 = a1
Hence the vector v makes the matrix Lgn (x,v) degenerate if and only if ¢ = —1. Hence we obtain
R1(S™) = || — z|| = 1. Moreover it is clear that R2(S™) = 1. Thus the injectivity radius is
n

R(S™) =1
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Algorithm 1 Algorithm for estimating the injectivity radius (AEIR)

Input: data D C R?

Step 0: Estimate amap F' = (Fy,..., Fy_,): R? — R?=" such that the point O is a regular value
of F and the manifold F~!(0) C R? approximates data D. Put M = F~1(0).

Step 1: Estimate vector fields 1, %o, ..., tny (n < N) defined near M such that for every x € M
the vectors ¢1 (), ta(x), . . ., ty () span the tangent space T, M.

Step 2: Put g;: R? x R? — R, g;(x,v) = (v, t;(x)) (i = 1,2,..., N). Calculate the matrix

OF, .. OFi_n 9p1 _ 91 .. Opn _ Oen
oz Oxq oxq vy oxq vy
[Alf"aAd—W“Bla"'vBN] = . : . )
oFh ., OFin  Op1  Op1 .. Odpn _ Oon
Oxq Oz g Oxg Ovg Oz g Ovg
where = (z1,- -+ ,24),v = (v1, -+ ,vq).

Step 3: Collect sufficient amount of samples from the set

F(z) = 0,g,(,0) =0 (i = 1,2,--- , ),
det[Ah...,Ad_n,Bil,...7Bi]:O },

{(w,v)eRded
1<ii<---<i, <N)

and estimate min ||v|| on the set. Put this value R;.
Step 4: Collect sufficient amount of samples from the set

F(z,) = F(x2) = 0,21 # @2,
(x1,x2) € R x RY | (@1 — @2, ti(21)) = (@1 — @2, ti(x2)) =0 »,
(1:1727 7N

and estimate min ||@; — @2|| on the set. Put this value Rs.
Step 5: Calculate R := min{R;, Ro}.
Output: R, which estimates R(M).

Table 5: Estimated injectivity radii of various manifolds.

DATA SET Ry Rs

St 1.0054+ 0.003  0.99940.006
5?2 1.0634+ 0.032  0.99740.038
5128 1.068+ 0.023 0.9224+0.056

F ALGORITHM FOR ESTIMATING THE INJECTIVITY RADIUS

In this appendix, we show the pseudo-algorithm for estimating the injectivity radius (see Algorithm|[T)
and some preliminary numerical experiments to verify the proposed algorithm.

F.1 NUMERICAL EXPERIMENTS TO VALIDATE AIER

For the S*, 52, S128 cases, the estimated Ry and R, using the proposed algorithm are shown in
Table[5] We first generate dataset using the exact generative equations and add some Gaussian noise.
The F is then approximated using a neural network. The following Step 1 to Step 4 are executed
using the neural network approximation F'. We note that we use the cosine similarity instead of inner
products for the discrimination condition defined in the Step 4.

26



Under review as a conference paper at ICLR 2025

G NON EQUILIBRIUM THERMODYNAMICS AND PHASE TRANSITIONS

In|Song et al.|(2021)), score-matching [Hyvarinen|(2005) and diffusion-based (Sohl-Dickstein et al.,
2015} Ho et al,2020) generative models have been unified into a single continuous-time score-based
framework where the diffusion is driven by a stochastic differential equation. This framework relies
on Anderson’s Theorem (Anderson, |1982), which states that under certain Lipschitz conditions on
the drift coefficient f : R? x R? — R? and on the diffusion coefficient g : R x R — R? x R and
an integrability condition on the target distribution py(x¢ ), a forward diffusion process governed by
the SDE

dxy = fi(x¢)dt + gedwy an

where w; is a standard Wiener process. We could derive that probability distribution p;(z) of the
forward SDE satisfies the Fokker-Planck equation:

9 (@) = Vo - [pel2) Vaus (2) (18)

ot
= pe(x) (Viut(m‘) + Vo Inpe(z) - Voue(z)) (19)
where the potential u;(x) is defined as follows Raya & Ambrogioni|(2023):

x 2
wle) == [ fi)dz+ L (o) 20)

Here, we naturally consider the free energy for non-equilibrium thermodynamics [Esposito & den
Broeck| (2011):

Definition G.1. Non-equilibrium free energy in the system

Faa®)i= | pulo)us(a)da. @1
R
Theorem G.2. The non-equilibrium free energy can be rewritten as follows.
2
9t pi(v)
Freq(t) = —/ pe(x {ln + In peq(x0) | dz. (22)
q( ) 9 Rd t( ) peq(x) q( )
Proof. By the definition of the potential
2
Vaeus () = —fr(z) + %Vm Inp; (x) (23)

When the target system is in equilibrium, the solution pe, () of the Fokker-Planck equation that
satisfies the following equation exists:

(@) = Ve [0 ) (~40)+ LV () )| =0 @4

Therefore, we can rewrite the drift coefficient of the forward SDE using Peq() as follows:

g2
fi(x) = évm In peq () (25)

From the above, we obtain the following relation.

x 2
ug (x) = —/ fi(z)dz + % lnp; (z) (26)

2
9t {m P () + In peq (o) 27)

2 Peq ()

On the other hand, the free energy in equilibrium thermodynamics is given by:
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Definition G.3. Equilibrium free energy in the system

g2
Feq(t) := Et In peq (o) (28)

Therefore, the two free energies have the following relationship:

Theorem G.4. From the non-negativity of KL-divergence, the following inequality is obtained.

2

Fucalt) = Fea(t) = 5 Dict. [p1(2) [pea ()] > 0 29)

When the target system is in equilibrium at time ¢ = ¢, i.e., a%pt(:z:) |t_t = %peq(x) = 0, the
=teq
following equality holds:

2

5 Di. [peq(®) [pea ()] = 0 (30)

g

}—neq(teq) - ]:eq(teq) =

According to Landau theory of phase transitions, phase transitions in equilibrium thermodynamics
are identified when the higher-order derivatives of equilibrium free energy with respect to the
order parameters A1, \s, ..., A, exhibit discontinuities or divergences. This criterion serves as a
fundamental indicator for detecting phase transitions within the framework of equilibrium statistical
mechanics:

0" Feq
O}
On the other hand, it remains unclear whether a simple criterion for critical points, like the one

mentioned above, exists for phase transition phenomena in non-equilibrium systems such as the
diffusion processes represented by diffusion models.

=0 €1y

In recent research |[Raya & Ambrogioni| (2023), it has been demonstrated that the spontaneous
symmetry breaking of the potential u;(x), plays a central role in understanding phase transition
phenomena in the diffusion processes represented by diffusion models. Specifically, the spontaneous
symmetry breaking of the potential u;(x) occurs when the first derivative V,u;(x) and the second
derivative V2u;(z) vanishes V,u;(z) = VZu,(z) = 0 at the critical point of the space-time
(x,t) = (x.,t.), where the fixed point of the Fokker-Planck equation appear.

For instance, we consider a simple one-dimensional example Raya & Ambrogioni (2023) with a
dataset consisting of two points y_; = —1 and y; = —y_; = 1 sampled with equal probability. Up
to terms that are constant in x, the potential is given by the following expression:

1 _ (1*9%2 _ (I+9t)22
w(@) = B(t) | —z2" —In|e 0 e 20D (32)

where /B(t) = ﬂmin + t(/BInax - ﬂmin), ﬂmax = 20, Bmin = 01 At the critical POint (ZC, t) = (07 tc),
t. = 0.293, the first derivative V,u,(x) and the second derivative VZu,(z) vanishes V u;(z) =
V2u(x) = 0.

Lemma G.5. By the definition of the Fokker-Planck equation[T8] the Fokker-Planck equation satisfies
the following relations at the critical point (z,t) = (x., t.) Raya & Ambrogioni (2023):

)
fatpt(()) =, (0) | V2ug, (0) +V,Inp;, (0) - Vyug, (0)| =0 (33)
——— ———

=t =0 =0
The key insight is that the fixed point of the Fokker-Planck equation (x.,t.) = (0,%.) can be
interpreted as spontaneous symmetry breaking in the potential function u;(z). This phenomenon not
only elucidates the emergence of phase transitions but also highlights the role of symmetry breaking
as a mechanism that governs such transitions in generative diffusion models.

Here, we discuss the universal properties of diffusion models that hold under more general potentials
ug ().
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Lemma G.6. By the intermediate value theorem, there exists z.(t) (¢ € [0, 1]) such that

9 2
g apt(m)dx = /]Rd pe(@) [Vauy (@) + Vo Inp () - Vouy(z)] do 34
= VZu(xe(t)) + Vo Inpy(z(t)) - Vaoug(xe(t)) (35)
=0 (36)

where [p. 2pi(z)de = & [papi(z)de = 21 =0and (z,t) = (z.(t),1).
Lemma G.7. By the definition of the Fokker-Planck equation T8}

0 0
&Pt(l’) =Dt (I) ot lnpt(z) 37
= pe(x) [V%ut(x) + V. lnp () - Vmut(x)] (38)
We get the following equation:
0
—Inp,(z) = Viuy(z) + Ve Inpy(z) - Vou(z) (39)

ot
Proposition G.8. We introduce the Fisher information I(¢) of time:

9 2
I(t) == / pe(x) | = lnp(z)| dx (40)
Rd ot
We propose the criterion to identify the critical points (x, t) = (2 (tp), t5) at which phase transitions
appear in the diffusion processes:
52
YD) Inp(zn(t)) =0 (1)
ot =ty
In other words, the phase transition in diffusion models occurs at a critical point in space-time
(zn(tn),tn), where the Fisher information degenerates.

Proof. By the intermediate value theorem, there exists xp, () (¢ € [0, 1]) such that

1= [ [; lnptuc)} o @)
- (2 mpno] @

According to the Cramér-Rao inequality for an arbitrary stochastic function 6;(z), the Fisher in-
formation I(t) has a positive lower bound Nicholson et al.| (2020); [Yoshimura & Ito| (2021); [Tto
(2023):
2.0 2
&6 _
I(t 44
Var [0;(z)] — *) “4)
We define the extremum of the Fisher information as follows:

g[(t) > In py(zn(t))

ot o2 =0 45)

=2 %lnpt(xh(t))

t=tp t=tp t=tp,

The two conditions that yield the extremum of the Fisher information , % In pe(zn(t)) ] —t, =

0 and g—; In pt(xh(t))‘t .= 0, cannot hold simultaneously, as demonstrated in the following
=lh

discussion.

o Zapi(an(t) [0 ’
%2 Inpy(xn(t)) = m - {825 lnpt(:ch(t))] (46)

If we assume % In py(zn(1))| 1—y, = 0, it would result in 1 (t) = 0, which contradicts the Cramér-

Rao inequality that generally imposes a positive lower bound #4] Therefore, the extremum of the

Fisher information is determined by g—; lnpt(xh(t))‘ =0. O
t=t

=lh
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Plot of /(t)

(a) The time dependence of the Fisher information (b) The time dependence of the Fisher information
I(t) (Overview) I(t) (Zoom in)

Figure 12: The time dependence of the Fisher information I (¢). The red dashed line represents the
time . = 0.293 at which the potential breaks symmetry in|Raya & Ambrogioni| (2023). On the other
hand, the magenta dotted line indicates the time ¢, = 0.312 when the Fisher information predicted
by our proposed method degenerates. While these two values are close, they do not match exactly.

H THEORETICAL ANALYSIS ON THE EMPIRICAL RESULTS

H.1 FM(E) (t)

Let € > 0. Let M (€) be the e-neighbourhood of a compact oriented manifold M in the Euclidean
space R? as defined in Definition Suppose p;(x) is a smooth solution to the Fokker-Planck
equation (3) with an initial condition pg () = d¢(2) here dpq () is Dirac’s density function with its
support M. We define a function I () (f) as follows:

e (t) = /M( )pt(x)dm. 47)

Roughly speaking, this is understood as a counting function of particles within the e-neighbourhood
of M.

Proposition H.1. Assume B(t) : R>o — R is a smooth function and fy(x) = 35(t) f(z), g:(z) =
VB(t) in (3) (f(x) is some smooth vector field). We have:

.0
lim 22T (t) = 0

and 5
lim fFM(e)(t) =0.

t—oo Ot
82
Thus there exists at least one t. in (0,400) such that ﬁFM(E) (te.) = 0. Moreover if 5(t) > 0 and
Vepi(z) -n—p(z)f(z) - m <0 (48)

for any x € OM(e) and any t € R then T pq(c(t) is strictly monotonically decreasing. Here n a
unit outward pointing normal vector field along M (¢). In particular we can express the derivative
of the function I" () () in terms of the free energy u defined in :

0

L me(t) = / (1) Vus () - nda.
ot M (e)
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Proof. (informal) We may compute for ¢ > 0:

d B
“r — el
i L Mo () /M " g (@)de

— B(t) /M( (Ve p @)+ Do) de

= p(t) ( /8 " pe(z) f(x) - nds + /a o Vapi(z) - nd8> (49)

t—0
—

0.

The second equality follows since p;(z) satisfies the Fokker-Planck equation . The third equality

follows from the divergence theorem where 1 is the unit outward pointing normal vector field

along 9 M (€). The last limit follows since }ir% pt(x) = Ipm(x) and in particular tlin% pe(x) = 0and
— —

PH(I) Vpi(z) = 0in OM(e). To be more precise the convergence of the limit we could make use of
—

the following chain of inequalities:

B(t) <— /a/vt( )pt(:lc)f(m) -nds + /8/\/1( )Vmpt(m) . nds)‘
< 15(1) ( e (@0 [ @l [ 9@ ~n|ds)

<180 | max {IF@I) s |pu()] / lds+ sup  |Vape(o)| / 1ds
TEOM(e) TEAM(e€) dM(e) () dM(e)

zEIM (e

r€EIM(e) €M €) zEOM (€)

= |B(t)] 1d5< max {If( )} sup pi(x)]+  sup IVmpt($)|>-
OM(e)

0
When ¢t — oo, p(x¢) tends to be stationary i.e., hm a—pt(xt) = 0. Therefore

lim QFM(e)(t) =0.

The existence follows from the mean Value theorem. Finally let us show it is strictly monotonically
decreasing. The negativity of -2 5iL Mm(e) (t) follows from (49) and O

I THE TIME WHEN THE SCORE VECTOR FIELD REVERSES
In this section we discuss the details of Section (]
I.1 VARIANCE PRESERVING SDE AND SCORE VECTOR FIELD

We consider the widely used Variance Preserving (VP-SDE) (DDPM):
1 —
dY, = —iﬁ(s)sts + VB(s)dW (50)

with corresponding generative dynamics:
1
dX; = |B(T —t)V,logp(Xy, T — t) + 55(T — )Xy | dt + /BT —t)dW,. (51)

One expresses marginal distribution ps(z) of Variance Preserving (VP-SDE) (DDPM) as follows:

/ N (ylbsz, (1 = 62)1)po(y)dy, (52)

where 6, = e~ 2 Jo (M4 and po(y) is the distribution at time at 0. The score at point z is given by
0

Velnpy(z) = ———— — 0,2)N (y|fsz, (1 — 65T dy. 53

Mnp() = Tgas [ - NG (1= D). 6
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1.2 ANALYSIS OF THE BEHAVIOUR OF THE SCORE VECTOR FIELD AT THE BOUNDARY OF THE
TUBULAR NEIGHBOURHOOD OF A HYPERSPHERE

Proposition L.1. Suppose M = S™ is a n-sphere of radius R in R%. We predict the following
observation: Let € be as R > € > 0. Let n be a unit outward pointing normal vector to the boundary
of e-neighbourhood OM((€). Assume

6+(1*95)(R*6)>\/&, (54)

N

x € OM(e) and po(y) is constant C greater than 0 on M. Then:
Velnp(x) -n <0.

Proof. (this proof is yet informal. Although we only perform this proof for the case d = 2 and M is
a l-sphere of radius 1, we hope it can be done in general dimensions). Since V, Inp;(x) = V;fa(f ),

it is enough to prove V,p;(x) - n < 0. Performing a change of variables w = % we have:

05
Vale) n=C o | (5= )N (b0, (1= 02)D)dy
(1=62) Jm
=C wN(w;0,I)dw - n
M—6Osx
\/1-062
= v -n|w|N(w; 0, Idw
Mobse |w]
\/1-062
w w
= C/ — - n|w|N(w;0, Idw —|—/ — - n|w|N(w;0,I)dw
N_ |w] Ny |w|

:c/ 2 n)2|N(20,1)dx_(2)dz
R

2 |2

e [ N G0, Do, ()=
R2

where /\\;1197;;” is the image of the manifold M by a diffeomorphism y +— \y/_l(i% and N_ (resp. Ny)

is{w € /\\;1—_97;; ;w-n < 0(resp. > 0)}. dz is a volume form of R<. Let 6 be the angle between z/|z|
and n. If we use the polar coordinates (|24, 6) € (0, o0] x [0, 27), since cos(6 +7) = — cos(§), (put
N.(0) :=={(|z|,0) € (0,00] x [0,27); z € N for some 6 s.t. cosf = i -n)}) we may estimate (ﬂ)

as follows:

—7/2 o
(= // cos 6 (/ |26 N (20 : 0,[)6Nz(9)(zg|)dz|> do (55)
/2 0
/2 0o
w7 cost ([l N G 0.0, oy 0l ) a9
—m/2 0
/2
:/ cos® (|20, |*N(zp, : 0,1) — |2zo_|*N(2¢_ : 0,1)) db), W
—7/2
where we set zp, € N*t, 2 € N~ and 29, = —cgzg_ for some cg > 0. This integral (III) is

negative or zero if
(|20, >N (zo, 1 0,1) —|29_|*N(29_ : 0,1)) <0 (56)
. e+(1—05)(R—e . . .
for any 6. Since x € OM(€), |29, | > |z0_| > % holds. Since |z|2N (2 : 0, 1) is strictly

s

monotonically decreasing if |z| > /2, the inequality holds for |20, | > |2zo_| > /2. Thus when
(=09:)(F=¢) > . /3 the assertion follows. O

/102
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Example L.2. Let M = S! in R? and |z| = 0.99. Compute (54) and we understand that V. In p;(z)
points toward S* if §, > 0.712. Similar thing can be observed for S? in R3. Therefore Proposition

explain the Figure 21| and Figure 22]

Remark 1.3. Conjectureis a kind of generalisation of Theorem D.1 in|Stanczuk et al.| (2024)).
The authors predict we can formulate more general conjecture by using concept of injectivity radii
for more general manifolds to illustrate and explain the behaviour of the score vector field of more
general diffusion models.

Proposition 1.4. Suppose M is a compact oriented manifold embedded in RY. We predict the
following observation: Let € be an injectivity radius. Let n be a unit outward pointing normal vector
to the boundary of e-neighbourhood OM (€). Assume

M > \/g’ (57)

x € OM(e) and py(y) is constant C greater than 0 on M. Finally assume a line segment with © and
the origin as its vertices does not intersect M. Assume moreover the following condition.

(i) For any y € M with (y — 0sx) - n > 0 there exists y' € M and some ¢ > 0 such that
—c(y —bsz) = (y — Os2).

(ii) Assume that for each y € M such that (y — 0sx) - n < 0, there exists § € M and ¢ > 0
such that —c(§ — 0sx) = (y — Osx). Then ¢ < 1.

(iii) Foranyy € M, {c(y — Osx)|c > 0} N M is a finite set.

Then:
V.lnp(z) n<0.

Proof. (this proof is yet informal. Although we only perform this proof for the case d = 2 and M is

a curve, we hope it can be done in general dimensions). Since V, Inp;(x) = %;()"C), it is enough to

rove V.p:(x) - n < 0. Performing a change of variables w = =052 \ye have:
p g g V102

Vepi(x) -m = CL/ (y — 0s2)N (y; 05z, (1 — 02)I)dy - n
M

(1-163)
=C wN(w;0,dw -n
M—6Osx
Vi-e2
=C v -n|w|N(w; 0, Idw
Er
Vi-e2
—C L nw|N (w; 0, I)dw +/ 2w N (w; 0, Tdw
N |w] N, W]
=C | 2 n|2N(0,1)ix_ (2)dz

R2 |2

—|—C/ i.n|z|N(z;0,I)5N+(2)dZ, @)
R

2 2]

M—6.z - . . . . y—0.x
where 0 is the image of the manifold M by a diffeomorphism y — Vi and N_ (resp. Ny)
is{w € /\\;;97;: ;w-n < 0(resp. > 0)}. dz is a volume form of RY. Let 6 be the angle between 2 /||
and .. If we use the polar coordinates (lz0],0) € (0, 00] x [0, 27), since cos(6 +m) = — cos(H), (put

N.(0) :={(|z|,0) € (0,00] x [0,27); z € N for some 6 s.t. cosf = El -n)}) we may estimate (ﬂ)
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as follows:

—7/2 ) /2 o0
(1) = / cos0 (/ 202N (2 - O,I)éNz(g)(|zg|)dz|) a0 +/ cos 0 (/ 202N (2 - O,I)éNz(g)(zg|)dz|> a0
T 0

/2 0 —7/2
/2
:/ cos (3120, PN (0. 2 0.1) = [0 PN (0 :0.1)) do
—7/2
/2
< c’/ cos® (|29, [N (zp, : 0,1) —|29_|*N(zo_ : 0,1)) b, hH
—m/2
where zq, € Nt zp € N~ and 29, = —cpzg_ for some cy > 0. If there is no such zg, , we set

zg, = 0. Also we set |zg, [N (zg, : 0,1) := max{|zg, |*N(zg, : 0,I)} and |zg_|N(zg_ : 0,1) :=
min{|zs_|>N(ze_ : 0,1)}. Thus by the assumption (ii) we may obtain . This integral is
negative or zero if

(|20, |*N(zo, 1 0,I) = |29_|*N(z9_ : 0,1)) <0 (58)

for any 6. Since x € JM(e) and by the assumption (ii), by the lemma below |zg, | > |zg_| >
eHeld-0:) holds. Since |z]2N(z : 0,1) is strictly monotonically decreasing if |z| > /2, the

\/1—-02

inequality holds for |zg | > |26_| > v/2. Thus when % > /2 the result follows. O
Lemma LS. In the situation of the proof above, we have the estimate:
€+ |z|(1 —65)

20, 2 |26_| 2
Proof. The assumeption (ii), |29, | > |2¢_| is evident. For any g such that [ — x| = € we have

ly = Osx| = g — Osz]. (59)

Since max |g — 05| = e+ (1 — 65)|x|, we have the result. O
ge{gle=lg—=l}

Remark 1.6. The smaller the injectivity radius slower time of the turning of the score vector field
becomes.
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J  EXPERIMENTAL DETAILS

J.1 EXPERIMENTS DETAIL FOR DDPM

In previous studies (Raya & Ambrogioni| (2023)), the training of diffusion models was performed
using DDPM. The number of timesteps is set to 1000, and the noise schedule coefficient 5 linearly
increases from 1.0 x 10~* to 2.0 x 10~2. A key difference from prior work is that, for denoising,
the MLP layers have been replaced with a 1D U-Net. This adjustment is necessary to handle
higher-dimensional data, such as 16D, 24D, and 48D, where a more complex model is required.

The model is trained using the mean squared error (MSE) loss function, with AdamW as the optimizer.
The learning rate is set to 1 x 1072, and the batch size is 32. For toy data experiments, the training
dataset consists of 50,000 points sampled from a uniform distribution. The model is trained without
using any advanced samplers like DDIM, relying solely on the standard DDPM reverse process.

J.2 EXPERIMENTS DETAIL FOR THE ANALYSIS OF TUBULAR NEIGHBOURHOOD IN CIRCLE

In Section[5.1} we conducted experiments using a uniform distribution on the unit circle embedded in
a higher-dimensional Euclidean space. The red line plot shows the proportion of particles outside
the tubular neighbourhood at each timestep when generation is performed over 1000 timesteps, the
same as during training. Here, the injectivity radius that defines the tubular neighbourhood is set
to 1. Therefore, being outside the tubular neighbourhood means that a particle’s distance from the
unit circle exceeds 1. In the generation process, a point is first sampled from Gaussian noise. When
the ambient space is sufficiently large, the proportion of particles outside the tubular neighbourhood
is 1. As the timesteps progress during the generation process, each data point approaches the data
manifold, which in this case is the unit circle. Thus, at the final timestep, all particles are expected to
lie within the tubular neighbourhood.

The blue line plot evaluates the accuracy of data generation using the Wasserstein distance when
initialisation is delayed during the generation process of the diffusion model. The horizontal axis,
Diffusion Time, indicates the number of timesteps performed out of the usual 1000-step generation
process. For example, in the case of 800 steps, the initialisation is delayed by 200 steps, with the
generation beginning from Gaussian noise and proceeding for the remaining 800 timesteps. Following
previous studies, we refer to this as late initialisation.

We can calculate the calculation of the injectivity radius as 1 (see. [3.3).

J.3 EXPERIMENTS DETAIL FOR THE ANALYSIS OF TUBULAR NEIGHBOURHOOD IN
HYPERSPHERE

In Section [5.1] experiments were conducted using a uniform distribution on a unit hypersphere
embedded in a higher-dimensional Euclidean space. The experimental setup is the same as in
Given that the injectivity radius of the unit hypersphere is 1(see [E.3)), being outside the tubular
neighbourhood implies that the distance from the unit sphere is greater than or equal to 1.

In Fig. [5](see Section[5.2)), we discussed that the discrepancy between the proportion of particles
outside the tubular neighbourhood and the rise in Wasserstein distance can be attributed to the
increasing distance between the distributions. To support this hypothesis, we conducted an experiment
where we initialized the Gaussian noise using the lateinit scheme, with x; ~ A (0, I/+/d), where d is
the dimension of the ambient space. Corresponding to the experiment shown in Fig. [5] we performed
another experiment on S2° with an ambient space of R*®. As shown in Fig. [13| we observed that the
Wasserstein distance starts increasing as particles begin entering the tubular neighbourhood.

J.4 EXPERIMENTS DETAIL FOR THE ANALYSIS OF TUBULAR NEIGHBOURHOOD IN ELLIPSE,
TORUS

In Section[5.2] experiments were conducted using uniform distributions on an ellipse and a torus,

both embedded in a higher-dimensional Euclidean space. The experimental setup is consistent with
that described in
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Figure 13: 52 embedded in R*2

For the ellipse, given the semi-major axis 2a and the semi-minor axis 2b, the injectivity radius is

calculated as %. In this experiment, we tested two cases: one with a semi-major axis of 4 and a
semi-minor axis of 2, and another with a semi-major axis of 6 and a semi-minor axis of 2. The
injectivity radii for these cases are % and %, respectively. We can calculate the injectivity radius of
ellipse as follow. Let us verify Theorem through ellipse, given the semi-major axis a and the
semi-minor axis b. Define a function F': R® — R by

1.2 y2

Then we have M = F~1(0). One of the normal vector field on M is given as grad(F') = (g—i, %—5) =

(2, i—i’), s0 (%, —2z) is a tangent vector field which spans the tangent space to M at each point

(xz,y) € M.

Applying Theorem the first injectivity radius Ry (M) is calculated as follows. For a point
(z,y) € M, the matrix

2z _v2 Y
2 2 2
Ly ((z,y), (v1,v2)) = |:%g; U§L+f]

b2 b2 a?
. . . . . . . o b4x2+u4y2 b422+a4y2
is degenerate (i.e., its determinant is zero) if and only if (vy,ve) = (— prrCyL b4%+a2b2y).

2 2 2 2 2 2 2.2
Let (z = (acos0,bsinh), then, (vq,vy) = (—bcos—0ta sin 6 b cos Ofa’sin’ 0y Tpe J2

( ’y) ( ’ )’ ’ ( 1 2) ( acosOJraisc‘gfee ’ 7b:§f299+bsin0 )
b2

norm of (vy,vs) is minimized at & = 0 when a > b, and in this case, Ry (M) = ~-.

For the torus, the injectivity radius is given by min(r’ — r, r), where 7’ is the major radius and r is
the minor radius (see[E-I). In this experiment, we used two cases: one with a major radius of 2 and a
minor radius of 1, and another with a major radius of 3 and a minor radius of 1. In both cases, the
injectivity radius is 1.

These calculations provide the injectivity radii used in our experiments on both the ellipse and the
torus, guiding the analysis of the tubular neighborhoods in these geometric settings.

In the experiments presented in Section[5.2] we included figures for an ellipse with a major axis of 6
and a minor axis of 2, as well as a torus with a major radius of 3 and a minor radius of 1. Here, we
provide additional figures for an ellipse with a major axis of 4 and a minor axis of 2, and a torus with
a major radius of 2 and a minor radius of 1.
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Figure 14: ellipse R = 2,7 = 1 embedded in Figure 15: torus R = 2,7 = 1 embedded in
RlG RIG
Pproportion 0.1 0.5 0.9 0.95 0.99  0.999 1.0

Dataset

Ellipse (R = 2,7 = 1) embedded in R'®  3.690 2.351 1.110 0.926 0.593 0441 0.211
Torus (R = 2,7 = 1) embedded in R*® 1.328 0.816 0.563 0.520 0.440 0.333 0.149

J.5 EXPERIMENTS DETAIL FOR THE ANALYSIS OF TUBULAR NEIGHBOURHOOD IN
DISJOINTARCS CASES

In Section [5.3] we conducted experiments using a data distribution composed of segments from
two circles with different curvatures, both embedded in a higher-dimensional Euclidean space. The
dataset was constructed by uniformly sampling 50,000 points from two regions: one segment from a
circle with radius 1, covering the angle range from 7 /6 to 7/3, and another segment from a circle
with radius 2, covering the angle range from 77 /6 to 47 /3.

Next, we consider appropriate values for the injectivity radius. For the submanifold A, the injectivity
radius is considered to be 1 (although, strictly speaking, the injectivity radius is undefined at the
endpoints where the tangent plane cannot be properly defined, we exclude these points for our
analysis). On the other hand, for the submanifold B, since it is a part of a circle with radius 2, the
injectivity radius is considered to be 2. Therefore, the injectivity radius for the combined manifold
formed by these two segments is determined to be 1.

J.5.1 ADDITIONAL EXPERIMENTS

To further investigate the behaviour of the score vector field under different curvature settings, we
conducted additional experiments using new datasets. These datasets include:

1. A segment from a circle with radius 3, covering the angle range from 7 /6 to 7/3, and a
segment from a circle with radius 1, covering the angle range from 77 /6 to 47 /3. See
Figure[I6]for the experimental result. To further analyse the behaviour of the proportion of
particles outside the tubular neighbourhood (depicted as the red solid line in the experimental
results), we conducted additional experiments to investigate how this behaviour changes with
different values of the neighbourhood radius. Specifically, we considered a neighbourhood
radius of R = 3 (which is different from the injectivity radius » = 1). The proportion of
particles outside this larger neighbourhood region is plotted as a red dashed line in Figure[T8]
This result demonstrates that the behaviour of the red line varies depending on the chosen
value for the neighbourhood radius.

2. A segment from a circle with radius 3/2, covering the angle range from 7 /6 to 7w/3, and a
segment from a circle with radius 1/2, covering the angle range from 77 /6 to 47 /3. See
Figure [T 7] for the experimental result.
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Figure 16: Disjoint arcs case R = 3,7 = 1 Figure 17: Disjoint arc case R = 3/2,r =
embedded in R'6 1/2 embedded in R16

Figure 18: Disjoint arc case R = 3,7 =1
embedded in R'6

J.6 EXPERIMENTS DETAIL FOR THE ANALYSIS OF TUBULAR NEIGHBOURHOOD IN NARURAL
DATASET

In Section[5.4] we performed experiments by embedding real-world datasets such as MNIST and
Fashion MNIST onto a hypersphere, subsequently mapping them into a high-dimensional Euclidean
space. For efficient generation and sampling in diffusion models, it is a common practice to reduce
the dimensionality into a latent space—similar to the approach in Latent Diffusion—and consider
the transitions of the diffusion model within this space. While Latent Diffusion utilizes VQ-VAE for
embedding, we employ a Hyperspherical VAE in our methodology.

In our approach, several key modifications were made to the original hyperspherical VAE
(sVAE) (Davidson et al., 2018) setup used in prior studies. One significant change was transi-
tioning from binary data representation, where data was handled as binary values, to continuous
data representation. As a result, we replaced the Binary Cross-Entropy (BCE) loss function with
the Mean Squared Error (MSE) loss function. This modification allows for more accurate modeling
and reconstruction of continuous data, particularly when working with datasets such as MNIST and
Fashion MNIST.

Furthermore, to address the limitations of the previously used MLP layers for reconstructing natural
images, we enhanced the model by adopting CNN-based layers. This adjustment is particularly
beneficial for reconstructing images from higher-dimensional latent spaces.

To demonstrate the improvements, we present a comparison between the normal VAE (nVAE) and
the hyperspherical VAE (sVAE), focusing on the ELBO (Evidence Lower Bound) and log-likelihood
(LL) values for different latent space dimensions (10, 15, and 20). Additionally, we compare the
performance of both nVAE and sVAE when using MLP-based and CNN-based architectures. The
results are summarized in the following tables:

In Section[5.4] we explored the effectiveness of late initialisation in accelerating image generation
by embedding natural images onto a hypersphere and sampling on the hypersphere. It is crucial
for practical applications to ensure that points sampled through late initialisation in the latent space
can generate realistic images when passed through the decoder. Here, we present generated images
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ELBO ()/LL (}) nVAE SVAE
dim 10 2377229 | 2557240
dim 15 23.8/-23.1 | -26.7/-245
dim 20 23.8/-23.1 | -27.6/-25.0

Table 6: Comparison of ELBO and LL for nVAE and sVAE with different latent space dimensions,
using MLP-based models on the Fashion MNIST dataset.

ELBO (J)/LL (J) | nVAE (CNN) | sVAE (CNN)
dim 10 2287221 | 2447227
dim 20 23.1/-222 | -26.8/-239

Table 7: Comparison of ELBO and LL for nVAE and sVAE with different latent space dimensions,
using CNN-based models on the Fashion MNIST dataset.

obtained by passing points sampled using late initialisation during the generation process of the
diffusion model through the decoder of the hyperspherical VAE, and qualitatively evaluate the results.
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Figure 19: MNIST images decoded using SVAE after diffusion times of 1000, 500, 200, 100, 50, and
1 (arranged from left to right, top to bottom) in the latent space.
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Figure 20: Fashion MNIST images decoded using SVAE after diffusion times of 1000, 500, 200, 100,
50, and 1 (arranged from left to right, top to bottom) in the latent space.

There are limitations regarding embedding onto hyperspheres. Previous studies have shown that
as the dimensionality of the embedding onto the hypersphere increases beyond a certain value, the
accuracy of the embedding decreases. This phenomenon is related to the fact that the surface area
of a hypersphere approaches zero in the high-dimensional limit. Therefore, although we conducted
experiments with MNIST and Fashion MNIST, for larger datasets, the accuracy of the embedding
would deteriorate to the point where considering a diffusion model would no longer be meaningful.

However, despite these current challenges, there are potential solutions. Previous research focused
on embeddings onto unit hyperspheres, but it is possible to consider hyperspheres with a radius of
v/n. When the dimensionality is n, the surface area of a hypersphere with a radius of y/n increases
monotonically, suggesting that the embedding could remain effective even as the dimensionality
increases. In this case, efficient generation using diffusion models that leverage the concept of tubular
neighborhoods could become meaningful.

K ANALYSIS OF SCORE VECTOR

K.1 SCORE VECTOR FIELD

We present additional experiments detailing the score vectors of DDPM. This section includes two
experimental setups concerning the score vector field. Firstly, for the S* case, the experimental setup
includes a grid size of 32 x 32 and a trained DDPM with T" = 1000. The training data is S*, with
the red circle at the centre representing S*. See Figure for the corresponding visualization.
Secondly, for the S? case, the experimental setup includes a grid size of 16 x 16 x 16 and a trained
DDPM with 7' = 1000. The training data is S2. Except for the grid size and training data, all other
settings remain the same. See Figure [22]for the corresponding visualization.

Thirdly, for the ellipse case described in Section we visualized the score vector field for the
initial two dimensions of a 16-dimensional latent space. The experimental setup involves training
data generated from an ellipse with radii R = 2 and » = 1. The grid size is 32 X 32, and the
visualization highlights the behavior of the score vectors in these two dimensions. See Figure 23| for
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the corresponding visualization.

Finally, for the disjoint arcs case described in Section[5.3] we visualized the score vector field for the
initial two dimensions of a 16-dimensional latent space. The experimental setup involves training
data composed of two disjoint arcs, one from a circle with radius R = 2 and the other from a circle
with radius = 1. The grid size is 32 x 32, and the visualization illustrates the interactions between
the two arcs. See Figure [24]for the corresponding visualization.
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Figure 21: Time evolution of score vectors in the backward process of DDPM, S*

K.2 SQUARE OF THE JACOBIAN J OF THE SCORE VECTOR FIELD

In this section, we extend our analysis to the square of the Jacobian J of the score vector field. We
utilise updated experimental setups for both the 2D S* and the 3D S? cases. For the 2D S case, the
grid size is 128 x 128 with a trained DDPM using T = 1000. The training data remains S*, and we
compute and analyse the square of the Jacobian of the score vector field for this setup (Figure 23).
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Figure 22: Time evolution of score vectors in the backward process of DDPM, S?

Similarly, for the 3D S? case, the grid size is 128 x 128 x 128 with a trained DDPM using T = 1000.
The training data remains S, and we compute and analyse the square of the Jacobian of the score

vector field for this setup (Figure [26).
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Figure 23: Time evolution of score vectors in the backward process of DDPM, Ellipse (R = 2, r
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Figure 24: Time evolution of score vectors in the backward process of DDPM, Disjoint arcs case
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Figure 25: Time evolution of the squared Jacobian of score vectors in the backward process of DDPM,
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