Supporting Information: Multi-Modal and Multi-Task Transformer for Small Molecule Drug Discovery

Sai Krishna Sirumalla^{*1} David S. Farina Jr^{*1} Zhuoran Qiao¹ Daniele A. Di Cesare¹ Felipe Costas Farias¹ Michael B. O'Connor¹ Peter J. Bygrave¹ Feizhi Ding¹ Thomas Dresselhaus¹ Marcelo G. P. de Lacerda¹ Jason M. Swails¹ Daniel Miles¹ Matthew Welborn¹ Frederick R. Manby¹ Thomas F. Miller III¹

^{*}Equal contribution ¹Iambic Therapeutics, San Diego, California, USA. Correspondence to: Matthew Welborn <matt@iambic.ai>.

Accepted at the 1st Machine Learning for Life and Material Sciences Workshop at ICML 2024. Copyright 2024 by the author(s).

1. Biogen ADME gpt-3.5-turbo-0125 results

Figure 1. Scatter plot of predictions vs labels for a gpt-3.5-turbo-0125 model fine-tuned on the six Biogen ADME assays. Sampling is performed at zero temperature. Other temperatures were tested and were not found to improve accuracy.

2. Benchmark Tasks

The tables below describe the benchmark tasks used in this study. "Transform" describes the way in which data were transformed prior to training and testing. "log" refers to a natural logarithm, and "logit" refers to a logistic transform. "Num Train" and "Num Test" are the number of training and test data respectively. Each test datum contains one molecule identified by a SMILES string and an associated numerical label. All tasks are regression tasks.

"PROTEIN 1-6" refers to undisclosed protein targets of internal drug discovery programs.

Table 1.

Internal Benchmar	k Tasks.				
Task	Description	Units	Transform	Num Train	Num Test
PROTEIN 1	IC50 corresponding to the inhibition of protein target 1 by a ligand.	molar	log	203	138
PROTEIN 2	IC50 corresponding to the inhibition of protein target 2 by a ligand.	molar	log	203	142
PROTEIN 3	IC50 corresponding to the inhibition of protein target 3 by a ligand.	molar	log	200	138
PROTEIN 4	IC50 corresponding to the inhibition of protein target 4 by a ligand.	molar	log	166	108
PROTEIN 5	IC50 corresponding to the inhibition of protein target 5 by a ligand.	molar	log	197	138
PROTEIN 6	IC50 corresponding to the inhibition of protein target 6 by a ligand.	molar	log	109	103
FBS-PB	Percent of compound unbound to fetal bovine serum	dimensionless	logit	41	89
GSH	Stability of a compound in presence of 5 mM glutathione.	second	log	14	47
HLM-PB	Percent of a compound unbound to human liver microsomes.	dimensionless	logit	53	70
HPPB	Percent of a compound unbound to human plasma.	dimensionless	logit	27	47
HUMAN HEP	Metabolic stability of a compound in human hepatocytes.	liter / cell / second	log	54	93
SOLUBILITY	Kinetic Solubility of a compound in a pH 7.4 PBS buffer.	molar	log	337	295
LOGD	Lipophilicity of a compound at a pH of 7.4 using the shake flask method.	dimensionless	log	276	140
MDCK-MDR1-ER	MDCK-MDR1 efflux ratio of a compound.	dimensionless	log	52	133
MOUSE HEP	Metabolic stability of a compound in mouse hepatocytes.	liter / cell / second	log	70	151
MPPB	Percent of a compound unbound to mouse plasma.	dimensionless	logit	36	77
PAMPA PAPP	Permeability of a compound through PAMPA membrane walls.	meter / second	log	45	34
RAT HEP	Metabolic stability of a compound in rat hepatocytes.	liter / cell / second	log	47	83

The

Table 2.

Biogen ADME Be	enchmark Tasks.				
Task	Description	Units	Transform	Num Train	Num Test
HLM	Metabolic stability of a compound in human liver microsomes	liter / gram / second	log	2827	260
HPPB	Measurement of the percent unbound of a compound to human plasma.	dimensionless	logit	144	50
MDR1-MDCK-ER	Measurement of MDR1-MDCK Efflux ratio.	dimensionless	log	2419	223
RLM	Metabolic Stability in rat liver microsomes	liter / gram / second	log	2798	256
RPPB	Measurement of the percent unbound of a compound to rat plasma.	dimensionless	logit	118	50
SOLUBILITY	Kinetic Solubility of a compound in a pH 6.8 PBS buffer.	atomic mass unit / bohr 3	log	1980	193

Table 3.

The Kinase200 Benchmark Tasks. Transform Task Description Units Num Train Num Test 949 CDK1 IC50 corresponding to the inhibition of CDK1 by a ligand. 110 molar log CDK2 IC50 corresponding to the inhibition of CDK2 by a ligand. 6410 molar log 627 log CDK4 IC50 corresponding to the inhibition of CDK4 by a ligand. molar 606 77 CDK5 IC50 corresponding to the inhibition of CDK5 by a ligand. molar log 954 103 CDK6 IC50 corresponding to the inhibition of CDK6 by a ligand. 275 39 molar log 479 CDK7 IC50 corresponding to the inhibition of CDK7 by a ligand. molar log 56 CDK8 IC50 corresponding to the inhibition of CDK8 by a ligand. molar log 569 80 CDK9 IC50 corresponding to the inhibition of CDK9 by a ligand. 849 82 molar log CDK19 IC50 corresponding to the inhibition of CDK19 by a ligand. molar log 208 21

Table 4. Pearson correlation coefficient of the multi-modal transformer models trained in this work (Base and LoRA-finetuned) vs Chemprop and XGBoost on CDKs from the Kinase200 Benchmark

	XGBoost	Chemprop	Chemprop	This work	This work
	Single-Task	Multi-Task	Single-Task	Base	LoRA
CDK1	0.236	0.362 ± 0.035	0.188 ± 0.044	0.275	0.330 ± 0.038
CDK2	0.540	0.418 ± 0.025	0.383 ± 0.012	0.261	0.480 ± 0.011
CDK4	0.369	0.113 ± 0.101	-0.228 ± 0.073	0.474	0.565 ± 0.019
CDK5	0.240	0.447 ± 0.018	0.416 ± 0.014	0.263	0.420 ± 0.014
CDK6	-0.240	0.491 ± 0.060	0.600 ± 0.062	-0.144	0.628 ± 0.025
CDK7	0.315	0.412 ± 0.065	0.256 ± 0.040	0.144	0.577 ± 0.033
CDK8	0.287	0.666 ± 0.016	0.552 ± 0.043	0.499	0.665 ± 0.013
CDK9	-0.056	0.078 ± 0.032	-0.000 ± 0.026	0.325	0.387 ± 0.029
CDK19	0.162	0.310 ± 0.022	0.533 ± 0.031	0.512	0.595 ± 0.010
Median	0.240	0.412	0.383	0.275	0.565

	XGBoost Single-Task	Chemprop Multi-Task	Chemprop Single-Task	This work Base	This work
CDK1	0 537	0.542 + 0.015	0.568 ± 0.015	0.849	0.509 ± 0.008
CDK2	0.764	0.884 ± 0.025	0.866 ± 0.011	0.922	0.773 ± 0.004
CDK4	0.972	1.084 ± 0.053	1.332 ± 0.067	0.869	0.880 ± 0.029
CDK5	0.655	0.617 ± 0.013	0.694 ± 0.017	0.819	0.549 ± 0.011
CDK6	1.279	0.982 ± 0.099	0.916 ± 0.052	1.137	0.796 ± 0.036
CDK7	0.629	0.669 ± 0.049	0.665 ± 0.012	0.880	0.522 ± 0.020
CDK8	1.083	0.826 ± 0.020	0.961 ± 0.038	0.978	0.848 ± 0.013
CDK9	0.941	0.973 ± 0.020	0.976 ± 0.014	0.869	0.746 ± 0.013
CDK19	1.083	1.132 ± 0.018	0.964 ± 0.022	0.943	0.838 ± 0.019
Median	0.941	0.884	0.916	0.880	0.773

Table 5. Mean absolute error (MAE) of the multi-modal transformer models trained in this work (Base and LoRA-finetuned) vs Chemprop and XGBoost on CDKs from the Kinase200 Benchmark

Table 6. Mean absolute error (MAE) of the multi-modal transformer models trained in this work (Base and LoRA-finetuned) vs Chemprop
and XGBoost on the Biogen ADME, Internal, and Kinase200 Benchmarks. The error for Chemprop and LoRA is the standard error of the
mean over 5 different random seeds. The LoRA fine-tuned multi-modal transformer has the lowest MAE on 6/6 Biogen ADME tasks and
8/18 Internal tasks. It has the lowest median MAE on the Kinase200 benchmark

Task	XGBoost	Chemprop	Chemprop	This work	This work		
	Single-Task	Multi-Task	Single-Task	Base	LoRA		
Biogen ADME							
HLM	0.419	0.333 ± 0.002	0.330 ± 0.003	0.376	0.279 ± 0.003		
HPPB	0.818	0.625 ± 0.014	0.616 ± 0.009	0.664	0.518 ± 0.008		
MDR1-MDCK-ER	0.456	0.384 ± 0.013	0.398 ± 0.009	0.467	0.317 ± 0.002		
RLM	0.476	0.373 ± 0.005	0.394 ± 0.005	0.519	0.319 ± 0.003		
RPPB	0.735	0.584 ± 0.036	0.672 ± 0.013	0.562	0.434 ± 0.007		
SOLUBILITY	0.445	0.392 ± 0.002	0.397 ± 0.005	0.434	0.330 ± 0.003		
	Interna	al absorption and	distribution				
FBS-PB	0.375	0.293 ± 0.020	0.363 ± 0.007	0.472	0.361 ± 0.012		
HLM-PB	0.357	0.337 ± 0.009	0.463 ± 0.006	0.911	0.330 ± 0.021		
HPPB	0.659	0.480 ± 0.016	0.473 ± 0.004	0.962	0.412 ± 0.014		
MDCK-MDR1-ER	0.473	0.555 ± 0.008	0.593 ± 0.005	2.085	0.421 ± 0.013		
MPPB	0.655	0.408 ± 0.021	0.659 ± 0.014	1.275	0.420 ± 0.015		
PAMPA PAPP	0.586	0.592 ± 0.013	0.527 ± 0.001	1.122	0.457 ± 0.022		
	Interr	nal Inhibition assa	ays (IC50)				
PROTEIN 1	0.490	0.536 ± 0.009	0.582 ± 0.027	0.870	0.499 ± 0.010		
PROTEIN 2	0.805	0.658 ± 0.030	0.582 ± 0.015	0.923	0.605 ± 0.012		
PROTEIN 3	0.602	0.629 ± 0.011	0.598 ± 0.018	0.684	0.566 ± 0.005		
PROTEIN 4	0.646	0.676 ± 0.029	0.731 ± 0.033	0.848	0.616 ± 0.024		
PROTEIN 5	0.576	0.667 ± 0.011	0.623 ± 0.020	0.709	0.583 ± 0.005		
PROTEIN 6	0.636	0.580 ± 0.016	0.579 ± 0.019	0.641	0.562 ± 0.020		
Internal physical chemistry							
SOLUBILITY	0.953	0.618 ± 0.015	0.616 ± 0.007	0.895	0.559 ± 0.010		
LOGD	0.722	0.519 ± 0.010	0.577 ± 0.012	0.708	0.527 ± 0.019		
Internal metabolic clearance							
GSH	0.867	0.631 ± 0.003	0.633 ± 0.005	0.805	0.612 ± 0.020		
HUMAN HEP	0.502	0.545 ± 0.004	0.515 ± 0.002	0.843	0.488 ± 0.019		
MOUSE HEP	0.446	0.381 ± 0.006	0.376 ± 0.001	0.643	0.394 ± 0.018		
RAT HEP	0.555	0.500 ± 0.006	0.509 ± 0.003	0.874	0.474 ± 0.015		
Kinase200							
Median of 9 CDK tasks	0.941	0.884	0.916	0.880	0.773		

3. Sample token sequence

<protein_structure_3di> <3Di>V</3Di><3Di>D</3Di> <3Di>F</3Di><3Di>C</3Di> </3Di> <3Di>V</3Di><3Di>L</3Di> <3Di>L</3Di><3Di>P</3Di</3Di> ><3Di>P</3Di> <3Di>D</3Di><3Di>O</3Di> <3Di>G</3Di><3Di>N</3Di> <3Di> L</3Di><3Di>S</3Di> <3Di>V</3Di><3Di>L</3Di> <3Di>S</3Di><3Di>S</3Di> <3Di>S</3Di><3Di>L</3Di> <3Di>Q</3Di><3Di>V</3Di> <3Di>S</3Di><3Di>L </3Di> <3Di>C</3Di><3Di>R</3Di> <3Di>Q</3Di><3Di>A</3Di> <3Di>V</3Di ><3Di>D</3Di> <3Di>G</3Di><3Di>Q</3Di> <3Di>Q</3Di> <3Di>R</3Di> <3Di> A</3Di><3Di>P</3Di> <3Di>D</3Di><3Di>S</3Di> <3Di>V</3Di><3Di>S</3Di> <3Di>S</3Di><3Di>N</3Di> <3Di>V</3Di><3Di>S</3Di> <3Di>V</3Di>< </3Di> <3Di>Q</3Di><3Di>A</3Di> <3Di>A</3Di><3Di>W</3Di> <3Di>D</3Di ><3Di>D</3Di> <3Di>D</3Di><3Di>C</3Di> <3Di>V</3Di><3Di>Q</3Di> <3Di> A</3Di><3Di>N</3Di> <3Di>C</3Di><3Di>S</3Di> <3Di>C</3Di> <3Di>G</3Di><3Di>N</3Di> <3Di>N</3Di><3Di>R</3Di> <3Di>C/3Di><3Di>P </3Di> <3Di>P</3Di><3Di>D</3Di> <3Di>D</3Di><3Di>T</3Di> <3Di>H</3Di C</3Di><3Di>V</3Di> <3Di>R</3Di> <3Di>P</3Di><3Di>P</3Di> </3Di> <3Di>V</3Di><3Di>L</3Di> <3Di>S</3Di><3Di>V</3Di> <3Di>L</3Di ><3Di>S</3Di> <3Di>R</3Di> <3Di>R</3Di> <3Di>N</3Di> <3Di>H</3Di> <3Di> S</3Di><3Di>V</3Di> <3Di>S</3Di><3Di>R</3Di> <3Di>D</3Di><3Di>H</3Di> <3Di>S</3Di><3Di>V</3Di> <3Di>V</3Di><3Di>S</3Di> <3Di>S</3Di> </3Di> <3Di>G</3Di><3Di>P</3Di> <3Di>S</3Di><3Di>C</3Di> <3Di>P</3Di ><3Di>P</3Di> <3Di>H</3Di><3Di>D</3Di> <3Di>R</3Di><3Di>D</3Di> <3Di> G</3Di><3Di>D</3Di> <3Di>D</3Di> <3Di>>D</3Di> <3Di>>D</3Di> </protein_structure_3di> <SEP><tabular> [<< description >>] This assay assesses how effectively a drug candidate inhibits or modulates the activity of a protein kinase. It involves incubating the purified protein kinase with the drug candidate, its substrate, and ATP in a controlled environment. The reaction is initiated, and changes in the phosphorylation status of the substrate by the kinase in the presence of the drug candidate are quantified. The data obtained can aid in understanding the compound's specificity and efficacy in inhibiting the target kinase, which is vital for drug development and disease treatment. [<< assay_property >>] [<< category >>] potency [<< kind >>] biochemical [<< measurement >>] inhibition [<< protein >>] Cyclin-dependent kinase 2 (P24941) [<< kind >>] Literature [<< source >>] Kinase200 [<< units >>] molar [<< transform >>] log [<< assay >>] KINASE200_p24941_wt [<< SMILES >>] N# Cclcn n2c(NC c3ccncc3) cc(-c3ccccc3) ncl2 [<< value >>] 10^0*-6.21 </tabular>

Figure 2. An example token sequence that includes two modalities: a 3D structure of CDK2 and an assay value for inhibition of CDK2 by 5-Phenyl-7-(pyridin-4-ylmethylamino)pyrazolo[1,5-a]pyrimidine-3-carbonitrile.