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A RELATED WORKS

Multitask RL. Many recent theoretical works have contributed to understanding the benefits of
MTRL (Agarwal et al., 2022; Brunskill & Li, 2013; Calandriello et al., 2014; Cheng et al., 2022;
Lu et al., 2021; Uehara et al., 2021; Yang et al., 2022a; Zhang & Wang, 2021) by exploiting the
shared structures across tasks. An earlier line of works (Brunskill & Li, 2013) assumes that tasks
are clustered and the algorithm adaptively learns the identity of each task, which allows it to pool
observations. For linear Markov Decision Process (MDP) settings (Jin et al., 2020b), Lu et al. (Lu
et al., 2021) shows a bound on the sub-optimality of the learned policy by assuming a full-rank
least-square value iteration weight matrix from source tasks. Agarwal et al. (Agarwal et al., 2022)
makes a different assumption that the target transition probability is a linear combination of the source
ones, and the feature extractor is shared by all the tasks. Our work differs from all these works as we
focus on the reduced complexity of exploration design.

Curriculum learning. Curriculum learning refers to adaptively selecting tasks in a specific order
to improve the learning performance (Bengio et al., 2009) under a multitask learning setting. Numer-
ous studies have demonstrated improved performance in different applications (Jiang et al., 2015;
Pentina et al., 2015; Graves et al., 2017; Wang et al., 2021). However, theoretical understanding of
curriculum learning remains limited. Xu & Tewari (2022) study the statistical benefits of curriculum
learning under Supervised Learning setting. For RL, Li et al. (2022b) makes a first step towards the
understanding of sample complexity gains of curriculum learning without an explicit exploration
bonus, which is a similar statement as we make in this paper. However, their results are under strong
assumptions, such as prior knowledge on the curriculum and a specific contextual RL setting with
Lipschitz reward functions. This work can be seen as a more comprehensive framework of such
benefits, where we discuss general MDPs with function approximation.

Myopic exploration. Myopic exploration, characterized by its ease of implementation and effec-
tiveness in many problems (Kalashnikov et al., 2018; Mnih et al., 2015), is the most commonly used
exploration strategy. Many theory works (Dabney et al., 2020; Dann et al., 2022; Liu & Brunskill,
2018; Simchowitz & Foster, 2020) have discussed the conditions, under which myopic exploration
is efficient. However, all these studies consider a single MDP and require strong conditions on the
underlying environment. Our paper closely follows Dann et al. (2022) where they define Myopic Ex-
ploration Gap. An MDP with low Myopic Exploration Gap can be efficiently learned by exploration
exploration.

B A FORMAL DISCUSSION ON CURRICULUM LEARNING

We formally discuss that how our theory could provide a potential explanation on the success
of curriculum learning in RL (Narvekar et al., 2020). Although Algorithm 1 does not explicitly
implement curriculum learning by ordering tasks, we argue that if any curriculum learn leads to
polynomial sample complexity C, then Algorithm 1 has |M|2C sample complexity. We denote a
curricula by ((Mi, Ti))

T
i=1 and an online algorithm that learns through the curricula interacts with

Mi for Ti rounds by rolling out trajectories with the estimated optimal policy of Mi−1 with epsilon
greedy. This curricula is implicitly included in Algorithm 1 with |M|

∑
i Ti rounds. To see this, let

us say in phase i, the algorithm has mastered all tasks M1, . . . ,Mi−1. Then by running Algorithm
1 |M|2Ti rounds, we will roll out Ti trajectories on Mi using the exploratory policy from Mi−1

on average, which reflects the schedules from curricula. This means that the sample-complexity of
Algorithm 1 provides an upper bound on the sample complexity of underlying optimal curricula and
in this way our theory provides some insights on the success of the curriculum learning.

C COMPARING SINGLE-TASK MEG AND MULTITASK MEG

Proposition 1. LetM be any set of MDPs andF be any function class. We have that α(f,M,F) ≥
α(fM , {M},F)/

√
|M| for all f ∈ (F)⊗|M| and M ∈M.
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Proof. The proof is straightforward from the definition of multitask MEG. For any MDP M and any
f ∈ F⊗|M|, α(fM , {M},F) is the value to the following optimization problem

sup
f̃∈F,c≥1

1√
c
(V f̃

1,M − V fM
1,M ), s.t. for all f

′
∈ F and h ∈ [H],

EM
πf̃ [(EMh f ′)(sh, ah)]

2 ≤ cEM
expl(f)[(E

M
h f ′)(sh, ah)]

2

EM
πfM

[(EMh f ′)(sh, ah)]
2 ≤ cEM

expl(f)[(E
M
h f ′)(sh, ah)]

2.

By choosing c in Definition 3 by c|M|, and f ′ by the same f ′ that attains the maximization in
Single-task MEG, we have α(f,M,F) ≥ α(fM , {M},F)/

√
|M|

D EFFICIENT MYOPIC EXPLORATION FOR DETERMINISTIC MDP WITH
KNOWN CURRICULUM

In light of the intrinsic connection between Algorithm 1 and curriculum learning. We present an
interesting results for curriculum learning showing that any deterministic MDP can be efficiently
learned through myopic exploration when a proper curriculum is given.
Proposition 4. For any deterministic MDP M , with sparse reward, there exists a sequence of
deterministic MDPs M1,M2, . . . ,MH , such that the following learning process returns a optimal
policy for M :

1. Initialize π0 by a random policy.

2. For t = 1, . . . , n, follow πt−1 with an ϵ-greedy exploration to collect 4At log(H/δ) trajec-
tories denoted by Dt. Compute the optimal policy πt from the model learned by Dt.

3. Output πH .

The above procedure will end in O(AH2 log(H/δ)) episodes and with a probability at least 1− δ,
πH is the optimal policy for M .

Proof. We construct the sequence in the following manner. Let the optimal policy for an MDP M
be π∗

M . Let the trajectory induced by π∗
M be {s∗0, a∗0, . . . , s∗H , a∗H}. The MDP M receives a positive

reward only when it reaches s∗H . Without loss of generality, we assume that M is initialized at a fixed
state s0. We choose Mn such that

RMi
(s, a) = 1(PMn

(s, a) = s∗i ).

Furthermore, we set
PMi

(s∗i |s∗i , a) = 1 ∀a ∈ A
and

PMi
= PM

otherwise.

This ensures that any policy that reaches s∗i on the i’th step is an optimal policy.

We first provide an upper bound on the expected number of episodes for finding an optimal policy
using the above algorithm for Mi.

Fix 2 ≤ i ≤ H . Let ϵ = 1
i . Define k = |A|. Then

Then the probability for reaching optimal reward for Mi is less than or equal to

(1− 1

i
)i−1(

1

ki
)

So the expected number of episodes to reach this optimal reward (and thus find an optimal policy) is
1

(1− 1
i )

i−1( 1
ki )

= (i− 1)k(
i

i− 1
)i ≤ 4k(i− 1)
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since i ≥ 2 and ( i
i−1 )

i is decreasing. By Chebyshev’s inequality, a successful visit can be found in
4k(i− 1) log(H/δ) with a probability at least 1− δ/H .

The expected total number of episodes for the all the MDP’s is therefore

H∑
j=2

4k(j − 1) log(H/δ) ≤ H

2
(4kH) log(H/δ)

which is O(kH2 log(H/δ)).

E GENERIC UPPER BOUND FOR SAMPLE COMPLEXITY

In this section, we prove the generic upper bound on sample complexity in Theorem 1. We first prove
Lemma 2, which holds under the same condition of Theorem 1.
Lemma 2. Consider a multitask RL problem with MDP setM and value function class F such that
M is (α̃, c̃)-diverse. Then Algorithm 1 running T rounds with exploration function expl satisfies that
with a probability at least 1− δ, the total number of rounds, where there exists an MDP M , such that
πf̂t,M is β-suboptimal for M , can be upper bounded by

O

(
|M|H2dBE(F ,ΠF , 1/

√
T )

ln c̃(β)

α̃(β)2
ln

(
N ′

F
(
T−1

)
lnT

δ

))
,

where dimBE(F ,ΠF , 1/
√
T ) is the Bellman-Eluder dimension of class F and N ′

F (ρ) =∑H−1
h=1 NFh

(ρ)NFh+1
(ρ).

Proof. Let us partition Fβ into Fβ = {FM,i}M∈M,i∈[imax] such that

FM,i := {f ∈ Fβ : c(f,M,F) ∈ [ei−1, ei] and M(f,M,F) = M}.

Furthermore, denote (f̂t,M )M∈M by f̂t. We define KM,i,t = {τ ∈ [t], f̂τ ∈ FM,i}. The proof in
Dann et al. (2022) can be seen as bounding the sum of KM,i,t for a specific M , while apply the same
bound for each M , which leads to an extra |M| factor.

Lemma 3. Under the same condition in Theorem 1 and the above definition, we have

|KM,i,T | ≤ O

(
H2dBE(F ,ΠF , 1/

√
T )

α̃(β)2
ln

N ′
F (1/T ) ln(T )

δ

)
.

Proof. In the following proof, we fix an MDP M and without further specification, the policies or
rewards are with respect to the specific M . We study all the steps t ∈ KM,i,T .

For each t ∈ KM,i,T ,

1. Recall that π̂t is the mixture of exploration policy for all the MDPs:
Mixture({expl(π̂t,M ′)}M ′∈M);

2. Define π′
t as the improved policy that attains the maximum in the multitask myopic explo-

ration gap for f̂t in Definition 3.

Note that π′
t is a policy for M since t ∈ KM,i,t. A key step in our proof is to upper bound the

difference between the value of the current policy and the value of π′
t. By Lemma 4, The total

difference in return between the greedy policies and the improved policies can be bounded by

∑
t∈KM,i,T

(V
π′
t

1,M (s1)−V
π̂t,M

1,M (s1)) ≤
∑

t∈KM,i,T

H∑
h=1

EM
π̂t,M

[(EMh f̂t,M )(sh, ah)]−
∑

t∈KM,i,T

H∑
h=1

EM
π′
t
[(EMh f̂t,M )(sh, ah)],

(3)
where the exportation is taken over the randomness of the trajectory sampled for MDP M .
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Under the completeness assumption in Assumption 1, by Lemma 5 we show that with a probability
1− δ for all (h, t) ∈ [H]× [T ],

t−1∑
τ=1

EM
π̂τ

[(Ehft,M ) (sh, ah)]
2 ≤ 3

t− 1

T
+ 176 ln

6N ′
F (1/T ) ln(2t)

δ
.

We consider only the event, where this condition holds. Since c(f̂t,M,F) ≤ ei for all t ∈ KM,i,T ,
by Definition 3 we bound ∑

τ∈KM,i,t−1

EM
π′
τ

[
(EMh f̂t,M ) (sh, ah)

]2
≤

∑
τ∈[t−1]

EM
π′
τ

[
(EMh f̂t,M ) (sh, ah)

]2
≤ ei

∑
τ∈[t−1]

EM
π̂τ

[
(EMh f̂t,M ) (sh, ah)

]2
≤ 179ei ln

6N ′
F (1/T ) ln(2t)

δ
.

Combined with the distributional Eluder dimension machinery in Lemma 7, this implies that

∑
t∈KM,i,T

∣∣∣EM
π′
t

[(
EMh f̂t,M

)
(sh, ah)

]∣∣∣ ≤ O(√eidBE(F ,ΠF , 1/
√
T ) ln

N ′
F (1/T ) ln(T )

δ
|KM,i,T |

+min
{
|KM,i,T | , dBE(F ,ΠF , 1/

√
T )
})

,

Note that we can derive the same upper-bound for
∑

t∈KM,i,T

∣∣∣EM
πt

[(
EMh f̂t,M

)
(sh, ah)

]∣∣∣. Then
plugging the above two bounds into Equation (3), we obtain

∑
t∈KM,i,T

(V
π′
t

1,M (s1)−V
π̂t,M

1,M (s1)) ≤ O

(√
eiH2dBE(F ,ΠF , 1/

√
T ) ln

N ′
F (1/T ) ln(T )

δ
|KM,i,T |+Hd (F ′

i)

)
.

By the definition of myopic exploration gap, we lower bound the LHS by∑
t∈KM,i,T

(V
π′
t

1,M (s1)− V
π̂t,M

1,M (s1)) ≥ |KM,i,T |
√
ei−1αβ .

Combining both bounds and rearranging yields

|KM,i,T | ≤ O

(
H2dBE(F ,ΠF , 1/

√
T )

α2
β

ln
N ′

F (1/T ) ln(T )

δ

)
.

Summing over M ∈M and i ≤ imax < ln c̃(β), we conclude Lemma 2.

To convert Lemma 2 into a sample complexity bound in Theorem 1, we show that for all M ,
π̂M = Mixture({πf̂t,M }) is β-optimal for M .

max
π

V π
1,M − V π̂M

1,M (s1) = O

β|M|H2dBE(F ,ΠF , 1/
√
T ) ln c̃(β)

α̃(β)2 ln

(
N ′

F(T
−1) lnT

δ

)
T

 .
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To have the above suboptimality controlled at the level β, we will need

O

β|M|H2dBE(F ,ΠF , 1/
√
T ) ln c̃(β)

α̃(β)2 ln

(
N ′

F(T
−1) lnT

δ

)
T

 = β.

Assume that dBE(F ,ΠF , ρ) = O(dBE
F log(1/ρ)) and log(N ′(F)(ρ)) = O(dcover

F log(1/ρ)) by ig-
noring other factors, which holds for most regular function classes including tabular and linear classes
(Russo & Van Roy, 2013), we have

T = O
(
|M|H2dBE

F dcover
F

ln c̃(β)

α̃(β)2
ln

1

δ
ln(1/ρ)

)
,

where ρ−1 = O
(
|M|H2dBE

F dcover
F

ln c̃(β)
α̃(β)2 ln(1/δ)

)
. The final bound has an extra |M| dependence

because we execute a policy for each MDP in a round.

E.1 TECHNICAL LEMMAS

Lemma 4 (Lemma 3 (Dann et al., 2022)). For any MDP M , let f = {fh}h∈[H] with fh : S×A 7→ R
and πf is the greedy policy of f . Then for any policy π′,

V π′

1 (s1)− V πf

1 (s1) ≤
H∑

h=1

EM
πf [(Ehf) (sh, ah)]−

H∑
h=1

EM
π′ [(Ehf) (sh, ah)] .

Lemma 5 (Modified from Lemma 4 (Dann et al., 2022)). Consider a sequence of policies (πt)t∈N.
At step τ , we collect one episode using π̂τ and define f̂τ as the fitted Q-learning estimator up to step
t over the function class F = {F}h∈[H]. Let ρ ∈ R+ and δ ∈ (0, 1). If F satisfies Assumption 1,
then with a probability at least 1− δ, for all h ∈ [H] and t ∈ N,

t−1∑
τ=1

EM
π̂τ
[(Ehf̂t)(sh, ah)]2 ≤ 3ρt+ 176 ln

6N ′
F (ρ) ln(2t)

δ
,

where N ′
F (ρ) =

∑H
h=1 NFh

(ρ)NFh+1
(ρ) is the sum of ℓ∞ covering number of Fh × Fh+1 w.r.t.

radius ρ > 0.

Proof. The only difference between our statement and the statement in Dann et al. (2022) is that they
consider π̂τ = expl(f̂τ ), while this statement holds for any data-collecting policy π̂τ . To show this,
we go through the complete proof here.

Consider a fixed t ∈ N, h ∈ [H] and f = {fh, fh+1} with fh ∈ Fh, fh+1 ∈ Fh+1. Let
(xt,h, at,h, rt,h)t∈N,h∈[H] be the collected trajectory in [t]. Then

Yt,h(f) =
(
fh (xt,h, at,h)− rt,h −max

a′
fh+1 (xt,h+1, a

′)
)2
−
(
(Thfh+1) (xt,h, at,h)− rt,h −max

a′
fh+1 (xt,h+1, a

′)
)2

=(fh (xt,h, at,h)− (Thfh+1) (xt,h, at,h))

×
(
fh (xt,h, at,h) + (Thfh+1) (xt,h, at,h)− 2rt,h − 2max

a′
fh+1 (xt,h+1, a

′)
)
.

Let Ft be the σ-algebra under which all the random variables in the first t−1 episodes are measurable.
Note that |Yt,h(f)| ≤ 4 almost surely and the conditional expectation of Yy,h(f) can be written as

E [Yt,h(f) | Ft] = E [E [Yt,h(f) | Ft, xt,h, at,h] | Ft] = Eπt
[(fh − Thfh+1) (xh, ah)

2
].

The variance can be bounded by

Var [Yt,h(f) | Ft] ≤ E
[
Yt,h(f)

2 | Ft

]
≤ 16E

[
(fh − Thfh+1) (xt,h, at,h)

2 | Ft

]
= 16E [Yt,h(f) | Ft] ,
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where we used the fact that |fh(xt,h, at,h) + (Thfh+1)(xt,h, at,h) − 2rt,h −
2maxa′ fh+1(xh+1, a

′)| ≤ 4 almost surely. Applying Lemma 6 to the random variable
Yt,h(f), we have that with probability at least 1− δ, for all t ∈ N,

t∑
i=1

E [Yi,h(f) | Fi] ≤ 2At

√√√√ t∑
i=1

Var [Yi,h(f) | Fi] + 12A2
t +

t∑
i=1

Yi,h(f)

≤ 8At

√√√√ t∑
i=1

E [Yi,h(f) | Fi] + 12A2
t +

t∑
i=1

Yi,h(f),

where At =
√
2 ln ln(2t) + ln(6/δ). Using AM-GM inequality and rearranging terms in the above

we have
t∑

i=1

E [Yi,h(f) | Fi] ≤ 2

t∑
i=1

Yi,h(f) + 88A2
t ≤ 2

t∑
i=1

Yi,h(f) + 176 ln
6 ln(2t)

δ
.

Let Zρ,h be a ρ-cover of Fh × Fh+1. Now taking a union bound over all ϕh ∈ Zρ,h and h ∈ [H],
we obtain that with probability at least 1− δ for all ϕh and h ∈ [H]

t∑
i=1

E [Yi,h (ϕh) | Fi] ≤ 2

t∑
i=1

Yi,h (ϕh) + 176 ln
6N ′

F (ρ) ln(2t)

δ
.

This implies that with probability at least 1− δ for all f = {fh, fh+1} ∈ Fh ×Fh+1 and h ∈ [H],

t∑
i=1

E [Yi,h(f) | Fi] ≤ 2

t∑
i=1

Yi,h(f) + 3ρ(t− 1) + 176 ln
6N ′

F (ρ) ln(2t)

δ
.

Let f̂t,h be the h-th component of the function f̂t. The above inequality holds in particular for
f = {f̂t,h, f̂t,h+1} for all t ∈ N. Finally, we have

t−1∑
i=1

Yi,h

(
f̂t

)
=

t−1∑
i=1

(
f̂t,h (si,h, ai,h)− ri,h −max

a′
f̂t,h+1 (si,h+1, a

′)
)2

−
t−1∑
i=1

((
Thf̂t,h+1

)
(si,h, ai,h)− ri,h −max

a′
f̂t,h+1 (si,h+1, a

′)
)2

= inf
f ′∈Fh

t−1∑
i=1

(
f ′ (si,h, ai,h)− ri,h −max

a′
f̂t,h+1 (si,h+1, a

′)
)2

−
t−1∑
i=1

((
Thf̂t,h+1

)
(si,h, ai,h)− ri,h −max

a′
f̂t,h+1 (si,h+1, a

′)
)2

≤ 0,

where the last inequality follows from the completeness in Assumption 1.

Lemma 6 (Time-Uniform Freedman Inequality). Suppose {Xt}∞t=1 is a martingale difference
sequence with |Xt| ≤ b. Let

Varℓ (Xℓ) = Var (Xℓ | X1, · · · , Xℓ−1) .

Let Vt =
∑t

ℓ=1 Varℓ(Xℓ) be the sum of conditional variances of Xt. Then we have that for any
δ′ ∈ (0, 1) and t ∈ N

P

(
t∑

ℓ=1

Xℓ > 2
√
VtAt + 3bA2

t

)
≤ δ′

where At =
√

2 ln ln(2(max(Vt/b2, 1))) + ln(6/δ′).
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Lemma 7 (Lemma 41 (Jin et al., 2021a)). Given a function class Φ defined on X with |ϕ(x)| ≤ C for
all (ϕ, x) ∈ Φ×X and a family of probability measures Π overX . Suppose sequences {ϕi}i∈[K] ⊂ Φ

and {µi}i∈[K] ⊂ Π satisfy for all k ∈ [K] that
∑k−1

i=1 (Eµi
[ϕk])

2 ≤ β. Then for all k ∈ [K] and
w > 0,

k∑
t=1

|Eµt [ϕt]| ≤ O
(√

dimDE(Φ,Π, ω)βk +min {k,dimDE(Φ,Π, ω)}C + kω
)
.

Proof of Theorem 1. Denote B = Θ

(
|M|2H2dBE

ln c̃(β)
α̃(β)2β ln

(
N̄F(T−1) lnT

δ

))
. The following

Corollary transform Lemma 2 to Theorem 1, whose proof directly follows by taking T = B/β. Since
at most B rounds are suboptimal according to Lemma 2, the mixing of all T policies are β-optimal.
This leads to a sample complexity

C(α̃, c̃) = Θ

(
|M|2H2dBE

ln c̃(β)

α̃(β)2β
ln

(
N̄F

(
T−1

)
lnT

δ

))

F OMITTED PROOFS FOR CASE STUDIES

F.1 LINEAR MDP CASE

Note that in this section, we use Eπ for the expectation over transition w.r.t a policy π.
Lemma 8. Let F be the function class in Proposition 3. For any policy π such that λmin(Φ

π
h) ≥ λ,

then for any policy π′ and f ′ ∈ F , Eπ′
[(
E2hf ′) (sh, ah)] ≤ Eπ

[(
E2hf ′) (sh, ah)] /λ.

Proof. Recall that Φπ
h := Eπϕh(sh, ah)ϕh(sh, ah)

⊤.

We derive the Bellman error term using the fact that f ′ is a linear function and the transitions admit
the linear function as well. For any policy π, we have

Eπ[(E2hf ′)(sh, ah)]

= Eπ

[(
f ′
h(sh, ah)− ϕh(sh, ah)

⊤θh −max
a′

Esh+1
[f ′

h+1(sh+1, a
′) | sh, ah]

)2]
= Eπ

[(
ϕh(sh, ah)

⊤wh − ϕh(sh, ah)
⊤θh −max

a′
Esh+1

[ϕh+1(sh+1, a
′)⊤wh+1 | sh, ah]

)2]
= Eπ

[(
ϕh(sh, ah)

⊤wh − ϕh(sh, ah)
⊤θh − ϕh(sh, ah)

⊤
∫
s′
ϕh+1(s

′, πf ′

h+1(s
′))⊤wh+1µh(s

′)ds′
)2
]

= Eπ

[(
ϕh(sh, ah)

⊤(wh − θh − w′
h+1)

)2]
= (wh − θh − w′

h+1)
⊤Eπ

[
ϕh(sh, ah)ϕh(sh, ah)

⊤] (wh − θh − w′
h+1)

where w′
h+1 =

∫
s′
ϕh+1(s

′, πf ′

h+1(s
′))⊤wh+1µh(s

′)ds′. Since by the assumption in Definition 6
that ∥ϕh(s, a)∥ ≤ 1 for any s, a, we have Φπ′

h ≺ I . The result follow by the condition that
λmin(Φ

π
h) ≥ λ.

Lemma 1.Fix a step h. Let {Mi,h}i∈[d] be the d MDPs such that θh,Mi,h
= ei as in Def-

inition 6. Let {πi}di=1 be d policies such that πi is a β-optimal policy for Mi,h with β <
b1/2. Let π̃ = Mixture({expl(πi)}di=1). Then for any ν ∈ Sd−1, we have λmin(Φ

π̃
h+1) ≥

ϵh
∏h−1

h′=1(1− ϵh′)b21/(2dA).

Proof. Let π be any stationary policy and recall that Π is the set of all the stationary policies. We
denote Aπ

h(s
′) ∼ πh(s

′) by the random variable for the action sampled at the step h using policy π
given the state is s′. Let ϕπ

h := Eπϕh(sh, ah).
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We further define
aνh+1(s) := argmax

a∈A
[ν⊤ϕh+1(s, a)ϕh+1(s, a)

⊤ν].

Lower bound the following quadratic term for any unit vector ν ∈ Rd,

max
π∈Π

ν⊤Φπ
h+1ν

= max
π∈Π

Eπ

[∫
s′
ν⊤ϕh+1(s

′, Aπ
h+1(s

′))ϕh+1(s
′, Aπ

h+1(s
′))⊤νµh(s

′)⊤ϕh(sh, ah)ds
′
]

= max
π

Eπ[ϕh(sh, ah)
⊤]

(∫
s′
ν⊤ϕh+1(s

′, aνh+1(s
′))ϕh+1(s

′, aνh+1(s
′))⊤νµh(s

′)ds′
)

= max
π∈Π

(ϕπ
h)

⊤wν
h+1.

where we let wν
h+1 :=

∫
s′
ν⊤ϕh+1(s

′, aνh+1(s
′))ϕh+1(s

′, aνh+1(s
′))⊤νµh(s

′)⊤ds′.

By Assumption 2, we have maxπ∈Π Eπ[ϕh(sh, ah)
⊤]wν

h+1 ≥ b21.

For the mixture policy π̃ defined in our lemma,

ν⊤Φπ̃
h+1ν =

1

d

d∑
i=1

Eexpl(πi)[ν
⊤ϕh+1(sh+1, ah+1)ϕh+1(sh+1, ah+1)

⊤ν]

≥
ϵh
∏h−1

h′=1(1− ϵh′)

Ad

d∑
i=1

(ϕπi

h )⊤wν
h+1. (4)

Since πi is a b1/2-optimal policy for MDP Mi,h and again by Assumption 2, we have

θ⊤h,Mi,h
ϕπi

h ≥
1

2
max
π∈Π

θ⊤h,Mi,h
ϕπ
h. (5)

For any vector ν ∈ Rd, let [ν]i be the i-th dimension of the vector. Note that θh,Mi,h
= ei, (5)

indicates [ϕπi

h ]i ≥ 1
2 maxπ[ϕ

π
h]i.

Combining the inequality (5) with (4), we have

ν⊤Φπ̃
h+1ν =

ϵh
∏h−1

h′=1(1− ϵh′)

dA

d∑
i=1

d∑
j=1

[ϕπi

h ]j [w
ν
h+1]j

≥
ϵh
∏h−1

h′=1(1− ϵh′)

dA

d∑
i=1

[ϕπi

h ]i[w
ν
h+1]i

≥
ϵh
∏h−1

h′=1(1− ϵh′)

dA

d∑
i=1

max
π

[ϕπ
h]i[w

ν
h+1]i

≥
ϵh
∏h−1

h′=1(1− ϵh′)

2dA
max
π

(ϕπ
h)

⊤wν
h+1

≥
ϵh
∏h−1

h′=1(1− ϵh′)b21
2dA

F.2 PROOF OF THEOREM 2

Theorem 2. ConsiderM defined in Definition 7. With Assumption 2 holding and β ≤ b1/2, for any
f ∈ Fβ , we have lower bound α(f,F ,M) ≥

√
eβ2b21/(2A|M|H) by setting ϵh = 1/h.

Proof. Let h′ be the smallest h, such that there exists Mi,h, πfMi,h is β-suboptimal. Let (i′, h′) be
the index of the MDP that has the suboptimal policy. We show that Mi′,h′ has lower bounded myopic
exploration gap.
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By definition, f is β-optimal for any MDP Mi,h′−1. By Lemma 1, letting π̃ = expl(f, ϵh′), we have

ν⊤Φπ̃
h′+1ν ≥

ϵh′
∏h′−1

h′′=1(1− ϵh′′)b21
2A|M|

.

By Lemma 8, we have that the optimal value function f∗ for MDP Mi′,h′ satisfies that for any f ′

EM
πf∗
[(
E2hf ′) (sh, ah)] ≤ 2A|M|

ϵh′
∏h′−1

h′′=1(1− ϵh′′)b21
EM
π

[(
E2hf ′) (sh, ah)] .

Thus, by Definition 3, the myopic exploration gap for f is lower bounded by

β
1√
c
= β

√
ϵh′
∏h′−1

h′′=1(1− ϵh′′)b21
2A|M|

≥

√
β2b21

2A|M|eH
,

if we choose ϵh = 1/(h+ 1).

F.3 LINEAR QUADRATIC REGULATOR

To demonstrate the generalizability of the proposed framework, we introduce another interesting
setting called Linear Quadratic Regulator (LQR). LQR takes continuous state space Rds and action
space Rda . In the LQR system, the state sh ∈ Rds evolves according to the following transition:
sh+1 = Ahsh + Bhah, where Ah ∈ Rds×ds , Bh ∈ Rds×da are unknown system matrices that
are shared by all the MDPs. We denote sh = (sh, ah) as the state-action vector. The reward
function for an MDP M takes a known quadratic form rh,M (s, a) = s⊤Rs

h,Ms+ a⊤Ra
h,Ma, where

Rs
h,M ∈ Rds×ds and Ra

h,M ∈ Rda×da 4.

Note that LQR is more commonly studied for the infinite-horizon setting, where stabilizing the system
is a primary concern of the problem. We consider the finite-horizon setting, which alleviates the
difficulties on stabilization so that we can focus our discussion on exploration. Finite-horizon LQR
also allows us to remain consistent notations with the rest of the paper. A related work (Simchowitz &
Foster, 2020) states that naive exploration is optimal for online LQR with a condition that the system
injects a random noise onto the state observation with a full rank covariance matrix Σ ≻ 0. Though
this is a common assumption in LQR literature, one may notice that the analog of this assumption in
the tabular MDP is that any state and action pair has a non-zero probability of visiting any other state,
which makes naive exploration sample-efficient trivially. In this section, we consider a deterministic
system, where naive exploration does not perform well in general.

Properties of LQR. It can be shown that the optimal actions are linear transformations of the
current state (Farjadnasab & Babazadeh, 2022; Li et al., 2022a).

The optimal linear response is characterized by the discrete-time Riccati equation given by

Ph,M = A⊤
h (Ph+1,M − Ph+1,M R̄−1

h+1,MB⊤
h Ph+1,M )Ah +Rs

h,M ,

where R̄h+1,M = Ra
h + B⊤

h Ph+1,MAh and PH+1 = 0. Assume that the solution for the above
equation is {P ∗

h,M}h∈[H+1], then the optimal control actions takes the form

ah = F ∗
h,Msh, where F ∗

h,M = −(Rs
h,M +B⊤

h P ∗
h,MBh)

−1B⊤P ∗
h,MAh.

and optimal value function takes the quadratic form: V ∗
h,M (s) = s⊤P ∗

h,Ms and

Q∗
h,M (x) = x⊤

[
Rs

h,M +A⊤
h P

∗
h+1,MAh A⊤

h P
∗
h+1,MBh

B⊤
h P ∗

h+1,MAh Ra
h,M +B⊤

h P ∗
h+1,MBh

]
x.

This observation allows us to consider the following function approximation

F = (Fh)h∈[H+1], where each Fh = {x 7→ x⊤Ghx : Gh ∈ R(ds+da)×(ds+da)}.
The quadratic function class satisfies Bellman realiazability and completeness assumptions.

4Note that LQR system often consider a cost function and the goal of the agent is to minimize the cumulative
cost with Rs

h,M being semi-positive definite. We formulation this as a reward maximization problem for
consistency. Thus, we consider Rs

h,M ≺ 0
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Definition 8 (Diverse LQR Task Set). Inspired by the task construction in linear MDP case, we
construct the diverse LQR set byM = {Mi,h}i∈[ds],h∈[H] such that these MDPs all share the same
transition matrices Ah and Bh and each Mi,h has Rs

h′,Mi,h
= 1[h′ = h]eie

⊤
i and Ra

h′,Mi,h
= −I .

Assumption 3 (Regularity parameters). Given the task set in Definition 8, we define some constants
that appears on our bound. Let π∗

i,h be the optimal policy for Mi,h. Let

b4 = max
i,h

Eπ∗
i,h

max
h′
∥sh′∥2, and b5 = max

i,h
Eπ∗

i,h
max
h′
∥ah′∥2.

These regularity assumption is reasonable because the optimal actions are linear transformations of
states and we consider a finite-horizon MDP, with F ∗

h having upper bounded eigenvalues.

Similarly to the linear MDP case, we assume that the system satisfies some visibility assumption.
Assumption 4 (Coverage Assumption). For any ν ∈ Rds−1, there exists a policy π with ∥ah∥2 ≤ 1
such that

max
π

Eπ[s
⊤
h ν] ≥ b3, for b3 > 1.

Theorem 3. Given Assumption 3, 4 and the diverse LQR task set in Definition 8, we have that for
any f ∈ Fβ with β ≤ (b23 − 1)b25/2,

α(f,F ,M) = Ω

(
max{b24, b25}b24

dsHmax{(b23 − 1)b25, dsσ
2}(b23 − 1)b25

)
.

F.4 PROOF OF THEOREM 3

Lemma 9. Assume that we have a set of policies {πi}i∈[d] such that the i-th policy is a (b23− 1)b25/2-
optimal policy for LQR with Rs

h,i = eie
⊤
i and Ra

h,i = −I . Let π̃ = Mixture(expl{πi}). Then we
have

λmin(Eπ̃sh+1s
⊤
h+1) ≥

ds max{λ, dσ2}
2max{b24, b25}

∏h−1
h′=1(1− ϵh′)ϵh

λ,

with λ = (b23 − 1)b25.

Proof. We directly analyze the state covariance matrix at the step h+ 1. Let ηh ∼ N (0, σ2)

Eπ̃sh+1s
⊤
h+1 = Eπ̃(Ahsh +Bhah)(Ahsh +Bhah)

⊤

⪰
∏h−1

h′=1(1− ϵh′)ϵh
ds

ds∑
i=1

(
Eπi

(Ahsh +Bhηh)(Ahsh +Bhηh)
⊤)

=

∏h−1
h′=1(1− ϵh′)ϵh

ds

ds∑
i=1

(
AhEπi

shs
⊤
hA

⊤
h +BhEηhη⊤h B⊤

h

)
(6)

To proceed, we show that
∑ds

i=1 Eπi
shs

⊤
h ⪰ λI .

From Assumption 4, we have Eπ∗
i
[s⊤h eie

⊤
i sh − aha

⊤
h ] ⪰ b23b

2
5 − b25, and by the fact that πi is a

(b23 − 1)b25/2-optimal policy, we have

Eπ∗
i
[s⊤h eie

⊤
i sh − aha

⊤
h ] ⪰ (b23b

2
5 − b25)/2.

Since Eπiaha
⊤
h ⪰ 0, we have Eπi [s

⊤
h eie

⊤
i sh] ⪰ (b23 − 1)b25/2. Therefore,

∑ds

i=1 Eπishs
⊤
h ⪰ λI

with λ = (b23 − 1)b25/2.

Combined with (6), we have

Eπ̃sh+1s
⊤
h+1 ⪰

∏h−1
h′=1(1− ϵh′)ϵh

ds

(
λAhA

⊤
h + dsσ

2BhB
⊤
h

)
.

Apply Assumption 4 again, for each νi = ei, i = 1, . . . , ds, there exists some policy π′
i with ∥ah∥2 ≤

b5, such that ν⊤i Eπ′
i
sh+1s

⊤
h+1νi ≥ b23b

2
5 − b25. Therefore, we have that

∑ds

i=1 Eπ′
i
sh+1s

⊤
h+1 ⪰

(b23 − 1)b25I
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The proof is completed by

ds∑
i=1

Eπ′
i
sh+1s

⊤
h+1 ⪯ 2

ds∑
i=1

(
AhEπ′

i
shs

⊤
hA

⊤
h +BhEπ′

i
aha

⊤
hB

⊤
h

)
⪯ 2

ds∑
i=1

(
b24AhA

⊤
h + b25BhEπ′

i
B⊤

h

)
⪯ 2max{b24, b25}

max{λ, dσ2}

∏h−1
h′=1(1− ϵh′)ϵh

ds
Eπ̃sh+1s

⊤
h+1.

To complete the proof of Theorem 3, we combine Lemma 10 and Lemma 9.

F.5 SUPPORTING LEMMAS

Lemma 10 shows that having a full rank covariance matrix for the state sh is a sufficient condition
for bounded occupancy measure.
Lemma 10. Let F be the function class described above. For any policy π and h such that

λmin(Eπ[shs
⊤
h ]) ≥ λ,

we have for any π′ such that maxh ∥sh∥2 ≤ b4, and for any f ′ ∈ F ,

EM
π′

[(
E2hf ′) (sh, ah)] ≤ b24

λ2E
M
π

[(
E2hf ′) (sh, ah)] .

Proof. Lemma 11 shows that the Bellman error also takes a quadratic form of sh.

Lemma 11. For any f ∈ F , there exists some matrix G̃h such that (Ehf)(x) = x⊤G̃hx.

To complete the proof of Lemma 10, let wh = sh ⊗ sh be the Kronecker product between sh and
itself. By Lemma 11, we can write (Ehf)(sh) = Vec(G̃h)

⊤wh. Again, this is an analog of the linear
form we had for thee linear MDP case. Thus, we can write (E2hf)(sh) = Vec(G̃h)

⊤whw
⊤
h Vec(G̃h).

By Lemma 12 and the fact that Eπ(whw
⊤
h ) = Eπ(shs

⊤
h )⊗Eπ(shs

⊤
h ), we have λmin(Eπwhw

⊤
h ) ≥ λ2.

For any other policy π′, and using the fact that ∥wh∥ ≤ b24, we have

Eπ′(E2hf)(sh) = Eπ′ [Vec(G̃h)
⊤whw

⊤
h Vec(G̃h)] ≤

b24
λ2Eπ[Vec(G̃h)

⊤whw
⊤
h Vec(G̃h)] ≤

b24
λ2Eπ(E2hf)(sh).

Lemma 11. For any f ∈ F , there exists some matrix G̃h such that (Ehf)(x) = x⊤G̃hx.

Proof. The Bellman error of the LQR can be written as

(Ehf)(x) =
(
x⊤Ghx− s⊤Rs

hs− a⊤Ra
ha− max

a′∈Rda
[(Ahs+Bha)

⊤, a′⊤]Gh+1

[
Ahs+Bha

a′

])
Note that the optimal a′ can be written as some linear transformation of x. Thus we can write

max
a′∈Rda

[(Ahs+Bha)
⊤, a′⊤]Gh+1

[
Ahs+Bha

a′

]
= x⊤G′x.

The whole equation can be written as a quadratic form as well.

Lemma 12. Let A ∈ Rd1×d1 have eigenvalues {λi}i∈[d] and B ∈ Rd2×d2 have eigenvalues
{µi}i∈[d]. The eigenvalues of A⊗B are {λiµj}i∈[d1],j∈d2

.
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G RELAXING VISIBILITY ASSUMPTION

G.1 TABULAR CASE

A simple but interesting case to study is the tabular case, where the value function class is the class of
any bounded functions, i.e. Fh = {f : S ×A 7→ [0, 1]}. A commonly studied family of multitask
RL is the MDPs that share the same transition probability, while they have different reward functions,
this problem is studied in a related literature called reward-free exploration (Jin et al., 2020a; Wang
et al., 2020; Chen et al., 2022a). Specifically, (Jin et al., 2020a) propose to learn S×H sparse reward
MDPs separately and generates an offline dataset, with which one can learn a near-optimal policy for
any potential reward function. With a similar flavor, we show that any superset of the S ×H sparse
reward MDPs has low myopic exploration gap. Though the tabular case is a special case of the linear
MDP case, the lower bound we derive for the tabular case is slightly different, which we show in the
following section.

We first give a formal definition on the sparse reward MDP.
Definition 9 (Sparse Reward MDPs). LetM be a set of MDPs sharing the same transition probabili-
ties. We sayM contains all the sparse reward MDPs if for each s, h ∈ S × [H], there exists some
MDP Ms,h ∈M, such that Rh′,Ms,h

(s′, a′) = 1(s = s′, h = h′) for all s′, a′, h′.

To show a lower bound on the myopic exploration gap, we make a further assumption on the
occupancy measure µπ

h(s, a) := Prπ(sh = s, ah = a), the probability of visiting s, a at the step h by
running policy π.
Assumption 5 (Lower bound on the largest achievable occupancy measure). For all s, h ∈ S × [H],
we assume that maxπ µ

π
h(s) ≥ b1 for some constant b or maxπ µ

π
h(s) = 0.

Assumption 5 guarantees that any β-optimal policy (with β < b1) is not a vacuous policy and it
provides a lower bound on the corresponding occupancy measure. We will discuss later in Appendix G
on how to remove this assumption with an extra S ×H factor on the sample complexity bound.
Proposition 5. Consider a set of sparse reward MDP as in Definition 9. Assume Assumption 5 is true.
For any β ≤ b1/2 and f ∈ Fβ , we have α(f,F ,M) ≥ ᾱ for some constant ᾱ =

√
β2/(2e|M|AH)

by choosing ϵh = 1/h.

Proof. We prove this lemma in a layered manner. Let h′ be the minimum step such that there exists
some Ms,h′ is β-suboptimal. By definition, in the layer h′ − 1, all the MDPs are β-suboptimal, in
which case πMs,h′−1

visits (s, h′ − 1) with a probability at least b/2. Now we show that the optimal
policy π∗

Ms,h′ of a suboptimal MDP Ms,h′ has lower bounded occupancy ratio.

For a more concise notation, we let M ′ = Ms,h′ . Note that

µ
π∗
M′

h′ (s) =
∑
s′∈S

µ
π∗
M′

h′−1(s
′)Ph′−1(s | s′, π∗

M ′(s′))

≤
∑
s′∈S

max
π∈Π

µπ
h′−1(s

′)Ph′−1(s | s′, π∗
M ′(s′))

(By the fact that µ
πM

s′,h′−1

h′−1 (s′) is β-optimal policy of Ms′,h′−1)

≤
∑
s′∈S

b1
b1 − β

µ
πM

s′,h′−1

h′−1 (s′)Ph′−1(s | s′, π∗
M ′(s′))

≤
∑
s′∈S

b1|M|A
(b1 − β)(1− ϵ)h′−1ϵ

µ
expl(π)
h′−1 (s′)Ph′−1(s | s′, expl(π)(s′))

=
b1|M|A

(b1 − β)(1− ϵ)h′−1ϵ
µ
expl(π)
h′ (s)

The occupancy measure ratio can be upper bounded by c = b1|M|A
(b1−β)(1−ϵ)h′−1ϵ

. Then the myopic
exploration gap can be lower bounded by

β√
c
=

√
(b1 − β)β2(1− ϵ)h′−1ϵ

b1|M|A
≥

√
β2(1− ϵ)h′−1ϵ

2|M|A
.
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To proceed, we choose ϵh = 1/h, which leads to (1− ϵh)
h−1ϵ ≥ 1/(eH).

Plugging this into Theorem 1, we achieve a sample complexity bound of O(S2AH5/β2), with
|M| = SH . This is not a near-optimal bound for reward-free exploration (a fair comparison in our
setup). This is because the sample complexity bound in Theorem 1 is not tailored for tabular case.

G.2 REMOVING COVERAGE ASSUMPTION

Though Assumption 2 and Assumption 4 are relatively common in the literature, we have not seen
an any like Assumption 5. In fact, Assumption 5 is not a necessary condition for sample-efficient
myopic exploration as we will discuss in this section. The main technical invention is to construct a
mirror transition probability that satisfies the conditions in Assumption 5. However, we will see that
a inevitable price of an extra SH factor has to be paid.

To illustrate the obstacle of removing Assumption 5, recall that the proof of Proposition 5 relies on
the fact that all β-optimal policies guarantee a non-zero probability of visiting the state corresponding
to their sparse reward with β < b1/2. Without Assumption 5, a β-optimal policy can be an arbitrary
policy. At the step h, we have at most S such MDPs, which may accumulate an irreducible error
of Sβ, which means that at the round h+ 1, we can only guarantee Sβ-optimal policies. An naive
adaptation will require us to set the accuracy β′ = β/SH in order to guarantee a β error in the last
step. The following discussion reveals that the error does not accumulate in a multiplicative way.

Mirror MDP construction. It is helpful to consider a mirror transition probability modified from
our original transition probability. We denote the original transition probability by P = {Ph}h∈[H].
Consider a new MDP with transition P ′ = {P ′

h}h∈[H] and state space S ′ = S ∪ {s0}, where s0 is a
dummy state. We initialize P ′ such that

P ′
h(s

′ | s, a) = Ph(s
′ | s, a) for all s′, s, a, h, where s′, s ̸= s0, and P ′

h(s0 | s0, ·) = 1 (7)

Starting from h = 1, we update P ′
h by a forward induction according to Algorithm 2. The design

principle is to direct the probability mass of visiting (s, h+ 1) to (s0, h+ 1), whenever the maximal
probability of visiting (s, h+ 1) is less than β.

Algorithm 2 Creating Mirror Transitions

Input: Original Transition P , threshold β > 0.
Initialize P ′ according to (7)
for h = 1, 2, . . . ,H − 1 do

for each s ∈ S such that maxπ µ
′π
h+1(s) ≤ β do

P ′
h(s0 | s̃, ã)← P ′

h(s0 | s̃, ã) + P ′
h(s | s̃, ã) for each s̃, ã.

P ′
h(s | s̃, ã)← 0 for each s̃, ã.

end for
end for
Return P ′

By definition of P ′, we have two nice properties.

Proposition 6. For any h ∈ [H], s ∈ S, we have maxπ µ
′π
h (s) = 0 or maxπ µ

′π
h (s) > β.

Thus, P ′ nicely satisfies our Assumption 5. We also have that P ′ is not significantly different from P .

Proposition 7. For any policy π, µ′π
h (s) ≥ µπ

h(s)−HSβ. Further more, any (SH+1)β-suboptimal
policy for P is at least β-suboptimal for P ′ with respect to the same reward.

Proof. We simply observe that maxπ µ
′π
h (s0) ≤ (h − 1)Sβ. This is true since at any round, we

have at most S states with maxπ µ
′π(s) ≤ β, all the probability that goes to s will be deviated to s0.

Therefore, for any π
µ′π
h+1(s0) ≤ µ′π

h (s0) + Sβ.
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Therefore, any (SH + 1)β-suboptimal policy for P has the myopic exploration gap of β-suboptimal
policy for P ′.

Theorem 4. Consider a set of sparse reward MDP as in Definition 9. For any β ∈ (0, 1) and
f ∈ Fβ , we have α(f,F ,M) ≥ ᾱ for some constant ᾱ = Ω(

√
β2/(|M|AS2H3)) by choosing

ϵh = 1/(h+ 1).

H CONNECTIONS TO DIVERSITY

Diversity has been an important consideration for the generalization performance of multitask learning.
How to construct a diverse set, with which we can learn a model that generalizes to unseen task is
studied in the literature of multitask supervised learning.

Previous works (Tripuraneni et al., 2020; Xu & Tewari, 2021) have studied the importance of diversity
in multitask representation learning. They assume that the response variable is generated through
mean function ft ◦ h, where h is the representation function shared by different tasks and ft is the
task-specific prediction function of a task indexed by t. They showed that diverse tasks can learn the
shared representation that generalizes to unseen downstream tasks. More specifically, if ft ∈ F is a
discrete set, a diverse set needs to include all possible elements in F . If F is the set of all bounded
linear functions, we need d tasks to achieve a diverse set. Note that these results align with the results
presented in the previous section. Could there be any connection between the diversity in multitask
representation learning and the efficient myopic exploration?

Xu & Tewari (2021) showed that Eluder dimension is a measure for the hardness of being diverse.
Here we introduce a generalized version called distributional Eluder dimension (Jin et al., 2021a).

Definition 10 (ε-independence between distributions). Let G be a class of functions defined on a space
X , and ν, µ1, . . . , µn be probability measures over X . We say ν is ε-independent of {µ1, µ2, . . . , µn}
with respect to G if there exists g ∈ G such that

√∑n
i=1 (Eµi [g])

2 ≤ ε, but |Eν [g]| > ε

Definition 11 (Distributional Eluder (DE) dimension). Let G be a function class defined on X , and
Π be a family of probability measures over X . The distributional Eluder dimension dimDE(G,Π, ε)
is the length of the longest sequence {ρ1, . . . , ρn} ⊂ Π such that there exists ε′ ≥ ε where ρi is
ε′-independent of {ρ1, . . . , ρi−1} for all i ∈ [n].

Definition 12 (Bellman Eluder (BE) dimension (Jin et al., 2021)). Let EhF be the set of Bellman
residuals induced by F at step h, and Π = {Πh}Hh=1 be a collection of H probability measure
families over X ×A. The ε-Bellman Eluder dimension of F with respect to Π is defined as

dimBE(F ,Π, ε) := max
h∈[H]

dimDE (EhF ,Π, ε)

Constructing a diverse set. For each h ∈ [H], consider a sequence of functions f1, . . . , fd ∈ F ,
such that the induced policy (πfi)i∈[d] generates probability measures (µfi

h+1)i∈[d] at the step h+ 1.
Let (µfi

h+1)i∈[d] be ϵ-independence w.r.t the function class EhF between their predecessors. By the
definition of BE dimension, we can only find at most dimDE (EhF ,Π, ε) of these functions. Then
conditions in Definition 3 is satisfied with c = 1/(dH).

Revisiting linear MDPs. The task set construction in 7 seems to be quite restricted as we require a
set of standard basis. One might conjecture that a task set Mi,h with full rank [θ1,h, . . . , θd,h] will
suffice. From what we discussed in the general case, we will need the occupancy measure generated
by the optimal policies for these MDPs to be ϵ-independent and any other distribution is ϵ-dependent.
This is generally not true even if the reward parameters are full rank. To see this, let us consider
a tabular MDP case with two states {1, 2}, where at the step h, we have two tasks M1, M2, with
Rh,M1(s, a) = 1[s = 1] and Rh,M2(s, a) = 0.511[s = 1]+0.491[s = 2]. This gives θh,M1 = [1, 0]
and θh,M2

= [0.49, 0.51] as shown in Figure 3.

Construct the MDP such that the transition probability and action space any policy either visit state 1
or state 2 at the step h. Then the optimal policies for both tasks are the same policy which visits state
1 with probability one, even if the reward parameters [θh,M1 , θh,M2 ] are full-rank.
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Figure 3: An illustration of why a full-rank set of reward parameters does not achieve diversity. The
red arrows are two reward parameters and the star marks the generated state distributions of the
optimal policies corresponding to the two rewards at the step h. Since both optimal policies only visit
state 1, they may not provide a sufficient exploration for the next time step h+ 1.

I IMPLICATIONS OF DIVERSITY ON ROBOTIC CONTROL ENVIRONMENTS

In this section, we conduct simulation studies on robotic control environments with practical interests.
Since myopic exploration has been shown empirically efficient in many problems of interest, we
focus on the other main topic–diversity. We investigate how our theory guides a diverse task set
selection. More specifically, our prior analysis on Linear MDPs suggests that a diverse task set should
prioritize tasks with full-rank feature covariance matrices. We ask whether tasks with a more spread
spectrum of the feature covariance matrix lead to a better training task set. Note that the goal of this
experiment is not to show the practical interests of Algorithm 1. Instead, we are revealing interesting
implications of the highly conceptual definition of diversity in problems with practical interests.

Environment and training setup. We adopt the BipedalWalker environment from (Portelas et al.,
2020). The learning agent is embodied into a bipedal walker whose motors are controllable with
torque (i.e. continuous action space). The observation space consists of laser scan, head position, and
joint positions. The objective of the agent is to move forward as far as possible, while crossing stumps
with varying heights at regular intervals (see Figure 4 (a)). The agent receives positive rewards for
moving forward and negative rewards for torque usage. An environment or task, denoted as Mp,q,
is controlled by a parameter vector (p, q), where p and q denote the heights of the stumps and the
spacings between the stumps, respectively. Intuitively, an environment with higher and denser stumps
is more challenging to solve. We set the parameter ranges for p and q as p ∈ [0, 3] and q ∈ [0, 6] in
this study.

The agent is trained by Proximal Policy Optimization (PPO) (Schulman et al., 2017) with a standard
actor-critic framework (Konda & Tsitsiklis, 1999) and with Boltzmann exploration that regularizes
entropy. Note that Boltzmann exploration strategy is another example of myopic exploration, which is
commonly used for continuous action space. Though it deviates from the ϵ-greedy strategy discussed
in the theoretical framework, we remark that the theoretical guarantee outlined in this paper can be
trivially extend to Boltzmann exploration. The architecture for the actor and critic feature extractors
consists of two layers with 400 and 300 neurons, respectively, and Tanh (Rumelhart et al., 1986) as
the activation function. Fully-connected layers are then used to compute the action and value. We
keep the hyper-parameters for training the agent the same as Romac et al. (2021).

I.1 INVESTIGATING FEATURE COVARIANCE MATRIX

We denote by ϕ(s, a) the output of the feature extractor. We evaluate the extracted feature at the end
of the training generated by near-optimal policies, denoted as π, on 100 tasks with different parameter
vectors (p, q). We then compute the covariance matrix of the features for each task, denoted as
Vp,q = EMp,q

π
∑H

h=1 ϕ(sh, ah)ϕ(sh, ah)
T , whose spectrums are shown in Figure 4 (b) and (c).

By ignoring the extremely large and small eigenvalues on two ends, we focus on the largest 100-200
dimension, where we observe that the height of the stumps p has a larger impact on the distribution
of eigenvalues. In Figure 4 (b), we show the boxplot of the log-scaled eigenvalues of 100-200
dimensions for environments with different heights, where we average spacings. We observe that the
eigenvalues can be 10 times higher for environments with an appropriate height (1.0-2.3), compared
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to extremely high and low heights. However, the scales of eigenvalues are roughly the same if we
control the spacings and take average over different heights as shown in Figure 4 (c). This indicates
that choosing an appropriate height is the key to properly scheduling tasks.

In fact, the task selection coincidences with the tasks selected by the state-of-the-art Automatic
Curriculum Learning (ACL). We investigate the curricula generated by ALP-GMM (Portelas et al.,
2020), a well-established curriculum learning algorithm, for training an agent in the BipedalWalker
environment for 20 million timesteps. Figure 4 (d) gives the density plots of the ACL task sampler
during the training process, which shows a significant preference over heights in the middle range,
with little preference over spacing.

(a) BipedalWalker environment
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Figure 4: (a) BipedalWalker Environment with different stump spacing and heights. (b-c) Boxplots
of the log-scaled eigenvalues of sample covariance matrices of the trained embeddings generated by
the near optimal policies for different environments. In (b), we take average over environments with
the same height while in (c), over the same spacing. (d) Task preference of automatically generated
curriculum at 5M and 10M training steps respectively. The red regions are the regions where a task
has a higher probability to be sampled.

Training on different parameters. To further validate our finding, we train the same PPO agent
with different means of the stump heights and see that how many tasks does the current agent master.
As we argued in the theory, a diverse set of tasks provides good behavior policies for other tasks
of interest. Therefore, we also test how many tasks it could further master if one use the current
policy as behavior policy for fine-tuning on all tasks. The number of tasks the agent can master by
learning on environments with heights ranging in [0.0, 0.3], [1.3, 1.6], [2.6, 3.0] are 28.1, 41.6, 11.5,
respectively leading to a significant outperforming for diverse tasks ranging in [1.3, 1.6]. Table 1
gives a complete summary of the results.

Table 1: Training on different environment parameters. Each row represents a training scenario,
where the first two columns are the range of sampled parameters. The mastered tasks are out of 121
evaluated tasks with the standard deviation calculated from ten independent runs.

Obstacle spacing Stump height Mastered task
[2, 4] [0.0, 0.3] 28.1± 6.1
[2, 4] [1.3, 1.6] 41.6± 9.8
[2, 4] [2.6, 3.0] 11.5± 10.9
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Figure 5: (b-c) Log-scaled eigenvalues of sample covariance matrices of the trained embeddings
generated by the near optimal policies for different environments.
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