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(a) Old Words in AV-Deepfake1M (b) New Words in AV-Deepfake1M

(c) Old Words in LAV-DF (d) New Words in LAV-DF

Figure 6: Qualitative comparison of transcript modifications
in AV-Deepfake1M and LAV-DF. (a) The old words before the
manipulations in AV-Deepfake1M. (b) The new words after the
LLM-driven manipulations in AV-Deepfake1M. (c) The old words
before manipulations in LAV-DF. (d) The new words after the rule-
based manipulations in LAV-DF.

A TRANSCRIPT MANIPULATION
In addition to the quantitative comparison of transcript modifications
in AV-Deepfake1M and LAV-DF [6] (see Section 3.1.1), here we
also present a qualitative one. Figure 6 illustrates word clouds for
old_word(s) and new_word(s) for both datasets. A comparison
between the new words generated by the rule-based strategy utilized
in LAV-DF and our LLM-driven generation further demonstrates that
the latter results in more natural and diverse transcript manipulations.

B HUMAN QUALITY ASSESSMENT
Here we provide further details on the user study (see Section 3.3)
that aims to evaluate humans’ performance in detecting the highly
realistic deepfake content in AV-Deepfake1M.

B.1 Data
The data used in the user study are 200 videos randomly sampled
from the test set of AV-Deepfake1M and LAV-DF [6], with the aim
to maximize the number of unique identities. Please note that the
user study setup ensures each participant cannot see a duplicated
identity. The videos include 50 real videos from AV-Deepfake1M,
50 fake videos from AV-Deepfake1M, 50 real videos from LAV-DF,
and 50 fake videos from LAV-DF. For fair comparison with LAV-
DF, the fake videos contain only one audio-visual replacement (see
Section 3).

B.2 Participants
We randomly group the participants into 10 groups where each group
evaluates 10% of the videos (i.e., 20 videos including 5 real videos

Figure 7: Screenshot of the user study interface. On the top is the
video with audio, the middle is the textual description of the task,
and the bottom is the participant’s controls to 1) Select whether the
video is real or fake and 2) If the participant selects fake, use a slider
to specify the begin and end of the fake segment.

from AV-Deepfake1M, 5 fake videos from AV-Deepfake1M, 5 real
videos from LAV-DF, and 5 fake videos from LAV-DF). We utilize
a random non-overlapping selection of videos for each participant,
meaning that each participant evaluates videos for 20 out of the
200 videos. After watching each video, the participants first answer
whether the video is real or fake, and if they think the video is fake,
the participants can choose the start and end timestamps for the fake
segment. A screenshot of the developed user study interface based
on the React2 framework is shown in Figure 7.

B.3 Evaluation and Analysis
Among the 25 participants that took part in the user study, the bi-
nary deepfake detection/classification accuracy is 64.84% for AV-
Deepfake1M. This low performance indicates that the deepfake
content in AV-Deepfake1M is very challenging for humans to de-
tect. A similar pattern is observed for the temporal localization of
fake segments. Similarly to Table 5, here we report and compare
average precision (AP) and average recall (AR) scores in Table 12
and extend that comparison with the state-of-the-art methods using
the same subset of videos. The AP score for 0.5 IoU is 01.92. Thus,
we reduced the AP threshold to 0.1 IoU, improving the AP score to
15.32. Figure 8 illustrates a similar qualitative comparison. The low
human performance in each aspect indicates that to detect highly
realistic deepfake content, we need more sophisticated detection and
localization methods.

2https://react.dev/

https://react.dev/
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Figure 8: Examples of user study results and comparison with the state-in-the-art in temporal deepfake localization. Green color
represents real segments and red color represents fake segments. GT: Ground truth.

Table 12: User study results compared with the state-in-the-art in temporal deepfake localization.

Dataset LAV-DF [6] AV-Deepfake1M
Method Acc. AP@0.1 AP@0.5 AR@1 Acc. AP@0.1 AP@0.5 AR@1
Xception [12] 96.00 69.33 41.75 30.40 77.00 58.78 24.26 12.20
BA-TFD [6] - 95.37 80.33 66.44 - 59.69 44.87 21.27
BA-TFD+ [4] - 98.00 98.00 87.60 - 65.44 51.41 23.26
UMMAFormer [65] - 98.00 98.00 97.80 - 69.77 53.72 38.39
Human 84.03 36.80 14.17 10.04 68.64 15.32 01.92 02.54

Considering LAV-DF [6], we observed similar patterns - human
performance is lower than the state-of-the-art detection and local-
ization methods. Comparing the human performance between AV-
Deepfake1M (Acc. 68.64, AP@0.1 15.32) and LAV-DF (Acc. 84.03,
AP@0.1 36.80), we find that AV-Deepfake1M is more challenging
than LAV-DF for humans.

C AUDIO AND VIDEO GENERATION
Here we provide complete details on the manipulations in AV-
Deepfake1M (see Section 3). Figure 9 provides visualizations corre-
sponding to each of the three modifications and the resulting deep-
fake content. Please note that for example for Fake Audio and Real
Visual in the cases of deletion and insertion, there are slight modifi-
cations in the visual signal as well. The reason we regard the visual
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Figure 9: Details of the audio-visual content generation. Here, we show the audio-visual content manipulation strategy in three setups i.e.
fake audio fake video, fake audio real video and real audio fake video. We believe that these three variations of fake content generation add
more challenge in the temporal localization task.

Frame-level Segment-level Video-level

Figure 10: Complete details on the label access for training. Green color represents the real and red color represents fake content. The top
row represents the original frame-level labels in a video. The middle row represents the segment- and video-level labels based on whether the
segment/video contains any fake frames. For fair comparison across different methods, the bottom row represents the mapped segment- and
video-level labels to frame-level labels.

signal as real is the fact that words were not inserted or deleted in
that modality. Similarly for Real Audio and Fake Visual.

D LABEL ACCESS FOR TRAINING
Figure 10 provides complete details on the label access during train-
ing (see Section 5.2).

• In the frame-level configuration, the models are trained using
the ground truth labels for each frame in the video.

• In the segment-level configuration, if the segment contains
any fake frames, it is labelled as fake otherwise it is labelled
as real. For the segment-based methods MARLIN [5] and
MDS [13], we used the segment-level labels during training.
For a fair comparison when training the frame-based methods

Meso4 [1] and MesoInception4 [1] we mapped the segment-
level labels to frame-level.

• In the video-level configuration, if the video contains any fake
frames, it is labelled as fake otherwise it is labelled as real.
Similarly to the segment-level configuration, for a fair com-
parison when training the frame-based methods Meso4 [1]
and MesoInception4 [1] we mapped the video-level labels to
frame-level.
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