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Subsequently, we provide a complete collection of proofs for the stated results in the main body. We463

restate these results to enhance readability and ensure a clear understanding of the proof details.464

A Proofs of Section 2465

Lemma 2.1 (Performance difference lemma). For any h ∈ H and for any pair of policies π and π′466

the following holds true for every s ∈ Sh:467

V π
h (s)− V π′

h (s) =

H−1∑
k=h

Eπ(h)

Sh=s

[
Aπ′

k (Sk, Ak)
]
.

Proof.

V π
h (s)− V π′

h (s) = Eπ(h)

Sh=s

[H−1∑
k=h

r(Sk, Ak)
]
− V π′

h (s)

= Eπ(h)

Sh=s

[H−1∑
k=h

r(Sk, Ak) +

H−1∑
k=h

V π′

k (Sk)−
H−1∑
k=h

V π′

k (Sk)
]
− V π′

h (s)

= Eπ(h)

Sh=s

[H−1∑
k=h

r(Sk, Ak) +

H−1∑
k=h+1

V π′

k (Sk)−
H−1∑
k=h

V π′

k (Sk)
]

= Eπ(h)

Sh=s

[H−1∑
k=h

r(Sk, Ak) +

H−2∑
k=h

V π′

k+1(Sk+1)−
H−1∑
k=h

V π′

k (Sk)
]

= Eπ(h)

Sh=s

[H−1∑
k=h

(
r(Sk, Ak) + V π′

k+1(Sk+1)− V π′

k (Sk)
)]

= Eπ(h)

Sh=s

[H−1∑
k=h

Aπ′

k (Sk, Ak)
]

=

H−1∑
k=h

Eπ(h)

Sh=s

[
Aπ′

k (Sk, Ak)
]
,

where we have used that r(Sk, Ak) + V π′

k+1(Sk+1) = Qπ′

k (Sk, Ak). In the fifth equation we used the468

notation VH ≡ 0 and note that QH−1 ≡ r independent of any policy.469

Unless explicitly specified, all differentiations are performed with respect to the variable θ.470

Theorem 2.2. For a fixed policy π̃ and h ∈ H the gradient of Jh,s(θ) defined in (6) is given by471

∇Jh,s(θ) = ESh=s,Ah∼πθ(·|s)[∇ log(πθ(Ah|Sh))Q
π̃
h(Sh, Ah)].

Proof. The probability of a trajectory w = (sh, ah, . . . , sH−1, aH−1) under the policy472

(πθ, π̃(h+1)) = (πθ, π̃h+1, . . . , π̃H−1) and initial state distribution δs is given by473

P(πθ,π̃(h+1))
s (w) = δs(sh)π

θ(ah|sh)
H−1∏

k=h+1

p(sk|sk−1, ak−1)π̃k(ak|sk).

Then,474

∇ log(P(πθ,π̃(h+1))
s (w)) = ∇

(
log(δs(sh)) + log(πθ(ah|sh))

+

H−1∑
k=h+1

log(p(sk|sk−1, ak−1)) + log(π̃k(ak|sk))
)

= ∇ log(πθ(ah|sh)),
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which is known as the log-trick. LetW be the set of all trajectories from h to H − 1. Note thatW is475

finite due to the assumption that state and action space is finite. Then for s ∈ Sh476

∇Jh,s(θ) = ∇
∑
w∈W

P(πθ,π̃(h+1))
s (w)

H−1∑
k=h

r(sk, ak)

=
∑
w∈W

P(πθ,π̃(h+1))
s (w)∇ log(P(πθ,π̃(h+1))

s )

H−1∑
k=h

r(sk, ak)

=
∑
w∈W

P(πθ,π̃(h+1))
s (w)∇ log(πθ(ah|sh))

H−1∑
k=h

r(sk, ak)

= E(πθ,π̃(h+1))

Sh=s

[
∇ log(πθ(Ah|Sh))

H−1∑
k=h

r(Sk, Ak)
]

= E(πθ,π̃(h+1))

Sh=s

[
∇ log(πθ(Ah|Sh))Eπ̃

Sh

[H−1∑
k=h

r(Sk, Ak)
∣∣Sh, Ah

]]
= ESh=s,Ah∼πθ(·|s)

[
∇ log(πθ(Ah|Sh))Q

π̃
h(Sh, Ah)

]
.

477

Corollary 2.3. For any h ∈ H and two policies π and π′: If π(h+1) = π′
(h+1), it holds that478

V π
h (s)− V π′

h (s) = Eπ(h)

Sh=s

[
Aπ′

h (Sh, Ah)
]
.

Proof. Let k > h, then479

Eπ(h)

Sh=s

[
Aπ′

k (Sk, Ak)
]

=
∑
a∈A

πh(a|s)
∑
s∈S

p(s|s, a)Eπ(h+1)

Sh+1=s

[
Qπ′

k (Sk, Ak)− V π′

k (Sk)
]

=
∑
a∈A

πh(a|s)
∑
s∈S

p(s|s, a)Eπ′
(h+1)

Sh+1=s

[
Qπ′

k (Sk, Ak)− V π′

k (Sk)
]

=
∑
a∈A

πh(a|s)
∑
s∈S

p(s|s, a)
(
E
π′
(h+1)

Sh+1=s

[
Eπ′

Sk
[Qπ′

k (Sk, Ak)]
]
− E

π′
(h+1)

Sh+1=s

[
V π′

k (Sk)
])

=
∑
a∈A

πh(a|s)
∑
s∈S

p(s|s, a)
(
E
π′
(h+1)

Sh+1=s

[
V π′

k (Sk)
]
− E

π′
(h+1)

Sh+1=s

[
V π′

k (Sk)
])

= 0.

The claim follows with Lemma 2.1.480

B Proofs of Section 3481

B.1 Proofs of Section 3.1482

First, we compute the derivative of the softmax policy for every s ∈ Sh and a ∈ As,483

πθ(a|s) = eθ(s,a)∑
a′∈A eθ(s,a′)

,

with parameter θ ∈ Rdh :484

∂ log(πθ(a|s))
∂θ(a′, s′)

= 1{s=s′}(1{a=a′} − πθ(a′|s′)).

Hence,485

∇ log(πθ(a|s)) =
(
1{s=s′}(1{a=a′} − πθ(a′|s′))

)
s′∈Sh,a′∈As′

∈ Rdh .
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Lemma 3.2. Let h ∈ H, then the partial derivatives of Jh with respect to θ take the following form486

∂Jh(θ)

∂θ(s, a)
= µ(s)πθ(a|s)A(πθ,π̃(h+1))

h (s, a).

Proof. By the policy gradient Theorem 2.2,487

∇Jh(θ) = ∇Es∼µ[Jh,s(θ)]

=
∑
s∈S

µ(s)∇Jh,s(θ)

=
∑
s∈S

µ(s)ESh=s,Ah∼πθ(·|s)[∇ log(πθ(Ah|Sh))Q
π̃
h(Sh, Ah)].

Next we plug in the derivative of the softmax parametrization and obtain488

∇Jh(θ)

=
∑
s∈S

µ(s)ESh=s,Ah∼πθ(·|s)

[(
1{Sh=s′}(1{Ah=a′} − πθ(a′|s′))

)
s′∈Sh,a′∈As′

Qπ̃
h(Sh, Ah)

]
=

(∑
s∈S

µ(s)
∑
a∈As

πθ(a|s)1{s=s′}(1{a=a′} − πθ(a′|s′))Qπ̃
h(s, a)

)
s′∈Sh,a′∈As′

=
(
µ(s′)πθ(a′|s′)Qπ̃

h(s
′, a′)− µ(s′)πθ(a′|s′)

∑
a∈As

πθ(a|s′)Qπ̃
h(s

′, a)
)
s′∈Sh,a′∈As′

=
(
µ(s′)πθ(a′|s′)(Qπ̃

h(s
′, a′)− V

(πθ,π̃(h+1))

h (s′))
)
s′∈Sh,a′∈As′

=
(
µ(s′)πθ(a′|s′)A(πθ,π̃(h+1))

h (s′, a′)
)
s′∈Sh,a′∈As′

,

where we used that
∑

a∈As
πθ(a|s′)Qπ̃

h(s
′, a) = Jh,s′(θ) = V

(πθ,π̃(h+1))

h (s′).489

Proposition 3.3. Let h ∈ H and consider the objective function Jh(θ). If there exists G,M > 0490

such that491

||∇ log πθ(a|s)||2 ≤ G and ||∇2 log πθ(a|s)||2 ≤M,

for all s ∈ Sh, a ∈ As, then for any initial state distribution µh of Sh the function Jh(θ) is βh-smooth492

in θ with βh = (H − h)R∗(G2 +M).493

Proof. DefineW as the set of all possible trajectories from h to H and consider π̂θ := (πθ, π̃(h+1))494

as in the proof of Theorem 2.2. Fix any initial state distribution µh on Sh, then the probability of w is495

pµh
(w|π̂θ) = µh(sh)π

θ(ah|sh)
H−1∏

k=h+1

p(sk|sk−1, ak−1)π̃(ak|sk).

It holds that496

∇2Jh(θ) =
∑
w∈W

∇2pµh
(w|π̂θ)

H−1∑
k=h

r(sk, ak)︸ ︷︷ ︸
:=r(w)

. (12)

Now,497

∇2 log
(
pµh

(w|π̂θ)
)
= ∇

(
pµh

(w|π̂θ)−1∇pµh
(w|π̂θ)

)
= pµh

(w|π̂θ)−1∇2pµh
(w|π̂θ)

− pµh
(w|π̂θ)−2∇pµh

(w|π̂θ)∇pµh
(w|π̂θ)T ,

15



rearranging leads to498

∇2pµh
(w|π̂θ) = pµh

(w|π̂θ)
(
∇2 log

(
pµ(w|π̂θ)

)
+ pµh

(w|π̂θ)−2∇pµh
(w|π̂θ)∇pµh

(w|π̂θ)T
)
(13)

= pµh
(w|π̂θ)

(
∇2 log

(
pµh

(w|π̂θ)
)
+∇ log(pµh

(w|π̂θ))∇ log(Jh(θ))
T
)
. (14)

Substitute (14) into (12):499

∇2Jh(θ)

=
∑
w∈W

pµh
(w|π̂θ)

(
∇2 log

(
pµh

(w|π̂θ)
)
+∇ log(pµh

(w|π̂θ))∇ log(pµh
(w|π̂θ))T

)
r(w).

Using the log-trick similar to Theorem 2.2 yields500

∇ log(pµh
(w|π̂θ)) = ∇ log(πθ(ah|sh))

and501

∇2 log(pµh
(w|π̂θ)) = ∇2 log(πθ(ah|sh)).

Together with the assumption we made on the derivative and hessian of the log parametrized policy502

we obtain503

∥ ∇2Jh(θ)∥2

=
∥∥ ∑

w∈W
pµh

(w|π̂θ)
(
∇2 log

(
pµh

(w|π̂θ)
)
+∇ log(pµh

(w|π̂θ))∇ log(pµh
(w|π̂θ))T

)
r(w)

∥∥
2

≤
∑
w∈W

pµh
(w|π̂θ)r(w)

(
∥∇2 log(πθ(ah|sh))∥2 + ∥∇ log(πθ(ah|sh))∥22

)
≤ max

w∈W
r(w)(M +G2)

≤ (H − h)R∗(M +G2),

which completes the proof. Recall that R∗ is the maximal reward.504

Lemma 3.4. Let h ∈ H, then the h-state value function under softmax parametrization, θ 7→ Jh(θ),505

is βh-smooth with βh = 2(H − h)R∗|A|.506

Proof. We use Proposition 3.3 for the softmax parametrization and see that507

∥∇ log(πθ(a|s))∥2 =

√∑
a′∈A

(
1{a′=a} − πθ(a′|s)

)2 ≤√
|As| ≤

√
|A|

and (Frobenius norm)508

||∇2 log(πθ(a|s))||2 =

√ ∑
a∗∈As

∑
a′∈As

(
1{a∗=a′}πθ(a′|s)− πθ(a∗|s)πθ(a′|s)

)2
≤

√
|As| |As|

≤ |A|.

Using Proposition 3.3 with G =
√
|A| and M = |A| yields the claim.509

Theorem 3.5. Let h ∈ H and consider the gradient ascent updates510

θn+1 = θn + ηh∇Jh(θn) (7)

for arbitrary θ0 ∈ Rdh . We assume that µh(s) > 0 for all s ∈ Sh and 0 < ηh ≤ 1
βh

. Then, for all511

s ∈ Sh, Jh,s(θn) converges to J∗
h,s for n→∞, where J∗

h,s = supθ Jh,s(θ) <∞.512
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The idea of the proof follows the line of arguments in Agarwal et al. (2021) for the asymptotic513

convergence of softmax policy gradient in the discounted stationary MDP setting. Thus, we first have514

to show a row of lemmata, compare to Lemma 41 to 51 in Agarwal et al. (2021).515

Lemma B.1 (Monotonicity). If the learning rate satisfies 0 < ηh ≤ 1
βh

= 1
2(H−h)R∗|A| then516

Jh,s(θn+1) ≥ Jh,s(θn) for any s ∈ Sh. Furthermore, for all s ∈ Sh there exists a limit J∞
h,s such517

that518

lim
n→∞

Jh,s(θn) = J∞
h,s <∞.

Proof. By (Beck, 2017, Theorem 10.4) we have for any β-smooth function f : Rd → R, that519

(f(xk))k≥0 is non-increasing sequence, when xk+1 = xk − η∇f(xk) with ηh ≤ 1
β .520

First note that −Jh,s is also βh-smooth. Then we have521

∇Jh(θ) = ∇
( ∑

s∈Sh

µh(s)Jh,s(θ)
)
=

∑
s∈Sh

µh(s)∇Jh,s(θ),

and ∂Jh,s(θ)
∂θ(s′,a) = 0 whenever s′ ̸= s. Denote by θ(s) = θ(s, ·) ∈ R|As|, then522

θ(s)n+1 = θn(s) + ηhµh(s)∇Jh,s(θ).
With the assumption 0 < µh(s) ≤ 1 for all s ∈ Sh the first claim follows by (Beck, 2017, Theorem523

10.4).524

As Jh,s(θn) ≤ (H − h)R∗ is bounded for all n ∈ N the second claim follows directly from525

monotonicity.526

To save notation we fix an h ∈ H. All results hold true for an arbitrary epoch. We introduce the527

following definitions without a subscript h:528

∆ = min
{s,a|A∞

h (s,a)̸=0}
|A∞

h (s, a)|

where A∞
h (s, a) = Qπ̃

h(s, a)−J∞
h,s. Recall that π̃ is the fixed policy which we use for h+1, . . . ,H−1.529

For the rest of this section, we write Qh instead of Qπ̃
h. Further we denote by Aθn

h (s, a) :=530

Qh(s, a)− Jh,s(θn), the advantage function with respect to parameter θn.531

We define the sets532

Is0 = {a ∈ As |Qh(s, a) = J∞
h,s},

Is+ = {a ∈ As |Qh(s, a) > J∞
h,s},

Is− = {a ∈ As |Qh(s, a) < J∞
h,s}.

Note that we observe a fundamental difference to the proof of Agarwal et al. (2021) in the infinite533

time setting. We do not need a limit of the state-action value function Q∞
h , because Qh is independent534

of θ and only depends on π̃. We aim to prove that Is+ is an empty set, then J∞
h,s = J∗

h,a.535

Lemma B.2. There exists a time N1 > 0 such that for all n > N1, and s ∈ Sh, we have536

Aθn
h (s, a) < −∆

4
for a ∈ Is−; Aθn

h (s, a) >
∆

4
for a ∈ Is+.

Proof. Fix s ∈ Sh arbitrarily. As Jh,s(θn)→ J∞
h,a for n→∞ and Sh is finite, we have that there537

exists N1 > 0 such that for all n > N1 and s ∈ Sh,538

Jh,s(θn) > J∞
h,s −

∆

4
.

It follows for all n > N1, s ∈ Sh and a ∈ Is− by the definition of ∆:539

Aθn
h (s, a) = Qh(s, a)− Jh,s(θn) ≤ Qh(s, a)− J∞

h,s +
∆

4
≤ −∆+

∆

4
< −∆

4
.

Similarly, for all n > N1, s ∈ Sh and a ∈ Is+ we obtain from monotonicity and the definition of ∆,540

Aθn
h (s, a) = Qh(s, a)− Jh,s(θn) ≥ Qh(s, a)− J∞

h,s ≥ ∆ >
∆

4
.

541
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Lemma B.3. It holds that ∂Jh(θn)
∂θn(s,a)

→ 0 as n → ∞ for all s ∈ Sh, a ∈ As. This implies that for542

a ∈ Is+ ∪ Is−, πθn(a|s)→ 0 and that
∑

a∈Is
0
πθn(a|s)→ 1 for n→∞.543

Proof. From (Beck, 2017, Theorem 10.15) we deduce for any β-smooth function f : Rd → R,544

that ∥∇f(xk)∥ → 0 for k → ∞, if xk+1 = xk − 1
β∇f(x

k). By Lemma 3.4 Jh(·) is βh-smooth.545

It follows by our choice of ηh < 1
βh

that ∂Jh(θn)
∂θn(s,a)

→ 0 as n → ∞ for all s ∈ Sh, a ∈ As. Now546

remember from Lemma 3.2547

∂Jh(θn)

∂θn(s, a)
= µh(s)π

θn(a|s)Aθn
h (s, a),

and by Lemma B.2 |Aθn
h (s, a)| > ∆

4 for all n > N1 and a ∈ IS+ ∪ Is−. As µh(s) > 0 by assumption548

it follows that πθn(a|s)→ 0 for n→∞ for all a ∈ IS+ ∪ Is− from ∂Jh(θn)
∂θn(s,a)

→ 0 as n→∞.549

The last claim,
∑

a∈Is
0
πθn(a|s)→ 1 for n→∞, follows immediately from

∑
a∈As

πθn(a|s) = 1550

by:551

lim
n→∞

∑
a∈Is

0

πθn(a|s) = lim
n→∞

( ∑
a∈As

πθn(a|s)−
∑

a∈IS
+∪Is

−

πθn(a|s)
)

= 1−
∑

a∈IS
+∪Is

−

lim
n→∞

πθn(a|s)

= 1.

552

Lemma B.4. For a ∈ Is+, the sequence (θn(s, a))n≥0 is strictly increasing for n > N1 and for553

a ∈ Is−, the sequence (θn(s, a))n≥0 is strictly decreasing for n > N1.554

Proof. With Lemma B.2 we know that for n > N1555

Aθn
h (s, a) > 0 for a ∈ Is+; Aθn

h (s, a) < 0 for a ∈ Is−,

and by Lemma 3.2556

∂Jh(θn)

∂θn(s, a)
= µh(s)π

θn(a|s)Aθn
h (s, a).

As µh(s) > 0 and πθn(a|s) > 0 by the definition of softmax parametrization, we have for all n > N1557

∂Jh(θn)

∂θn(s, a)
> 0 for a ∈ Is+;

∂Jh(θn)

∂θn(s, a)
< 0 for a ∈ Is−.

This implies for a ∈ Is+,558

θn+1(s, a)− θn(s, a) = ηh
∂Jh(θn)

∂θn(s, a)
> 0,

i.e. (θn(s, a))n≥0 is strictly increasing for n > N1 and similar for a ∈ Is−,559

θn+1(s, a)− θn(s, a) = ηh
∂Jh(θn)

∂θn(s, a)
< 0,

i.e. (θn(s, a))n≥0 is strictly decreasing for n > N1.560

Lemma B.5. For all s ∈ Sh where Is+ ̸= ∅, we have that561

max
a∈Is

0

θn(s, a)→∞ and min
a∈As

θn(s, a)→ −∞ for n→∞.

18



Proof. By assumption Is+ ̸= ∅ there exists an a+ ∈ Is+ and by Lemma B.3 we have πθn(a+|s)→ 0,562

as n→∞. Hence, by softmax parametrization this is equivalent to563

exp(θn(s, a+))∑
a∈As

exp(θn(s, a))
→ 0, for n→∞.

Using Lemma B.4, i.e. θn(s, a+) is strictly increasing for n > N1, we imply that exp(θn(s, a+)) is564

strictly increasing for n > N1. This implies that565 ∑
a∈As

exp(θn(s, a))→∞, for n→∞.

Again by Lemma B.3 we know that566 ∑
a∈Is

0

πθn(a|s)→ 1, for n→∞,

i.e. by definition567 ∑
a∈Is

0

exp(θn(s, a))∑
a′∈As

exp(θn(s, a′))
→ 1, for n→∞.

As
∑

a′∈As

exp(θn(s, a
′))→∞ it follows that568

∑
a∈Is

0

exp(θn(s, a))→∞, for n→∞

implying569

max
a∈Is

0

θn(s, a)→∞, for n→∞.

For the second claim it holds that570 ∑
a∈As

∂Jh(θn)

∂θn(s, a)
= µh(s)

∑
a∈A

πθn(a|s)(Qh(s, a)− Jh,s(θn))

= µh(s)(Eπθn

Sh=s[Qh(Sh, Ah)]− Jh,s(θn))

= µh(s)(Jh,s(θn)− Jh,s(θn))

= 0.

By induction, we obtain
∑

a∈As
θn(s, a) =

∑
a∈As

θ0(s, a) := c for every n > 0 and hence571

min
a∈As

θn(s, a) <
∑
a∈As

θn(s, a)− max
a∈As

θn(s, a) = −max
a∈As

θn(s, a) + c.

Since maxa∈As
θn(s, a)→∞, because maxa∈Is

0
θn(s, a)→∞, we conclude mina∈As

θn(s, a)→572

−∞ for n→∞.573

Lemma B.6. Suppose a+ ∈ Is+. If there exists a ∈ Is0 such that for some n > 0, πθn(a|s) ≤574

πθn(a+|s), then for all m > n it holds that πθm(a|s) ≤ πθm(a+|s).575

Proof. Suppose there exists a ∈ Is0 such that for an n > 0, πθn(a|s) ≤ πθn(a+|s). We show that576

πθn+1(a|s) ≤ πθn+1(a+|s), then the claim follows by induction. We have577

∂Jh(θn)

∂θn(s, a)
= µh(s)π

θn(a|s)(Qh(s, a)− Jh,s(θn))

≤ µh(s)π
θn(a+|s)(Qh(s, a+)− Jh,s(θn))

=
∂Jh(θn)

∂θn(s, a+)
,
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where the inequality follows with578

Qh(s, a+) = Qh(s, a+)− J∞
h,s + J∞

h,s

> J∞
h,s

= Qh(s, a)− J∞
h,s + J∞

h,s

= Qh(s, a),

as Qh(s, a+) − J∞
h,s > 0 a.s. for a+ ∈ Is+ and Qh(s, a) − J∞

h,s = 0 a.s. for a ∈ Is0 . Now by579

assumption we have πθn(a|s) ≤ πθn(a+|s) and thus θn(s, a) ≤ θn(s, a+). It follows580

θn+1(s, a) = θn(s, a) + ηh
∂Jh(θn)

∂θn(s, a)
≤ θn(s, a+) + ηh

∂Jh(θn)

∂θn(s, a+)
= θn+1(s, a+).

581

Now define for every a+ ∈ Is+ the set582

Bs
0(a+) = {a ∈ Is0 |πθn(a+|s) ≤ πθn(a|s) for all l > 0}

and denote its complement in Is0 as B̄s
0(a+) = Is0 \Bs

0(a+).583

Lemma B.7. Suppose Is+ ̸= ∅. For all a+ ∈ Is+, we have that Bs
0(a+) ̸= ∅ and584 ∑

a∈Bs
0(a+)

πθn(a|s)→ 1, as n→∞.

This implies:585

max
a∈Bs

0(a+)
θn(s, a)→∞, for n→∞.

Proof. Let a+ ∈ Is+ and consider a ∈ B̄s
0(a+). Then by definition of B̄s

0(a+) there exists n′ > 0586

such that πθn′ (a+|s) ≥ πθn′ (a|s). Hence, by Lemma B.6 for all n ≥ n′ we have πθn(a+|s) ≥587

πθn(a|s). As πθn(a+|s)→ 0 for n→∞. We obtain πθn(a|s)→ 0 for n→∞, for all a ∈ B̄s
0(a+).588

Since by Lemma B.3
∑

a∈Is
0
πθn(a|s)→ 1 for n→∞, we have that Bs

0(a+) ̸= ∅ and that589 ∑
a∈Bs

0(a+) π
θn(a|s)→ 1, as n→∞. The second claim follows from this as in Lemma B.5.590

Lemma B.8. Consider s ∈ Sh such that Is+ ̸= ∅. Then, for any a+ ∈ Is+, there exists an Na+ such591

that for all n > Na+ we have592

πθn(a+|s) > πθn(a|s) for all a ∈ B̄s
0(a+).

Proof. For every a ∈ B̄s
0(a+) exists time na such that593

πθn(a+|s) > πθn(a|s) for all a ∈ B̄s
0(a+)

for all n > na by definition. Set Na+
= maxa∈B̄s

0(a+) na and the proof is completed.594

Lemma B.9. Assume again Is+ ̸= ∅. For all actions a ∈ Is+, we have that θn(s, a) is bounded from595

below as n→∞. And for all a ∈ Is−, we have that θn(s, a)→ −∞ as n→∞.596

Proof. The first claim follows directly with Lemma B.4 as θn(s, a) is strictly increasing for all597

a ∈ Is+, n > N1 and thus for all n > N1 we have θn(s, a) ≥ θN1(s, a). Now suppose a ∈ Is−,598

then by Lemma B.4 we have that θn(s, a) is strictly decreasing for n > N1. Assume there exists599

b such that lim
n→∞

θn(s, a) = b, then θn(s, a) > b for all n > N1. By Lemma B.5 there exists an600

action a′ ∈ As such that θn(s, a′)→ −∞ for n→∞. Consider δ > 0 such that θN1(s, a
′) ≥ b− δ.601

Define for all n > N1602

τ(n) = max{k ∈ (N1, n] : θk(s, a
′) ≥ b− δ}.
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Define also603

T (n) =
{
τ(n) < n′ < n :

∂Jh(θn′)

∂θn′(s, a′)
≤ 0

}
,

as the set of all indices n′ in (τ(n), n), where θn′(s, a′) is decreasing. Next we define Zn :=604 ∑
n′∈T (n)

∂Jh(θn′ )
∂θn′ (s,a′) , then it holds that605

Zn =
∑

n′∈T (n)

∂Jh(θn′)

∂θn′(s, a′)

≤
n−1∑

n′=τ(n)+1

∂Jh(θn′)

∂θn′(s, a′)

≤
n−1∑

n′=τ(n)

∂Jh(θn′)

∂θn′(s, a′)
+

∣∣∣ ∂Jh(θτ(n))

∂θτ(n)(s, a′)

∣∣∣.

By Lemma 3.2 and the bounded reward assumption we have606

∣∣∣ ∂Jh(θτ(n))

∂θτ(n)(s, a′)

∣∣∣ == µh(s)π
θτ(n)(a′|s)|Aθτ(n)

h (s, a′)| ≤ (H − h)R∗.

Hence,607

Zn ≤
n−1∑

n′=τ(n)

∂Jh(θn′)

∂θn′(s, a′)
+ (H − h)R∗

=
1

η
(θn(s, a

′)− θτ(n)(s, a
′)) + (H − h)R∗

≤ 1

η
(θn(s, a

′)− b+ δ) + (H − h)R∗.

Then θn(s, a
′) → −∞ for n → ∞ implies that Zn → −∞ for n → ∞. As we chose a ∈ Is− it608

holds that |Aθn
h (s, a)| ≥ ∆

4 for n > N1 with Lemma B.2 and so for all n′ ∈ T (n):609

∣∣∣∣∣
∂Jh(θn′ )
∂θn′ (s,a)

∂Jh(θn′ )
∂θn′ (s,a′)

∣∣∣∣∣ =
∣∣∣∣∣ πθn′ (a|s)Aθn′

h (s, a)

πθn′ (a′|s)Aθn′
h (s, a′)

∣∣∣∣∣
≥ πθn′ (a|s)

πθn′ (a′|s)
∆

4(H − h)R∗

= exp(θn′(s, a)− θn′(s, a′))
∆

4(H − h)R∗

≥ exp(b− (b− δ))
∆

4(H − h)R∗

= exp(δ)
∆

4(H − h)R∗ ,

where we used in the last inequality that θn′(s, a′) ≤ b− δ for all n′ > τ(n) and θn′(s, a) > b for610

all n′ > N1. By the definition of T (n) these inequalities holds especially for all n′ ∈ T (n). Using611
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this we can imply that for all n > N1 with T (n) ̸= ∅,612

1

η

(
θN1(s, a)− θn(s, a)

)
=

n−1∑
n′=N1+1

∂Jh(θn′)

∂θn′(s, a)

≤
∑

n′∈T (n)

∂Jh(θn′)

∂θn′(s, a)

≤ exp(δ)
∆

4(H − h)R∗

∑
n′∈T (n)

∂Jh(θn′)

∂θn′(s, a′)

= exp(δ)
∆

4(H − h)R∗Zn,

where the first inequality holds because θn′(s, a) is strictly decreasing for n′ > N1, i.e. ∂Jh(θn′ )
∂θn′ (s,a)

> 0613

for all n′ ∈ {N1 + 1, . . . , n− 1}. In the second inequality we used614 ∣∣∣∣∣
∂Jh(θn′ )
∂θn′ (s,a)

∂Jh(θn′ )
∂θn′ (s,a′)

∣∣∣∣∣ ≥ exp(δ)
∆

4(H − h)R∗ .

Note that ∂Jh(θn′ )
∂θn′ (s,a)

< 0 and ∂Jh(θn′ )
∂θn′ (s,a′) < 0 so that the sign of the inequality reverses.615

Finally, we deduce from Zn → −∞ that θn(s, a) → ∞ for n → ∞, which is a contradiction to616

θn(s, a) strictly decreasing for all n > N1.617

Lemma B.10. Consider s ∈ Sh such that Is+ ̸= ∅. Then for any a+ ∈ Is+ it holds that618 ∑
a∈Bs

0(a+)

θn(s, a)→∞, for n→∞.

Proof. Let a+ ∈ Is+ and a ∈ Bs
0(a+). Then by definition of Bs

0(a+) we have619

πθn(a+|s) ≤ πθn(a|s)

for all n > 0 and hence by softmax parametrization θn(s, a+) ≤ θn(s, a) for all n > 0. By620

Lemma B.9 we have that θn(s, a+) and thus also θn(s, a) is bounded from below for n → ∞.621

Together with622

max
{a∈Bs

0(a+)}
θn(s, a)→∞, for n→∞

by Lemma B.7 we deduce the claim.623

Finally, we are ready to prove the asymptotic convergence of policy gradient with tabular softmax624

parametrization.625

Proof of Theorem 3.5. We have to show that Is+ = ∅ for all s ∈ Sh. So assume there exists s ∈ Sh626

such that Is+ ̸= ∅ and let a+ ∈ Is+. Then by Lemma B.10 we have627 ∑
a∈Bs

0(a+)

θn(s, a)→∞, for n→∞. (15)

For any a ∈ Is− we have by Lemma B.9 that628

πθn(a|s)
πθn(a+|s)

= exp(θn(s, a)︸ ︷︷ ︸
→−∞

− θn(s, a+)︸ ︷︷ ︸
bounded from below

)→ 0, n→∞.

Hence, there exists N2 > N1 such that for all n > N2629

πθn(a|s)
πθn(a+|s)

<
∆

16|A|(H − h)R∗ ,
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which leads for n > N2 to630

−(H − h)R∗
∑
a∈Is

−

πθn(a|s) > −∆

16
πθn(a+|s). (16)

Note that if Is− = ∅ we can just ignore this sum later on.631

Next consider a ∈ B̄s
0(a+) ⊆ Is0 . By the definition of Is0 we have that Aθn

h (s, a)→ A∞
h (s, a) = 0632

for n→∞. By Lemma B.8 we have for n ≥ Na+633

1 <
πθn(a+|s)
πθn(a|s)

.

Thus, there exists N3 > max{N2, Na+
} such that for all n ≥ N3634

|Aθn
h (s, a)| < πθn(a+|s)

πθn(a|s)
∆

16|A|
.

This implies635 ∑
a∈B̄s

0(a+)

πθn(a|s)|Aθn
h (s, a)| < πθn(a+|s)

∆

16

and so636

−πθn(a+|s)
∆

16
<

∑
a∈B̄s

0(a+)

πθn(a|s)Aθn
h (s, a) < πθn(a+|s)

∆

16
, (17)

for all n > N3. We can conclude again for n > N3,637

0 =
∑
a∈A

πθn(a|s)Aθn
h (s, a)

=
∑

a∈Bs
0(a+)

πθn(a|s)Aθn
h (s, a) +

∑
a∈B̄s

0(a+)

πθn(a|s)Aθn
h (s, a)

+
∑
a∈Is

+

πθn(a|s)Aθn
h (s, a) +

∑
a∈Is

−

πθn(a|s)Aθn
h (s, a)

>
∑

a∈Bs
0(a+)

πθn(a|s)Aθn
h (s, a)− πθn(a+|s)

∆

16
+ πθn(a+|s)

∆

4
− (H − h)R∗

∑
a∈Is

−

πθn(a|s)

≥
∑

a∈Bs
0(a+)

πθn(a|s)Aθn
h (s, a)− πθn(a+|s)

∆

16
+ πθn(a+|s)

∆

4
− ∆

16
πθn(a+|s)

>
∑

a∈Bs
0(a+)

πθn(a|s)Aθn
h (s, a),

where we used Equation (17) and Lemma B.2 in the first inequality and Equation (16) in the second638

inequality. Finally, by our assumption and Equation (15) for n > N3,639

∞ n→∞←−
∑

a∈Bs
0(a+)

(θn(s, a)− θN3
(s, a))

= ηh

n∑
n′=N3

∑
a∈Bs

0(a+)

∂Jh(θn)

∂θn′(s, a)

= ηh

n∑
n′=N3

µh(s)
∑

a∈Bs
0(a+)

πθn(a|s)Aθn
h (s, a),

which contradicts
∑

a∈Bs
0(a+) π

θn(a|s)Aθn
h (s, a) < 0.640
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B.2 Proofs of Section 3.2641

Lemma 3.6 (weak PL-inequality). For the objective Jh it holds that642

∥∇Jh(θ)∥2 ≥ min
s∈Sh

πθ(a∗h(s)|s)(J∗
h − Jh(θ)),

where a∗h(s) = argmaxa∈As
π∗
h(a|s) and J∗

h = supθ Jh(θ).643

Proof. First note that by the definition of π∗
h, we have J∗

h = V
(π∗

h,π̃(h+1))

h (µ), because the tabular644

softmax parametrization can approximate any deterministic policy arbitrarily well. We denote by645

J∗
h,s = V

(π∗
h,π̃(h+1))

h (s) the optimal h-state value function for all s ∈ Sh, when the policy after h is646

fixed. Using the performance difference lemma with fixed policy after h (Corollary 2.3), we obtain647 ∥∥∥∂Jh(θ)
∂θ

∥∥∥
2

=
∥∥∥ ∑

s∈Sh

µh(s)
∂Jh,s(θ)

∂θ

∥∥∥
2

=
[ ∑
s′∈Sh

∑
a′∈As′

( ∑
s∈Sh

µh(s)
∂Jh,s(θ)

∂θ(s′, a′)

)2] 1
2

≥
∑
s∈Sh

µh(s)
∣∣∣ ∂Jh,s(θ)

∂θ(s, a∗h(s))

∣∣∣
=

∑
s∈Sh

µh(s)π
θ(a∗h(s)|s)A

(πθ,π̃(h+1))

h (s, a∗h(s))

=
∑
s∈Sh

µh(s)π
θ(a∗h(s)|s)

(
J∗
h,s − Jh,s(θ)

)
≥ min

s∈Sh

πθ(a∗h(s)|s)
(
J∗
h − Jh(θ)

)
,

where the first inequality is due to the positiveness of all other terms, and we just drop them, and in648

the last equation we used Corollary 2.3, i.e. A
(πθ,π̃(h+1))

h (s, a∗h(s)) = Eπ∗

Sh=s[A
(πθ,π̃(h+1))

h (St, At)].649

This proves the claim.650

Lemma 3.7. Let h ∈ H, µh(s) > 0 for all s ∈ Sh and consider the sequence (θn)n∈N0
generated by651

(7) for arbitrarily initialized θ0 ∈ Rdh . Then it holds that ch := infn≥0 mins∈Sh
πθn(a∗h(s)|s) > 0.652

All in all the proof follows the outline of (Mei et al., 2020, Lemma 9), but has to be adjusted to the653

finite-time setting in a few steps.654

Proof. First note that655

Jh,s(θ) =
∑
a∈As

πθ
t (a|s)Qπ̃

h(s, a),

where Qπ̃
h(s, a) is independent of θ. We will drop the subscript π̃ in Qh for the rest of the proof and656

define for all s ∈ Sh,657

∆∗(s) = Qh(s, a
∗
h(s))− max

a̸=a∗
h(s)

Qh(s, a) > 0, and ∆∗ = min
s∈Sh

∆∗(s) > 0.

Now consider for any s ∈ Sh the following sets658

R1(s) =
{
θ :

∂Jh,s(θ)

∂θ(s, a∗h(s))
≥ ∂Jh,s(θ)

∂θ(s, a)
, for all a ̸= a∗h(s)

}
,

R2(s) =
{
θn : Jh,s(θn′) ≥ Qh(s, a

∗
h(s))−

∆∗(s)

2
, for all n′ ≥ n

}
.
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Furthermore, we define c(s) = |A|(H−h)R∗

∆∗(s) − 1 and659

Nc(s) =
{
θ : πθ(a∗h(s)|s) ≥

c(s)

c(s) + 1

}
.

We divide the proof into the following Claims:660

Claim 1. R(s) = R1(s) ∩R2(s) is a nice region, i.e.661

(i) θn ∈ R(s)⇒ θn+1 ∈ R(s).662

(ii) πθn+1(a∗h(s)|s) ≥ πθn(a∗h(s)|s).663

Claim 2. Nc(s) ∩R2(s) ⊆ R1(s) ∩R2(s).664

Claim 3. For every s ∈ Sh, there exists a finite-time n0(s) ≥ 1, such that θn0(s) ∈ Nc(s) ∩R2(s) ⊆665

R1s ∩R2(s) and thus infn≥1 π
θn(a∗h(s)|s) = min1≤n≤n0(s) π

θn0(s)(a∗h(s)|s).666

If all three claims hold true, we can finally define n0 = maxs∈Sh
n0(s), such that667

inf
n≥1,s∈Sh

πθn(a∗h(s)|s) = min
1≤n≤n0,s∈Sh

πθn0 (a∗h(s)|s).

Due to the positiveness of the softmax parametrization the assertion follows.668

Claim 1. We first prove (i). Let θn ∈ R(s) and a ̸= a∗h(s). Then θn+1 ∈ R2(s) by definition of669

R2(s). Using Lemma 3.2we obtain670

∂Jh,s(θn)

∂θ(s, a∗h(s))
≥ ∂Jh,s(θn)

∂θ(s, a)

⇔ πθn(a∗h(s)|s)
(
Qh(s, a

∗
h(s))− Jh,s(θn)

)
≥ πθn(a|s)

(
Qh(s, a)− Jh,s(θn)

)
.

(18)

We divide into two cases:671

a) πθn(a∗h(s)|s) ≥ πθn(a|s),672

b) πθn(a∗h(s)|s) < πθn(a|s).673

In a) the assumption πθn(a∗h(s)|s) ≥ πθn(a|s) implies θn(s, a∗h(s)) ≥ θn(s, a). Thus,674

θn+1(s, a
∗
h(s)) = θn(s, a

∗
h(s)) + ηh

∂Jh,s(θn)

∂θn(s, a∗h(s))

≥ θn(s, a) + ηh
∂Jh,s(θn)

∂θn(s, a)

= θn+1(s, a),

which implies πθn+1(a∗h(s)|s) ≥ πθn+1(a|s). By the optimality of a∗h(s) we follow675

π
θn+1

t (a∗h(s)|s)
(
Qh(s, a

∗
h(s))− Jh,s(θn+1)

)
≥ π

θn+1

t (a|s)
(
Qh(s, a)− Jh,s(θn+1)

)
,

which is by equation (18) equivalent to676

∂Jh,s(θn+1)

∂θn+1(s, a∗h(s))
≥ ∂Jh,s(θn+1)

∂θn+1(s, a)
.

Hence, θn+1 ∈ R1(s).677

In b) assume now that πθn(a∗h(s)|s) < πθn(a|s). As θn ∈ R1(s) equation (18) is also true in this678

case and rearranging of terms gives679

∂Jh,s(θn)

∂θn(s, a∗h(s))
≥ ∂Jh,s(θn)

∂θn(s, a)

⇔ Qh(s, a
∗
h(s))−Qh(s, a) ≥

(
1− πθn(a∗h(s)|s)

πθn(a|s)

)(
Qh(s, a

∗
h(s))− Jh,s(θn)

)
⇔ Qh(s, a

∗
h(s))−Qh(s, a) ≥

(
1− exp(θn(s, a

∗
h(s))− θn(s, a)

)(
Qh(s, a

∗
h(s))− Jh,s(θn)

)
.

(19)
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Note next that by θ(n) ∈ R1(s) and definition ofR1(s) we have680

θn+1(s, a
∗
h(s))− θn+1(s, a)

= θn(s, a
∗
h(s)) + ηh

∂Jh,s(θn)

∂θn(s, a∗h(s))
− θn(s, a)− η

∂Jh,s(θn)

∂θn(s, a)

≥ θn(s, a
∗
h(s))− θn(s, a)

and is follows
(
1−exp(θn+1(s, a

∗
h(s))−θn+1(s, a))

)
≤

(
1−exp(θn(s, a∗h(s))−θn(s, a))

)
< 1 by681

assumption b). We already know θn+1 ∈ R2(s) and therefore Jh,s(θn+1) ≥ Qh(s, a
∗
h(s))−

∆∗(s)
2 .682

This leads to683

Qh(s, a
∗
h(s))− Jh,s(θn+1) ≤

∆∗(s)

2
≤ Qh(s, a

∗
h(s))−Qh(s, a),

where the last inequality is due to the definition of ∆∗(s). Combining everything leads to684 (
1− exp(θn+1(s, a

∗
h(s))− θn+1(s, a))

)[
Qh(s, a

∗
h(s))− Jh,s(θn+1)

]
≤ Qh(s, a

∗
h(s))−Qh(s, a),

which is by equation (19) equivalent to θn+1 ∈ R1(s).685

Now we come to Claim (ii).686

πθn+1(a∗h(s)|s)

=
exp(θn+1(s, a

∗
h(s)))∑

a∈A
exp(θn+1(s, a))

=
exp(θn(s, a

∗
h(s)) + ηh

∂Jh,s(θn)
∂θn(s,a∗

h(s))
)∑

a∈As

exp(θn(s, a) + ηh
∂Jh,s(θn)
∂θn(s,a)

)

≥
exp(θn(s, a

∗
h(s))) exp(ηh

∂Jh,s(θn)
∂θn(s,a∗

h(s))
)∑

a∈As

exp(θn(s, a)) exp(ηh
∂Jh,s(θn)

∂θn(s,a∗
h(s))

)

= πθn(a∗h(s)|s),
where the inequality follows by θn ∈ R1(s).687

Claim 2. Assume θ ∈ Nc(s) ∩ R2(s) and divide again in two cases. If a) πθ(a∗h(s)|s) ≥688

max
a∈A

πθ(a|s), then for all a ̸= a∗h(s) we have689

∂Jh(θ)

∂θ(s, a∗h(s))

= µh(s)π
θ(a ∗ (s)|s)Aπθ

(s, a∗h(s))

≥ µh(s)π
θ(a|s)Aπθ

(s, a)

=
∂Jh(θ)

∂θ(s, a)
.

Hence, θ ∈ R1(s).690

The case b) where πθ(a∗h(s)|s) < max
a∈As

πθ(a|s) is not possible for θ ∈ Nc(s). Assume there exists691

a ̸= a∗h(s) such that πθ(a∗h(s)|s) < πθ(a|s). Then692

πθ(a∗h(s)|s) + πθ(a|s) > 2c(s)

c(s) + 1
=

2|A|(H−h)R∗

∆∗(s) − 2

|A|(H−h)R∗

∆∗(s)

= 2− 2∆∗(s)

|A|(H − h)R∗ ≥ 2− 2

|A|
≥ 1,

because ∆∗(s) ≤ (H −h)R∗ by definition and |A| ≥ 2. This is a contradiction as πθ is a probability693

distribution and Claim 2 is proven.694
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Claim 3. By the asymptotic convergence for finite-time setting Theorem 3.5, we have that695

πθn(a∗(s)|s) → 1 for n → ∞. Thus, there exists an N0(s) > 0, such that πθn(a∗(s)|s) ≥ c(s)
c(s)+1696

for all n ≥ N0(s), i.e. θn ∈ Nc(s) for all n ≥ N0(s).697

Furthermore, Jh(θn)→ J∗
h = Qh(s, a

∗(s)) for n→∞ which implies the existence of N1 > 0 such698

that θn ∈ R2(s) for all n ≥ N1(s). We choose n0(s) = max{N0(s), N1(s)} which proves Claim 3.699

700

Theorem 3.8. Let h ∈ H, µh(s) > 0 for all s ∈ Sh and consider the sequence (θn)n∈N0
generated701

by (7) for arbitrarily initialized θ0 ∈ Rdh . Define ch := infn≥0 mins∈Sh
πθn(a∗h(s)|s) > 0 by702

Lemma 3.7 and choose step size ηh = 1
βh

with βh = 2(H − h)R∗|A|. Then it holds that703

J∗
h − Jh(θn) ≤

4(H − h)R∗|A|
c2hn

,

where J∗
h = supθ Jh(θ).704

Proof. For any β-smooth function f : Rd → R the descent lemma gives (see Beck, 2017, Lemma705

5.7)706

f(y) ≤ f(x) +∇f(x)T (y − x) +
β

2
∥y − x∥2.

As −f is also β-smooth we follow707

−f(y) ≤ −f(x)−∇f(x)T (y − x) +
β

2
∥y − x∥2,

which is equivalent to708

f(y) ≥ f(x) +∇f(x)T (y − x)− β

2
∥y − x∥2. (20)

Now for gradient ascent updates709

xk+1 = xk + α∇f(xk)

we have that710

f(xk+1) ≥ f(xk) +∇f(xk)
T (xk+1 − xk)−

β

2
∥xk+1 − xk∥2

= f(xk) + α∥∇f(xk)∥2 −
βα2

2
∥∇f(xk)∥2

= f(xk) +
(
α− βα2

2

)
∥∇f(xk)∥2.

It follows for the maximum f(x∗) of f that711

f(x∗)− f(xk+1) ≤ f(x∗)− f(xk)−
(
α− βα2

2

)
∥∇f(xk)∥2.

Using this for our objective function Jh, we obtain for the gradient ascent updates712

θn+1 = θn + ηh∇Jh(θn)

and J∗
h = supθ Jh(θ) that713

J∗
h − Jh(θn+1) ≤ J∗

h − Jh(θn)−
(
ηh −

βhη
2
h

2

)
︸ ︷︷ ︸

= 1
2βh

>0, for ηh=
1

βh

∥∇Jh(θn)∥2︸ ︷︷ ︸
≥c2h(J

∗
h−Jh(θn))2

≤ (J∗
h − Jh(θn))

(
1− c2h

2βh
(J∗

h − Jh(θn))
)
.
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The second inequality follows with the PL-type inequality in Lemma 3.6.714

Define q =
c2h

4(H−h)R∗|A| =
c2h
2βh

> 0, then715

J∗
h − Jh(θ0) ≤ (H − h)R∗ ≤ 1

q
.

We conclude using an argument similar to Nesterov (2013, Thm. 2.1.14). Therefore, define dn =716

J∗
h − Jh(θn), then717

dn+1 ≤ dn −
1

q
d2n.

Thus,718

1

dn+1
≥ 1

dn
+

dn
qdn+1

≥ 1

dn
+

1

q
,

where the first inequality is due to dividing by dndn+1 and the second inequality follows by mono-719

tonicity (Lemma B.1). Using a telescope-sum argument we obtain720

1

dn
= d0 +

n−1∑
k=0

1

dk
− 1

dk−1
≥ d0 +

n

q
.

Finally,721

J∗
h − Jh(θn) = dn ≤

1
1
qn+ d0

≤ 1

q(n+ 1)
≤ 4(H − h)R∗|A|

c2hn
.

722

C Proofs of Section 4723

Lemma C.1. Consider the tabular softmax parametrization. For any h ∈ H and K0 > 0 it holds724

that725

E(πθ,(π̃)(h+1))
µh [∇̂JKh

h (θ)] = ∇Jh(θ)
and726

E(πθ,(π̃)(h+1))
µh [∥∇̂JKh

h (θ)−∇Jh(θ)∥2] ≤
5(H − h)2(R∗)2

Kh
=:

Ch

K
.

Proof. By the definition of ∇̂JK
h we have727

E(πθ,(π̃)(h+1))
µh [∇̂JKh

h (θ)]

= E(πθ,(π̃)(h+1))
µh

[ 1

Kh

Kh∑
i=1

∇ log(πθ(Ai
t|Si

t))Q̂h(S
i
h, A

i
h)
]

= E(πθ,(π̃)(h+1))
µh

[
∇ log(πθ(A1

h|S1
h))Q̂h(S

1
h, A

1
h)
]

= E(πθ,(π̃)(h+1))
µh

[
∇ log(πθ(A1|Sh))

H−1∑
k=h

r(Sk, Ak)
]
,

where we used that we consider independent samples for i = 1, . . . ,Kh. From the proof of the policy728

gradient Theorem 2.2, we obtain that729

E(πθ,(π̃)(h+1))
µh [∇̂JKh

h (θ)]

= E(πθ,(π̃)(h+1))
µh

[
∇ log(πθ(A1|Sh))

H−1∑
k=h

r(Sk, Ak)
]

= ∇Jh(θ).
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For the second claim we have730

E(πθ,(π̃)(h+1))
µh

[
∥∇̂JKh

h (θ)−∇Jh(θ)∥2
]

≤ 1

Kh
E(πθ,(π̃)(h+1))
µh

[
∥∇ log(πθ(Ah|Sh))Q̂h(Sh, Ah)−∇Jh(θ)∥2

]
=

1

Kh
E(πθ,(π̃)(h+1))
µh

[ ∑
s∈Sh

∑
a∈As

(
1s=Sh

(1a=Ah
− πθ(a|s))

H−1∑
k=h

r(Sk, Ak)

− µh(s)π
θ(a|s)A(πθ,(π̃)(h+1))

h (s, a)
)2]

,

by the definition of ∇̂JKh

h (θ) and the derivative of∇Jh(θ) for the softmax parametrization. Further,731

E(πθ,(π̃)(h+1))
µh

[
∥∇̂JKh

h (θ)−∇Jh(θ)∥2
]

≤ 1

Kh
E(πθ,(π̃)(h+1))
µh

[ ∑
a∈As

(1a=Ah
− πθ(a|Sh))

2
(H−1∑

k=h

r(Sk, Ak)
)2

− 2
∑
a∈As

(1a=Ah
− πθ(a|Sh))

H−1∑
k=h

r(Sk, Ak)µh(s)π
θ(a|Sh)A

(πθ,(π̃)(h+1))

h (Sh, a)

+
∑
s∈Sh

∑
a∈As

µ(s)2πθ(a|s)2A(πθ,(π̃)(h+1))

h (s, a)2
]
.

We consider all three terms separately. For the first term we have732

E(πθ,(π̃)(h+1))
µh

[ ∑
a∈As

(1a=Ah
− πθ(a|Sh))

2
(H−1∑

k=h

r(Sk, Ak)
)2]

= E(πθ,(π̃)(h+1))
µh

[ (H−1∑
k=h

r(Sk, Ak)
)2]
− 2E(πθ,(π̃)(h+1))

µh

[
πθ(Ah|Sh)

(H−1∑
k=h

r(Sk, Ak)
)2]

+ E(πθ,(π̃)(h+1))
µh

[ ∑
a∈As

πθ(a|Sh)
2
(H−1∑

k=h

r(Sk, Ak)
)2]

≤ ((H − h)R∗)2 − 0 + ((H − h)R∗)2

= 2((H − h)R∗)2,

by bounded reward assumption and the fact that πθ is a probability distribution. For the second733

term, we note that A
(πθ,(π̃)(h+1))

h (Sh, a) can be negative, therefore we consider the absolute value734

and obtain735

2E(πθ,(π̃)(h+1))
µh

[ ∑
a∈As

(1a=Ah
− πθ(a|Sh))

H−1∑
k=h

r(Sk, Ak)µh(s)π
θ(a|Sh)

∣∣A(πθ,(π̃)(h+1))

h (Sh, a)
∣∣]

≤ 2E(πθ,(π̃)(h+1))
µh

[ ∑
a∈As

1 · (H − h)R∗ · 1 · πθ(a|Sh) · (H − h)R∗
]

= 2((H − h)R∗)2.

For the last term we have736

Eπθ
t

µ

[ ∑
s∈Sh

∑
a∈As

µ(s)2πθ
t (a|s)2A

πθ
t

t (s, a)2
]
≤ ((H − h)R∗)2.

In total, it holds that737

E(πθ,(π̃)(h+1))
µh

[
∥∇̂JKh

h (θ)−∇Jh(θ)∥2
]
≤ 5((H − h)R∗)2

Kh
.

738
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C.1 Proofs of Section 4.1739

We state the stochastic approximation theorem in Bertsekas and Tsitsiklis (2000) to prove convergence740

of stochastic softmax policy gradient to a stationary point.741

Proposition C.2 (Bertsekas and Tsitsiklis (2000), Proposition 3). Let F : Rd → R be an L-smooth742

function, i.e.743

∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥.
Consider (Xn) a sequence generated by744

Xn+1 = Xn + γn(Sn +Wn),

where (γn) is deterministic positive step size, Sn a descent direction, and Wn is a random noise term.745

Let (Fn) be an increasing sequence of σ-fields. We assume the following:746

(i)
∑

n≥1 γn =∞, and
∑

n≥1 γ
2
n <∞.747

(ii) (Xn)n≥0 and (Wn)n≥0 are (Fn)-measurable.748

(iii) There exists positive constants C1 and C2 such that for all n ≥ 1749

C1|∇F (Xn)∥2 ≤ −∇F (Xn)
TSn and ∥Sn∥ ≤ C2(1 + ∥∇F (Xn)∥2),

(iv) There exists a positive deterministic constant C such that for all n ≥ 1,750

E[Wn|Fn] = 0 and E[∥Wn∥2|Fn] ≤ C(1 + ∥∇F (Xn)∥2).

Then either F (Xn) → ∞ for t → ∞ or F (Xn) converges to a finite function such that751

limn→∞∇F (Xn) = 0 almost-surely.752

Theorem 4.1. For any h ∈ H consider the stochastic process (θn)n≥0 generated by753

θn+1 = θn + η
(n)
h ∇̂JKh

h (θ),

for arbitrary batch size Kh ≥ 1 and initial θ0 such that E[Jh(θ0)] <∞. Furthermore, suppose that754

η
(n)
h is decreasing, such that

∑
n≥0 η

(n)
h =∞ and

∑
n≥0

(
η
(n)
h

)2
<∞. Then∇Jh(θn)→ 0 almost755

surely for n→∞.756

Proof. We apply Proposition C.2 as follows:757

The function F is the negative objective function with respect to parameter θ, i.e.758

F : Rdh → R, θ 7→ −Jh(θ).
Further, let759

• Xn ≡ θn,760

• Sn ≡ −∇F (θn) = ∇Jh(θn),761

• Wn ≡ ∇̂JKh

h (θn)−∇Jh(θn) and762

• γn ≡ η
(n)
h .763

Then,764

θn+1 = θn + η
(n)
h ∇̂J

Kh

h (θn) = Xn + γn(Sn +Wn).

Denote by (Fn)n≥0 the natural filtration of the stochastic process (θn)n≥0. Then, Xn and Wn are765

Fn-measurable and Condition (iii) is obviously satisfied using C1 = C2 = 1. By Lemma C.1 we766

have that767

E[∇̂JKh

h (θn)|Fn] = ∇Jh(θn)
and768

E[∥∇̂JKh

h (θn)−∇Jh(θn)∥2|Fn] ≤
Ch

Kh
.

Thus, Condition (iv) is satisfied. Given the fact that the value function is bounded by the bounded769

reward assumption we conclude770

∇Jh(θn)→ 0 for n→∞.

771
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C.2 Proofs of Section 4.2772

Lemma C.3. The softmax policy πθ(a|s) is
√
2-Lipschitz with respect to θ ∈ Rd for every s, a.773

Proof. The derivative of the softmax function is774

∂πθ(a|s)
∂θ(s′, a′)

= 1s′=s

[1a′=a exp(θ(s, a))
(∑

ã∈As
exp(θ(s, ã))

)
− exp(θ(s, a)) exp(θ(s, a′))(∑

ã∈As
exp(θ(s, ã))

)2 ]
= 1s′=s

[
1a′=aπ

θ(a|s)− πθ(a|s)πθ(a′|s)
]
.

Therefore,775

∥∇πθ(a|s)∥2 =

√ ∑
ã∈As

(
1a′=aπθ(a|s)− πθ(a|s)πθ(a′|s)

)2

≤
√
πθ(a|s)2 − 2πθ(a|s)3 +

∑
ã∈As

πθ(a′|s)2πθ(a|s)2

≤
√
2.

776

Lemma C.4. It holds almost surely that min0≤n≤τ mins∈Sh
πθn(a∗(s)|s) ≥ ch

2 is strictly positive.777

Proof. For every n ≤ τ we obtain by the
√
2-Lipschitz continuity in Lemma C.3 that778

πθn(a∗(s)|s) ≥ πθ̄n(a∗(s)|s)− |πθ̄n(a∗(s)|s)− πθn(a∗(s)|s)|

≥ πθ̄n(a∗(s)|s)−
√
2∥θt − θ̄n∥2

>
ch
2

> 0,

holds almost surely. The claim follows directly.779

Lemma 4.2. Suppose µh(s) > 0 for all s ∈ Sh, the batch size K
(n)
h ≥ 9c2hCh

32β2
hN

3
2
h

(1 − 1
2
√
Nh

)n2 is780

increasing for some Nh ≥ 1 and the step size ηh = 1
βh

√
Nh

, for fixed h ∈ H. Then,781

E
[
(J∗

h − Jh(θn))1{n≤τ}
]
≤ 16

√
Nhβh

3(1− 1
2
√
Nh

)c2hn
.

Proof. Fix h ∈ H. Let (Fn)n≥0 be the natural filtration of (θ)n≥0. Exactly as in the proof of782

Theorem 3.8 we deduce from the βh-smoothness of Jh that783

Jh(θn+1) ≥ Jh(θn) +
(
∇Jh(θn)

)T
(θn+1 − θn)−

βh

2
∥θn+1 − θn∥2, a.s.

We continue with784

Jh(θn+1) ≥ Jh(θn) + ηh
(
∇Jh(θn)

)T ∇̂JKh

h (θn)−
βhη

2
h

2
∥∇̂JKh

h (θn)∥2

= Jh(θn) + ηh
(
∇Jh(θn)

)T∇Jh(θn) + ηh
(
∇Jh(θn)

)T (∇̂JKh

h (θn)−∇Jh(θn)
)

− βhη
2
h

2
∥
(
∇̂JKh

h (θn)−∇Jh(θn)
)
+∇Jh(θn)∥2.

We denote ξn := ∇̂JKh

h (θn)−∇Jh(θn) and rewrite the above inequality785

Jh(θn+1) ≥ Jh(θn) + ηh∥∇Jh(θn)∥2 + ηh⟨∇Jh(θn), ξn⟩

− βhη
2
h

2

(
∥ξn∥2 + 2⟨ξn,∇Jh(θn)⟩+∥∇Jh(θn)∥2

)
= Jh(θn) +

(
ηh −

βhη
2
h

2

)
∥∇Jh(θn)∥2 +

(
ηh − βhη

2
h

)
⟨∇Jh(θn), ξn⟩ −

βhη
2
h

2
∥ξn∥2.
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Next, we take the conditional expectation on Fn. Then with Lemma C.1, we obtain786

E
[
J(θn+1)|Fn

]
≥ J(θn) +

(
ηh −

βhη
2
h

2

)
∥∇Jh(θn)∥2 +

(
ηh − βhη

2
h

)
⟨∇J(θn),E

[
ξn|Fn

]
⟩

− βhη
2
h

2
E
[
∥ξn∥2|Fn

]
≥ J(θn) +

(
ηh −

βhη
2
h

2

)
∥∇J(θn)∥2 −

βhη
2
hCh

2K
(n)
h

.

We take the expectation of this inequality on both sides under the event {n + 1 ≤ τ}. Note that787

{n+ 1 ≤ τ} = {τ ≤ n}C is Fn-measurable and that 1{n+1≤τ} ≤ 1{n≤τ} a.s., thus788

E
[
(J∗

h − Jh(θn+1))1{n+1≤τ}

]
= E

[
E
[
(J∗

h − Jh(θn+1))|Fn

]
1{n+1≤τ}

]
≤ E

[(
J∗
h − E

[
Jh(θn+1)|Fn

])
1{n≤τ}

]
≤ E

[
(J∗

h − Jh(θn))1{n≤τ}

]
−

(
ηh −

βhη
2
h

2

)
E
[
∥∇Jh(θn)∥21{n≤τ}

]
+

βhη
2
hCh

2K
(n)
h

.

By Lemma 3.6 we have that ∥∇Jh(θn)∥2 ≥ mins∈S πθn(a∗(s|s))2(J∗
h−Jh(θn))2 almost surely, and789

by Lemma C.4 we have that min0≤n≤τ mins∈S πθn(a∗(s|s))2 ≥ ch
2 > 0 almost surely. Therefore,790

E
[
(J∗

h − Jh(θn+1))1{n+1≤τ}

]
≤ E

[
(J∗

h − Jh(θn))1{n≤τ}

]
−
(
ηh −

βhη
2
h

2

)
E
[
min
s∈S

πθn(a∗(s|s))2(J∗
h − Jh(θn))

21{n≤τ}

]
+

βhη
2
hCh

2K
(n)
h

,

≤ E
[
(J∗

h − Jh(θn))1{n≤τ}

]
−
(
ηh −

βhη
2
h

2

)c2h
4
E
[
(J∗

h − Jh(θn))1{n≤τ}

]2
+

βhη
2
hCh

2K
(n)
h

,

where we used Jensen’s inequality in the last step.791

For dn := E
[
(J∗

h − Jh(θn))1{n≤τ}

]
we imply the recursive inequality792

dn+1 ≤ dn −
(
ηh −

βhη
2
h

2

)c2h
4
d2n +

βhη
2
hCh

2K
(n)
h

.

Define w :=
(
ηh − βhη

2
h

2

)
c2h
4 > 0 and B =

βhη
2
hCh

2 > 0, then793

dn+1 ≤ dn(1− wdn) +
B

K
(n)
h

and by our choice of ηh,794

K
(n)
h ≥ 9c2hCh

32β2
hN

3
2

h

(1− 1

2
√
Nh

)n2 =
9

4
wBn2,

Moreover, we have795

4

3w
=

16
√
Nhβh

3(1− 1
2
√
Nh

)c2h
.

For βh = 2(H − h)R∗|A|, it holds that796

d1 ≤ (H − h)R∗ ≤ βh ≤
4

3w
≤ 4

3w · 1
,
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because ch ≤ 1 and 1√
Nh

(1 − 1
2
√
Nh

) < 1 for all Nh ≥ 1. Suppose the induction assumption797

dn ≤ 4
3wn holds true, then for dn+1,798

dn+1 ≤ dn − wd2n +
B

K
(n)
h

.

The function f(x) = x− wx2 is monotonically increasing in [0, 1
2w ] and by induction assumption799

dn ≤ 1
4wn ≤

1
2w . So dn − wd2n ≤ 4

3wn which implies800

dn+1 ≤ dn − wd2n +
B

K
(n)
h

≤ 4

3wn
− 16

9wn2
+

B

Kn

≤ 4

3wn
− 16

9wn2
+

4B

9wBn2

=
4

3wn
− 12

9wn2

=
4

3w

( 1

n
− 1

n2

)
≤ 4

3w(n+ 1)
,

where we used that K(n)
h ≥ 9

4wBn2. We follow the claim801

dn ≤
4

3wn
=

16
√
Nhβ

3(1− 1
2
√
Nh

)c2hn
.

802

Lemma 4.3. Suppose µh(s) > 0 for all s ∈ Sh. Then, for any δ > 0, we have P(τ ≤ n) < δ if803

Kh ≥ 16n3Ch

β2c2hδ
2 and ηh = 1√

nβh
.804

Proof. By the definition of τ we have805

P(τ ≤ n) = P( max
0≤t≤n

∥θt − θ̄t∥ ≥
ch
4
),

so we first study ∥θt − θ̄t∥. We emphasize that Ding et al. (2022, Lemma 6.3) established a similar806

recursive inequality.807

∥θt − θ̄t∥ = ∥θ0 +
t−1∑
k=1

ηh∇̂JKh

h (θk)− (θ0 +

l−1∑
k=1

ηh∇Jh(θ̄k))∥

≤
t−1∑
k=1

ηh∥∇̂JKh

h (θk)∇Jh(θ̄k)∥

≤ ηh

t−1∑
k=1

(∥∇̂JKh

h (θk)−∇Jh(θk)∥+ ∥∇Jh(θk)−∇Jh(θ̄k)∥).

We define again ξk = ∇̂JKh

h (θk)−∇Jh(θk) and continue808

∥θt − θ̄t∥ ≤ ηh

t−1∑
k=1

(∥ξk∥+ βh∥θk − θ̄k∥)

= ηh

t−1∑
k=1

∥ξk∥+ ηhβh

t−1∑
k=1

∥θk − θ̄k∥.
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Using this inequality sequentially leads to809

∥θt − θ̄t∥ ≤ ηh

t−1∑
k=1

∥ξk∥+ ηhβh

t−1∑
k=1

∥θk − θ̄k∥

≤ ηh

t−1∑
k=1

∥ξk∥+ ηhβh

t−2∑
k=1

∥θk − θ̄k∥+ ηhβh

(
ηh

t−2∑
k=1

∥ξk∥+ ηhβh

t−2∑
k=1

∥θk − θ̄k∥
)

= ηh

t−1∑
k=1

∥ξk∥+ η2hβh

t−2∑
k=1

∥ξk∥+ (1 + ηhβh)ηhβh

t−2∑
k=1

∥θk − θ̄k∥

= ηh∥ξt−1∥+ ηh(1 + ηhβh)

t−2∑
k=1

∥ξk∥+ (1 + ηhβh)ηhβh

t−2∑
k=1

∥θk − θ̄k∥

≤
t−1∑
k=1

ηh(1 + ηhβh)
t−k−1∥ξk∥.

Applying Markov’s inequality results in810

P(τ ≤ n) = P( max
0≤t≤n

∥θt − θ̄t∥ ≥
ch
4
)

≤ P(
n−1∑
k=1

ηh(1 + ηhβh)
n−k−1∥ξk∥ ≥

ch
4
)

≤
4
∑n−1

k=1 ηh(1 + ηhβh)
n−k−1E[∥ξk∥]

ch

≤
4nηh(1 + ηhβh)

n−1
√

Ch

Kh

ch
,

where in the last inequality E[∥ξk∥] ≤
√

E[∥ξk∥2] ≤
√

Ch

Kh
by Jensen’s inequality and Lemma C.1.811

Now we plug in the choice of ηh = 1√
nβh

,812

P(τ ≤ n) ≤
4n 1√

nβh
(1 + 1√

nβh
βh)

n−1
√

Ch

Kh

ch

=
4
√
n(1 + 1√

n
)n−1
√
Ch

βhch
√
Kh

≤ 4
√
nn
√
Ch

βhch
√
Kh

,

where the last step is due to f(x) = (1+ 1√
x
)x−1 ≤ x for all x ≥ 1. We follow that P(τ < n) < δ if813

Kh ≥
16n3Ch

β2
hc

2
hδ

2
.

814

Theorem 4.4. Suppose the stochastic policy gradient updates are generated by (9) for arbitrary815

initialization θ0 ∈ Rdh . Suppose that µh(s) > 0 for all s ∈ Sh and choose for any δ, ϵ > 0,816

(i) the number of training steps Nh ≥
(
64βh

3δc2hϵ

)2
,817

(ii) the step size ηh = 1
βh

√
Nh

and the batch size Kh =
64N3

hCh

β2c2hδ
2 .818
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Then, P
(
(J∗

h − Jh(θNh
)) ≥ ϵ

)
≤ δ.819

Proof. We separate the probability using the stopping time τ and obtain820

P
(
(J∗

h − Jh(θNh
)) ≥ ϵ

)
≤ P

(
{τ ≥ Nh} ∩ {(J∗

h − Jh(θNh
)) ≥ ϵ}

)
+ P

(
{τ ≤ Nh} ∩ {(J∗

h − Jh(θNh
)) ≥ ϵ}

)
≤

E
[
(J∗

h − Jh(θNh
))1{τ≥Nh}

]
ϵ

+ P(τ ≤ Nh)

≤ 1

ϵ

16βh

√
Nh

3(1− 1
2
√
Nh

)c2hNh

+
δ

2

≤ δ

2
+

δ

2
= δ,

where the second inequality it due to Lemma 4.2 and Lemma 4.3. The last inequality follows by our821

choice of Nh:822

16βh

3ϵ(1− 1
2
√
Nh

)c2h
√
Nh

≤ δ

2

for Nh ≥
(
32βh

3ϵδc2h
+ 1

2

)2
, which is satisfied for Nh ≥

(
64βh

3ϵδc2h

)2
. Note further that we could use823

Lemma 4.2 in the equation above with a constant batch size Kh, because824

max
{ 9c2hCh

32β2
hN

3
2

h

(1− 1

2
√
Nh

)n2,
16N3

hCh

β2c2h
δ
2

2

}
=

16N3
hCh

β2c2h
δ
2

2 ,

for all n ≤ Nh, as (1− 1
2
√
Nh

) < 1, ch < 1 and Ch

β2 < 1.825

D Proofs of Section 5826

Theorem 5.1. Assume that µh(s) > 0 for all h ∈ H, s ∈ Sh. Let ϵ > 0, the step size ηh = 1
βh

and827

the batch size Nh = 4(H−h)HR∗|A|
c2hϵ

∥∥ 1
µh

∥∥
∞. Denote by π̂∗ = (πθ

N0
0 , . . . , πθ

NH−1
H−1 ) the final policy828

from Algorithm 1, then for all s ∈ S0,829

V ∗
0 (s)− V π̂∗

0 (s) ≤ ϵ.

Proof. First note that by our choice of the future policy π̃ = π̂∗ we have830

Jh,s(θ
(Nh)
h ) = V π̂∗

h (s). (21)

By Theorem 3.8 we obtain831

J∗
h − Jh(θ

(Nh)
h ) ≤ 4(H − h)R∗|A|

c2hNh
.

For every s ∈ Sh, denote by δs the dirac measure on state s, then832

J∗
h,s − Jh,s(θ

(Nh)
h ) =

∑
s′∈Sh

µh(s
′)
δs(s

′)

µh(s′)
J∗
h,s − Jh,s(θ

(Nh)
h )

≤
∥∥∥ 1

µh

∥∥∥
∞
(J∗

h − Jh(θ
(Nh)
h ))

≤ 4(H − h)R∗|A|
c2hNh

∥∥∥ 1

µh

∥∥∥
∞
,

(22)
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where
∥∥∥ 1
µh

∥∥∥
∞

= maxs∈Sh

1
µh(s)

> 0 by assumption. As Nh = 4(H−h)HR∗|A|
c2hϵ

∥∥∥ 1
µh

∥∥∥
∞

, it holds that833

J∗
h,s − Jh,s(θ

(Nh)
h ) ≤ ϵ

H
(23)

for every s ∈ Sh. For h = H − 1 it follows directly by (21) and the specialty of the last time point834

that for all s ∈ SH−1,835

V ∗
H−1(s)− V π̂∗

H−1(s) = J∗
H−1,s − Jh,s(θ

(Nh)
h ) ≤ ϵ

H
.

Assume now that for all s ∈ Sh,836

V ∗
h (s)− V π̂∗

h (s) ≤ ϵ(H − h)

H
. (24)

Then it holds for all s ∈ Sh−1 that,837

J∗
h−1,s = max

a∈As

(
r(s, a) +

∑
s′∈Sh

p(s′|s, a)V ∗
h (s)−

∑
s′∈Sh

p(s′|s, a)(V ∗
h (s)− V π̂∗

h (s))
)

≥ max
a∈As

(
r(s, a) +

∑
s′∈Sh

p(s′|s, a)V ∗
h (s)

)
− ϵ(H − h)

H

= V ∗
h−1(s)−

ϵ(H − h)

H
,

(25)

by the Bellman expectation equation for finite-time MDPs (Puterman (2005)). We close the backward838

induction using (21) such that for all s ∈ Sh−1,839

V ∗
h−1(s)− V π̂∗

h−1(s) = V ∗
h−1(s)− J∗

h−1,s + J∗
h−1,s − V π̂∗

h−1(s)

≤ ϵ(H − h)

H
+

ϵ

H

=
ϵ(H − (h− 1))

H
.

(26)

Finally, it holds for h = 0 and all s ∈ S0 that840

V ∗
0 (s)− V π̂∗

0 (s) ≤ ϵ.

841

Theorem 5.2. Assume that µh(s) > 0 for all h ∈ H, s ∈ Sh. Let δ, ϵ > 0, the step size ηh = 1
βhNh

,842

number of training steps Nh =
(

64βhH
2
∥∥ 1

µh

∥∥
∞

3δc2hϵ

)2

and the batch size Kh =
64N2

hH
2Ch

βhc2hδ
2 . Denote by843

π̂∗ = (πθ
N0
0 , . . . , πθ

NH−1
H−1 ) the final policy from Algorithm 2, then844

P
(
∃s ∈ S0 : V ∗

0 (s)− V π̂∗

0 (s) ≥ ϵ
)
≤ δ.

Proof. As in the exact gradient case (21) we have by our choice of the future policy π̃ = π̂∗ that845

Jh,s(θ
(Nh)
h ) = V π̂∗

h (s). (27)

By Theorem 4.4 we have that846

P
(
J∗
h − Jh(θ

(Nh)
h ) ≥ ϵ

H
∥∥∥ 1
µh

∥∥∥
∞

)
≤ δ

H
,

by our choice of Nh, ηh and Kh.847

For every s ∈ Sh, denote by δs the dirac measure on state s, then as in (22)848

J∗
h,s − Jh,s(θ

(Nh)
h ) ≤

∥∥∥ 1

µh

∥∥∥
∞
(J∗

h − Jh(θ
(Nh)
h )) a.s.
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Thus, for all h ∈ H it holds that849

P
(
∃s ∈ Sh : J∗

h,s − Jh,s(θ
(Nh)
h ) ≥ ϵ

H

)
≤ P

(
J∗
h − Jh(θ

(Nh)
h ) ≥ ϵ

H
∥∥∥ 1
µh

∥∥∥
∞

)
≤ δ

H
. (28)

Define the event Ah := {J∗
h,s−Jh,s(θ

(Nh)
h ) < ϵ

H , ∀s ∈ Sh}. Then (29) is equivalent to P(AC
h ) ≤ δ

H .850

For h = H − 1 it follows directly with (27) and the special property of the last time point that851

P
(
∃s ∈ Sh : V ∗

H−1(s)− V π̂∗

H−1(s) ≥
ϵ

H

)
= P

(
∃s ∈ Sh : J∗

H−1,s − JH−1,s(θ
(Nh)
h ) ≥ ϵ

H

)
≤ δ

H
.

We close the proof by induction. Assume for some 0 < h < H that852

P
(
∃s ∈ Sh : V ∗

h (s)− V π̂∗

h (s) ≥ ϵ(H − h)

H

)
≤ δ(H − h)

H
. (29)

Define Bh := {V ∗
h (s)− V π̂∗

h (s) < ϵ(H−h)
H ,∀s ∈ Sh}. Similar to (25), on the event Bh it holds that853

J∗
h−1,s = max

a∈As

(
r(s, a) +

∑
s′∈Sh

p(s′|s, a)V ∗
h (s)−

∑
s′∈Sh

p(s′|s, a)(V ∗
h (s)− V π̂∗

h (s))
)

> max
a∈As

(
r(s, a) +

∑
s′∈Sh

p(s′|s, a)V ∗
h (s)

)
− ϵ(H − h)

H

= V ∗
h−1(s)−

ϵ(H − h)

H
.

We obtain on the event Ah−1 ∩Bh that (compare to (26))854

V ∗
h−1(s)− V π̂∗

h−1(s) = V ∗
h−1(s)− J∗

h−1,s + J∗
h−1,s − V π̂∗

h−1(s)

<
ϵ(H − h)

H
+

ϵ

H

=
ϵ(H − (h− 1))

H
,

for every s ∈ Sh−1. Hence, Ah−1 ∩Bh ⊆ Bh−1. Finally, we close the induction by855

P
(
∃s ∈ Sh−1 : V ∗

h−1(s)− V π̂∗

h−1(s) ≥
ϵ(H − (h− 1))

H

)
= 1− P(Bh−1) ≤ 1− P(Ah−1 ∩Bh) = P(AC

h−1 ∪BC
h ) ≤ P(AC

h−1) + P(BC
h )

= P
(
∃s ∈ Sh−1 : J∗

h−1,s − Jh−1,s(θ
(Nh−1)
h−1 ) ≥ ϵ

H

)
+ P

(
∃s ∈ Sh : V ∗

h (s)− V π̂∗

h (s) ≥ ϵ(H − h)

H

)
≤ δ

H
+

δ(H − h)

H

=
δ(H − (h− 1))

H
.

For h = 0 we have shown the claim856

P
(
∃s ∈ S0 : V ∗

0 (s)− V π̂∗

0 (s) ≥ ϵ
)
≤ δ.

857

E Proofs of Section 6858

We denote by GEOM(p) the geometric distribution with parameter p ∈ (0, 1].859

Algorithm 3 states the construction of an approximate gradient ∇̂JK(θ) ≈ ∇J(θ). Note that for batch860

size K = 1, ∇̂J1(θ) is the estimator ∇̂J(θ) proposed in (Zhang et al., 2020, Eq. (3.6)). Furthermore,861

it is important to highlight that the tabular softmax parametrization meets the assumptions made by862

(Zhang et al., 2020, Ass. 3.1):863
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Algorithm 3: Estimate unbiased gradient for∇J(θ)
Data: Let θ ∈ Θ.
Result: Approximate gradient ∇̂JK(θ)
for i = 1, . . . ,K do

Sample T ∼ GEOM(1− γ)
Sample trajectory (si0, a

i
0, . . . , s

i
T , a

i
T ), s.t. s0 ∼ µ, ait ∼ πθ(·|sit), sit+1 ∼ p(·|sit, ait)

Sample T ′ ∼ GEOM(1− γ
1
2 )

Set s̃i0 = siT , ãi0 = aiT
Sample trajectory (s̃i1, ã

i
1, . . . , s̃

i
T ′ , ãiT ′), s.t. s̃it ∼ p(·|s̃it−1, ã

i
t−1), ã

i
t ∼ πθ(·|s̃it)

Set Q̂(siT , a
i
T ) :=

∑T ′

t′=0 γ
t′
2 R(s̃it′ , ã

i
t′).

end
Set ∇̂JK(θ) = 1

K

∑K
i=1 Q̂(siT , a

i
T )∇ log(πθ(aiT |siT )).

• We assume that the rewards are bounded in [0, R∗].864

• The softmax parametrization is differentable with respect to θ, and ∇ log(πθ(a|s)) exists.865

Moreover, by Lemma 3.4 we have that the gradient of log(πθ(a|s)) is Lipschitz and that866

∥∇ log(πθ(a|s))∥2 ≤
√
|A|.867

Lemma E.1. The estimator ∇̂JK(θ) from algorithm 3 is an unbiased estimator of∇J(θ). Moreover,868

there exists C > 0 such that869

E[∥∇̂JK(θ)−∇J(θ)∥22] ≤
C

K
.

Proof. By (Zhang et al., 2020, Theorem 4.3) we have that for θ ∈ Θ deterministic870

E[∇̂J1(θ)] = ∇J(θ)

and871

∥∇J(θ)∥2 ≤
R∗BΘ

(1− γ)2
, ∥∇̂J1(θ)∥2 ≤

R∗BΘ

(1− γ)(1− γ
1
2 )

a.s.,

where BΘ such that ∥log(πθ(a|s))∥2 ≤ BΘ. From the proof of Lemma 3.4 we have that BΘ =
√
|A|.872

We deduce from Algorithm 3, that873

E[∇̂JK(θ)] =
1

K

K∑
i=1

E[∇̂J1(θ)] = ∇J(θ).

For the variance we have874

E[∥∇̂JK(θ)−∇J(θ)∥22] ≤
1

K
E[∥∇̂J1(θ)−∇J(θ)∥22]

≤ 1

K

(
E[∥∇̂J1(θ)∥22] + 2E[∥∇̂J1(θ)∥2]∥∇J(θ)∥2 + ∥∇J(θ)∥22

)
≤ 1

K

( (R∗)2|A|
(1− γ)2(1− γ

1
2 )2

+ 2
R∗

√
|A|

(1− γ)(1− γ
1
2 )

R∗
√
|A|

(1− γ)2
+

(R∗)2|A|
(1− γ)4

)
=

(R∗)2|A|
K

( 1

(1− γ)2(1− γ
1
2 )2

+
2

(1− γ)3(1− γ
1
2 )

+
1

(1− γ)4

)
.

Define C = (R∗)2|A|
(

1

(1−γ)2(1−γ
1
2 )2

+ 2

(1−γ)3(1−γ
1
2 )

+ 1
(1−γ)4

)
proves the claim.875

Using this estimator we can formulate the REINFORCE algorithm as presented in Williams (1992)876

in Algorithm 4.877
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Algorithm 4: REINFORCE for discounted MDPs
Result: Approximate policy π̂∗ ≈ π∗

Initialize θ0 ∈ R|S||A|

Choose step size η, number of training steps N and batch size K
for n = 0, . . . , N − 1 do

Sample ∇̂JK(θn) as in Algorithm 3
Set θn+1 = θn + η∇̂JK(θn)

end
Set π̂ = πθN .

Lemma E.2. ∥∥∥∂V π(µ)

∂θ

∥∥∥
2
≥

∥∥∥dπ∗

µ

µ

∥∥∥−1

∞

mins∈S πθ(a∗(s)|s)
1− γ

(V ∗(µ)− V πθ

(µ)).

Proof. We rewrite the norm of the gradient as follows878 ∥∥∥∂V π(µ)

∂θ

∥∥∥
2
=

∥∥∥∑
s∈S

µ(s)
∂V π(s)

∂θ

∥∥∥
2

=
( ∑

s′∈S

∑
a′∈A

(∑
s∈S

µ(s)
∂V π(s)

∂θ(s′, a′)

)2) 1
2

=
( ∑

a′∈A

(∑
s∈S

µ(s)
∂V π(s)

∂θ(s, a′)

)2) 1
2

Note that we can interchange the derivative and the sum without further arguments because the state879

space S is assumed to be finite. We continue as in the proof of (Mei et al., 2020, Lemma 8),880 ∥∥∥∂V π(µ)

∂θ

∥∥∥
2
≥

∣∣∣∑
s∈S

µ(s)
∂V π(s)

∂θ(s, a∗(s))

∣∣∣
=

∣∣∣ ∂V π(µ)

∂θ(·, a∗(·))

∣∣∣
=

1

1− γ

∑
s∈S
|dπ

θ

µ (s)πθ(a∗(s)|s)Aπθ

(s, a∗(s))|

=
1

1− γ

∑
s∈S

dπ
θ

µ (s)πθ(a∗(s)|s)|Aπθ

(s, a∗(s))|

≥ 1

1− γ

∥∥∥dπ∗

µ

dπθ

µ

∥∥∥−1

∞
min
s∈S

πθ(a∗(s)|s)
∑
s∈S

dπ
∗

µ (s)Aπθ

(s, a∗(s))

=
∥∥∥dπ∗

µ

dπθ

µ

∥∥∥−1

∞
min
s∈S

πθ(a∗(s)|s)(V ∗(µ)− V πθ

(µ)).

Furthermore, we can bound the distribution mismatch coefficient uniformly for all θ,881

dπ
θ

µ (s) ≥ (1− γ)µ(s),

by Mei et al. (2020, Thm. 4), such that
∥∥∥dπ∗

µ

dπθ
µ

∥∥∥−1

∞
≤ (1− γ)−1

∥∥∥dπ∗
µ

µ

∥∥∥−1

∞
.882

Recall the definitions of (θn)n≥0 and (θ̄n)n≥0 from (11). We denote by Fn the natural filtration of883

the process (θn)n≥0. With respect to this filtration we define the stopping time884

τ = min{n ≥ 0 : ∥θn − θ̄n∥ ≥
c

4
}, (30)
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where c = minn≥0 mins∈S πθ̄n(a∗(s)|s) > 0 by (Mei et al., 2020, Lemma 9) and a∗(s) the optimal885

action of the deterministic optimal policy π∗.886

Lemma E.3. It holds almost surely that min0≤n≤τ mins∈S πθn(a∗(s)|s) ≥ c
2 is strictly positive.887

Proof. Due to the Lipschitz continuity of the softmax function the proof is line-by-line as in888

Lemma C.4.889

Lemma E.4. Suppose µ(s) > 0 for all s ∈ S, batch size Kn ≥ 9(1−γ)4c2C

2048N
3
2

(1− 1
2
√
N
)
∥∥∥dπ∗

µ

µ

∥∥∥−2

∞
n2890

for some N ≥ 1 and the step size η = (1−γ)3

8
√
N

, then891

E
[
(J∗ − J(θn))1{n≤τ}

]
≤ 128

√
N

3(1− 1
2
√
N
)(1− γ)c2n

∥∥∥dπ∗

µ

µ

∥∥∥2
∞
.

Proof. We slightly modify the proof of Lemma 4.2 for finite-time MDPs. First, we deduce from the892

β-smoothness of J , with β = 8
(1−γ)3 (Mei et al. (2020), Agarwal et al. (2021)) that893

J(θn+1) ≥ J(θn) +
(
η − βη2

2

)
∥∇J(θn)∥2 +

(
η − βη2

)
⟨∇J(θn), ξn⟩ −

βη2

2
∥ξn∥2,

where ξn := ∇̂JK(θn) − ∇J(θn). Next we take the conditional expectation on Fn. Then by894

Lemma E.1 we obtain895

E
[
J(θn+1)|Fn

]
≥ J(θn) +

(
η − βη2

2

)
∥∇J(θn)∥2 −

βη2C

2Kn
.

Subtracting this equation form J∗ and taking the expectation under the event {n+ 1 ≤ τ} results in:896

E
[
(J∗ − J(θn+1))1{n+1≤τ}

]
≤ E

[
(J∗ − J(θn))1{n≤τ}

]
−

(
η − βη2

2

)
E
[
∥∇J(θn)∥21{n≤τ}

]
+

βη2C

2Kn

With the PL-type inequality Lemma E.2 and min0≤n≤τ mins∈S πθn(a∗(s)|s) ≥ c
2 by Lemma E.3897

we have898

E
[
(J∗ − J(θn+1))1{n+1≤τ}

]
≤ E

[
(J∗ − J(θn))1{n≤τ}

]
−
(
η − βη2

2

) c2

4(1− γ)2

∥∥∥dπ∗

µ

µ

∥∥∥−2

∞
E
[
(J∗ − J(θn))1{n≤τ}

]2
+

βη2C

2Kn
.

For dn := E
[
(J∗ − J(θn))1{n≤τ}

]
we obtain the recursive inequality899

dn+1 ≤ dn −
(
η − βη2

2

) c2

4(1− γ)2

∥∥∥dπ∗

µ

µ

∥∥∥−2

∞
d2n +

βη2C

2Kn
.

We define w :=
(
η − βη2

2

)
c2

4(1−γ)2

∥∥∥dπ∗
µ

µ

∥∥∥−2

∞
and B = βη2C

2 > 0 such that900

dn+1 ≤ dn(1− wdn) +
B

Kn
.

Note that w > 0 by the assumption µ(s) > 0 for all s ∈ S . Then by our choice of Kn and η it holds901

that902
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Furthermore, we have903

4
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√
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3(1− 1
2
√
N
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.

We obtain for β = 8
(1−γ)3 that904
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,

because c ≤ 1,
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∞
≥ 1 and 1√

N
(1− 1

2
√
N
) < 1 for all N ≥ 1.905

Suppose the induction assumption dn ≤ 4
3wn holds true. The induction conclusion follows exactly as906

in the proof of Lemma 4.2: First, recall the recursive inequality907

dn+1 ≤ dn − wd2n +
B

Kn
.

The function f(x) = x− wx2 is monotonically increasing in [0, 1
2w ], and by induction assumption908

dn ≤ 1
4wn ≤

1
2w . Thus,909
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by the choice of Kn ≥ 9
4wBn2. We deduce the claim910
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911

Lemma E.5. Suppose µ(s) > 0 for all s ∈ S . For any N ≥ 1, if ηh = (1−γ)3√
N8

and K ≥ N3C(1−γ)6

c2δ2 ,912

then P(τ ≤ N) ≤ δ.913

Proof. The proof follows line by line from the proof of Lemma 4.3 for the finite-time MDP.914

Theorem 6.1. Let (θ̄n)n≥0 and (θn)n≥0 be the (stochastic) policy gradient updates from (11) for915

arbitrary initial θ̄0 = θ0 ∈ Θ. Suppose µ(s) > 0 for all s ∈ S and choose for any δ, ϵ > 0,916

(i) the number of training steps N ≥
(
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,917
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8
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Then, P
(
(J∗ − J(θN )) ≥ ϵ

)
≤ δ, where J∗ = supθ J(θ).920
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Proof. We separate the probability using the stopping time τ and obtain921
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where the second inequality holds due to Lemma E.4 and Lemma E.5. The last inequality follows by922

our choice of N :923
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.924

Note that we can use Lemma E.4 in the equation above with a constant batch size, because925
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,

for all n ≤ N .926
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