
Appendix456

A.1 Reconstruction Performance457

The bar chart Figure A.1 below shows a comparison between our proposed model and various baseline458

models on the GOD subjects 1, 2, 4, and 5. The performance of subject 3 has been detailed in the459

main text.460

As shown in the figure, our model substantially outperforms the previous state-of-the-art461

method (DC-LDM) on all GOD subjects. Specifically, our model surpasses DC-LDM by around462

110%, 16.8%, 24.7%, 11.8% in GOD subjects 1, 2, 4, and 5, respectively. To achieve DC-LDM’s463

reported performance in its original paper [6], this method need signals from test set fMRI data. This464

is not a setting adopted by other baselines. To ensure a fair evaluation, we banned DC-LDM from465

tuning on the test set in the main paper. But we show here that, our model still largely exceeds466

DC-LDM on GOD subjects even after DC-LDM is tuned on the test set fMRI data. As depicted467

in Figure A.1, compared to DC-LDM-test-tuned, our model achieves an improvement in accuracy of468

63.9%, 36.1%, 14.5%, 22.8% in GOD subject 1, 2, 4 and 5, respectively.469

Additionally, we provide the performance of our model on BOLD5000 subjects 1, 2, 3, and 4 in Table470

A.1. Following previous work [6], all results are presented in 50-way-top-1 classification accuracy.471
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Figure A.1 Reconstruction performance of our model and other baselines on GOD subjects 1, 2, 4
and 5, measured by 50-way-top-1 classification accuracy

BOLD 5000 CSI 1 CSI 2 CSI 3 CSI 4
OURS 25 18.69 16.14 18.98

Table A.1 Reconstruction performance of our model on BOLD5000 subject CSI 1-4, measured by
50-way-top-1 classification accuracy.

A.2 Examples of Reconstructed Images472

Figures A.2 and A.3 present images generated by our model using fMRI data from GOD and473

BOLD5000 datasets, respectively. We generated all images at a resolution of 256⇥ 256⇥ 3 using474

250 PLMS steps. More samples can be generated using our code base in the supplementary materials.475

The code will be open-sourced with the camera ready version of this paper.476
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GOD Subject 1

GOD Subject 2

GOD Subject 4

GOD Subject 5

Figure A.2: Randomly selected reconstructed images from GOD subject 1, 2, 4 and 5. For
each subject, the upper line shows the ground truth images while the lower line shows the
reconstructed images by our method.

A.2.1 Reconstructed Images from GOD Dataset
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BOLD5000 CSI 1

BOLD5000 CSI 2

BOLD5000 CSI 3

BOLD5000 CSI 4

Figure A.3: Randomly selected reconstructed images from BOLD5000 CSI 1-4. For each

subject, the upper line shows the ground truth images while the lower line shows the

reconstructed images by our method.

A.2.2 Reconstructed Images from BOLD5000 Dataset
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A.3 FMRI Dataset Introduction479

HCP The Human Connectome Project (HCP) originally serves as an extensive exploration into the480

connectivity of the human brain. It offers an open-source database of neuroimaging and behavioral481

data collated from 1,200 healthy young adults within the age range of 22-35 years. Currently, it stands482

as the largest public resource of MRI data pertaining to the human brain, providing an excellent483

foundation for the pre-training of brain activation pattern representations. Of the subjects involved,484

1113 underwent scanning via a Siemens Skyra Connectom scanner for 3T MR, while a Siemens485

Magnetom scanner for 7T MR was utilized for the remaining 184. For the scope of this paper, we486

will predominantly focus on the data derived from the more populated 3T dataset.487

GOD The Generic Object Decoding (GOD) Dataset is a specialized resource developed for fMRI-488

based decoding. It aggregates fMRI data gathered through the presentation of images from 200489

representative object categories, originating from the 2011 fall release of ImageNet. The training490

session incorporated 1,200 images (8 per category from 150 distinct object categories). In contrast,491

the test session included 50 images (one from each of the 50 object categories). It is noteworthy that492

the categories in the test session were unique from those in the training session and were introduced493

in a randomized sequence across runs. The fMRI scanning was conducted on five subjects.494

BOLD5000 The BOLD5000 dataset is a result of an extensive slow event-related human brain fMRI495

study. It comprises 5,254 images, with 4,916 of them being unique. This makes it one of the most496

comprehensive publicly available datasets in the field. The dataset’s principal advantage is its high497

diversity, enabling the capture of the complexity and variability inherent in natural visual stimuli. The498

images in BOLD5000 were selected from three popular computer vision datasets: ImageNet, COCO,499

and Scenes. ImageNet provided 1,916 images primarily focusing on singular objects. Meanwhile,500

COCO contributed 2000 images featuring multiple objects, and Scenes contributed 1000 images501

depicting hand-crafted indoor and outdoor scenes. Four participants labeled CSI1 through CSI4, were502

involved in this study and underwent scanning via a 3T Siemens Verio MR scanner equipped with a503

32-channel phased array head coil.504

A.4 Implementation Details505

A.4.1 FMRI Representation Learning (FRL)506

For both FRL Phase 1 and Phase 2, the fMRI auto-encoder is the same ViT-based masked auto-507

encoder (MAE). We divided fMRI voxels into patches and transformed them into embeddings508

using a one-dimensional convolutional layer with a patch-size stride. We employed an asymmetric509

architecture for the fMRI auto-encoder, in which the decoder is considerably smaller with 8 layers510

than the encoder with 24 layers. We used a larger embedding-to-patch size ratio, specifically a511

patch size of 16 and an embedding dimension of 1024 for our model. Our design choice expands512

the representation dimension of fMRI data, which increases the information capacity of the fMRI513

representations. To address the data-hungry nature of models like the Vision Transformer (ViT), we514

used random sparsification (RS) as a form of data augmentation, randomly selecting and setting 20%515

of voxels in each fMRI to zero.516

FRL Phase 1 In Phase 1, we train the masked ViT-based fMRI auto-encoder with contrastive loss.517

For GOD subject 1,4,5 and BOLD5000 CSI 1,2, self-contrastive (�s) and cross-contrastive (�c) loss518

weights are both 1. The masking ratio is 0.5. For GOD subject 2,3 and BOLD5000 CSI 3,4, �s = 1519

and �c = 0.5, masking ratio is 0.75. Optimizing contrastive losses prefers a larger batch size. So520

we set the batch size to 250 and train for 140 epochs on one NVIDIA A100 GPU. We train with521

20-epoch warming up and an initial learning rate of 2.5e-4. We optimize with AdamW and weight522

decay 0.05.523

FRL Phase 2 In Phase 2, we tune the fMRI autoencoder jointly with an image auto-encoder, which524

is a pre-trained ViT-based MAE released by [47]. The image auto-encoder has a 12-layer encoder525

with a 768 hidden size and a 6-layer decoder with a 512 hidden size. We set the batch size to be526

16 and train for 60 epochs. We train with 2-epoch warming up. The initial learning rate is 5.3e-5.527

We optimize with AdamW and weight decay 0.05. We freeze the parameters of the decoder of the528

image-autoencoder and only tune the encoder.529
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A.4.2 Fine-tuning LDM530

In this stage, we jointly optimize the parameters of LDM cross-attention heads and the fMRI encoder,531

while keeping other parameters of LDM unchanged. Given an fMRI-image pair, we first use the532

pre-trained VQ encoder to encode the image to obtain the latent representation which is further533

used as an objective to guide the joint training of the fMRI encoder and LDM cross-attention heads.534

During training, the fMRI data passes through the fMRI encoder trained using FRL, producing a535

patchified representation. This representation is then projected into key and value representation536

of cross-attention modules in the UNet of LDM. Furthermore, it is added to the time embedding537

to conduct double conditioning. The training follows the regular training pipeline of the diffusion538

model, where the model is optimized to learn to predict the Gaussian noise added to the image latent539

representation at each time step with the guidance of the given conditioning information. Here, we540

use the output of the fMRI encoder as the conditioning information. We conduct training with the541

following parameters: the batch size of 5, diffusion steps of 1000, the AdamW optimizer, a learning542

rate of 5.5e� 5, and an image resolution of 256⇥ 256⇥ 3.543

A.5 Evaluation Metrics544

We use the common N-trial, n-way top-1 semantic classification as the main evaluation metrics. This545

evaluation method is summarized in the algorithm below:546

Algorithm 1 Iterative Reasoning Module
Input:

pre-trained image classifier F , generated image x̂, corresponding ground truth (GT) image xgt

Output:
success rate sr 2 [0, 1]
for trail = 1 to N do
ygt = F (xgt) get the prediction of GT image
pred = F (x̂) get the output probabilities of generated image
p = {pg , py1 , ..., pyn�1} generate probabilities set contains n� 1 randomly selected from pred
and ygt
Success if argmin

y
= ygt

end for
return sr = number of success / N
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