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Supplementary Material

Subsequently, we provide a complete collection of proofs for the stated results in the main body. We
restate these results to enhance readability and ensure a clear understanding of the proof details.

A Proofs of Section[2]

Lemma 2.1 (Performance difference lemma). For any h € H and for any pair of policies © and 7'
the following holds true for every s € Sp:

VT (s) Z Eg, A7 (S, An)].

Proof.

T

Vi(s) = Vi () =BG, 30 r(Sk A0 = ViT'(s)

T
LL

_ H-1
—E5" [ ST r(Sk A + Z VE (S = D0 ViE ()] = vir'(s)
) =h

T T
'”

_ H—
= Egi:is i r Sk,Ak Z Vk Sk Z Vkﬂ-l(Sk)]

k=h k=h+1
H-1 H-2 H—
=Eg .| D 7(Sk Ar) + > VL (Skn) = > VE (Sk)}
k=h k=h =

T

=BG D (1S Ar) + Vi (Skan) = Vi (5)]

i
>

T

—Eg;h)s{ - Af(sk,Ak)}
h

=
Il

H—
Z Eg, [A (Sk, Ak)}
k=

where we have used that r(Sk, Ag) + Vk+1(5k+1) Q7' (Sk, Ay). In the fifth equation we used the
notation Vz = 0 and note that Q) ;1 = r independent of any policy. O

Unless explicitly specified, all differentiations are performed with respect to the variable 6.
Theorem 2.2. For a fixed policy 7@ and h € H the gradient of Jy, s(0) defined in (6)) is given by

Vns(0) = Eg, —s ay o5 [V 10g(7? (A1]S0))QF (S, An)]-

Proof. The probability of a trajectory w = (sp,ap,...,SH—1,am—1) under the policy
(7%, % nt1)) = (7%, Fny1, ..., Tr—1) and initial state distribution d, is given by
. H-1
P ’Tr(h“))(w) = 8s(sn)7% (an|sn) H P(Sk|Sk—1, ar—1)Tr(ak|sk).
k=h+1
Then,

Viog(®{ " (w)) = V (1og(6, (1)) + log(x” (anlsn))

+ > log(p(sklsi-1,ax-1)) +log(Fr(axls)))
k=h+1

= Vlog(m?(an|sn)),

13



475 which is known as the log-trick. Let WV be the set of all trajectories from h to H — 1. Note that W is
476 finite due to the assumption that state and action space is finite. Then for s € Sy,

H-1
VJh,s( Z P(ﬂ Aintn) (w) Z r(sk, ar)
wew k=h
. . H-1
- Z Pgﬂ ’W("“))(w)Vlog(Pgﬁ ’ﬂ(h“))) Z r(sk, ax)
wWEW k=h
) H-1
= Y BT () Vlog(n? (anlsn)) S vk, ar)
weW k=h

H—
_Eg_T’L“))[Vlog (An|Sn)) Z Sk’Ak]

— B 0 [V log(n” (Anl$1)ES [Hzrsk,Amsh,AhH

>_|

= Eg, = apr(fo) |V 108(" (41]51)) Z(sh,Ah)]
477 O

478 Corollary 2.3. For any h € H and two policies w and 7': If T(p41) = 7TEh+1), it holds that
Vir(s) = Vir'(s) = B2, [ A7 (S, An)].
479 Proof. Let k > h, then
Eg™, {Aﬂ (Sk,Ak)]

= Zﬂh als) ZP sls,a ]Eg(,ff)s[ (Sk,Ak) - VkTr/(Sk)}

acA SES
= 3" mulals) - plsls aEg 2, [QF (k. Ax) — VI (51)]
acA SES
= 3" mnlals) 3 plsls, o) (B2, [BE1QF (i, 4] B2, [V (1] )
acA sES
= 3 mulals) 3 plols,a) (B L[V (5] — XL [V (50)])
acA SES
=0.
480 The claim follows with Lemma [2.1] O

1 B Proofs of Section

482 B.1 Proofs of Section3.1]

4g3  First, we compute the derivative of the softmax policy for every s € Sj, and a € Aj,

6(s,a)
0 e
T (als) = =——ma
Ea’GA e@(.s,a)

484 with parameter § € R

Dlog(r’ (als))
sy = Y=t (Lamary —7(@15))

485 Hence,

Vi ¢ :(1 s=s'} (L{a=a'} — "(a]s ) R
Og(ﬂ- (a|5)) {s= }( {a=a’} g (Cl ‘S )) s'€Sp,a’ €A

14



4ss  Lemma 3.2. Let h € H, then the partial derivatives of Jy, with respect to 0 take the following form

0Jx(0)
09(s,a)

_ 9 (7 Fnt1))
= () (al) AT T 5 ).

487 Proof. By the policy gradient Theorem [2.2]
VIn(8) = VEsp[Jn,s(6)]

= Zu(s)VJh’S(H)
SES

=Y 1()Es, =5 4yt (1) [V 108 (T (A0 Sh)) Q7 (Sn, An)]-
seS

488 Next we plug in the derivative of the softmax parametrization and obtain

VJn(9)

) sgsﬂ(s)ESh:s,Ahwe(-ls) [(1{SIFS’}(1{AFG’} - ﬂ-e(al|8/)))s’63h,a’€¢45/ QZ(Sh’Ah)]
(gu Z; (011 omsy Loy = @ QE ),

= (1) (@1QE(0) = )" (@ls') 3 @l ) QR ), o

= (1) (@'l Qi (s a') — V;f"s’ﬁ““”(;;;
= (uls)n" (@] AT T (s )

s'€Sp,a’€A

5’65;1,,a’€./45,7
~ 0
489 where we used that 3 , 7%(als")Qf(s',a) = Ju o (0) = Vh(Tr ’W(’L“))(s’). O

a0 Proposition 3.3. Let h € H and consider the objective function Jy(0). If there exists G, M > 0
491 such that

||V10gﬂ'6(a|s)\|2 <G and HV2 logﬂa(a|s)||2 <M,

a2 forall s € Sy, a € A, then for any initial state distribution py, of Sy, the function Ji,(0) is Bp-smooth
a3 in O with B, = (H — h)R*(G* + M).

a94  Proof. Define W as the set of all possible trajectories from A to H and consider #¥ := (¢ ST h+1))
495  as in the proof of Theorem[2.2} Fix any initial state distribution p;, on Sy, then the probablhty of wis
H-1
Py (wIF?) = i (sn)m” (anlsn) [T pCsklse—1, k1) (arlse)-
k=h+1
496 It holds that

H-1
V2J,(0) Z VZpM (w|7?) Zr (8K, ak) (12)

weW k=h

—_———
=r(w)

497 Now,
V2108 (py (w17)) = V (s, (0l3) " Vi, (w]))

= Pun (wme)ilvzpm}, ('LU|7AT9)
— P (wI77) "2V, (w]7%) Vi, (w]7%)

15



498

499

500

501

503

505
506

507

508

509

510

511
512

rearranging leads to
V201, (w[7°) = py (wl7®) (V2 10g (u(0]7)) + Dy (w|77) 2V, (wl7”) T, (w0]7)7)
(13)
= Dy (wl7”) (V2 10g (B, (w]37)) + ¥ log(p, (wl 7))V log(Ju(0))7).  (14)

Substitute (T4) into (12):
V2J,(0)
= 3" P (wl7®) (V2 10g (pn (]77)) + V108D, (w0]7))V 1o (s, (w]7%))T ) ().
wew

Using the log-trick similar to Theorem [2.2] yields
Vlog(py, (w|i?)) = V log(n” (an|sn))

and

V2 10g(py,, (w|7”)) = V* log(x’ (an|sn)).

Together with the assumption we made on the derivative and hessian of the log parametrized policy
we obtain

V2 7(0)]2

= || 32 o i) (9% 108 (D, (w[7?)) + ¥ 108y, (0]7°))V Ty, (0] )r(a0)]
weWw

< Y P (wla)r(w) (192 10g(x” (anfsn) 12 + |V log(x” (anlsi))13)
weWw

< M+ G?

< max r(w)(M + G)
< (H — h)R*(M + G?),

which completes the proof. Recall that R* is the maximal reward. [

Lemma 3.4. Let h € H, then the h-state value function under softmax parametrization, 6 — Jp, (),
is Bp-smooth with By, = 2(H — h)R*|A|.

Proof. We use Proposition [3.3]for the softmax parametrization and see that

|V log (7% (als))|2 = Z (Lgar—ay — 7 (|5 ) < VIAs| < VIA]

a’eA

and (Frobenius norm)

V2 log(x’(als))ll2 = | D > (Larcanym®(@ls) — 7 (a*]s)70 (a']s))”
a*€A;s a’€A;
< VA | As]
< |A].
Using Propositionwith G = /| A| and M = | A] yields the claim. O

Theorem 3.5. Let h € H and consider the gradient ascent updates
Ont1 = On + 1pV Jp(0y) 0

for arbitrary 0y € R, We assume that uy,(s) > 0 forall s € Sy, and 0 < np, < ﬁ Then, for all

8 € Sp, Jn,s(0n) converges to Jj; _ forn — oo, where Jj; = supy Jp s(0) < oc.
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527
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530
531

532
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541

The idea of the proof follows the line of arguments in |[Agarwal et al.| (2021) for the asymptotic
convergence of softmax policy gradient in the discounted stationary MDP setting. Thus, we first have
to show a row of lemmata, compare to Lemma 41 to 51 in|/Agarwal et al.| (2021)).

Lemma B.1 (Monotonicity). If the learning rate satisfies 0 < 1, < z- = m then
In,s(On+1) > Jn.s(0y) for any s € Sy,. Furthermore, for all s € Sy, there exists a limit IS, such

that
lim Jp s(0n) = Jio < oo.

n—oo

Proof. By (Beck, 2017, Theorem 10.4) we have for any $-smooth function f : R? — R, that
(f(2"))>0 is non-increasing sequence, when z*+1 = z* — 7V f(z*) with n,, < 3.
First note that —J},  is also 8-smooth. Then we have

VJn(0 ( Z pn (s Jhs )) = Z /‘h(s)VJh,S(e)v

SES) sESK

and aj’(l °(9)) = 0 whenever s’ # s. Denote by 0(s) = (s, -) € RI4| then

0(8)nt1 = On(s) + nhﬂh(S)VJh,S(g)'
With the assumption 0 < pp,(s) < 1 forall s € Sj, the first claim follows by (Beck, 2017, Theorem
10.4).

As Jp, s(0,) < (H — h)R* is bounded for all n € N the second claim follows directly from
monotonicity. O

To save notation we fix an h € H. All results hold true for an arbitrary epoch. We introduce the
following definitions without a subscript A:

A= A3° (s,
{sa|A,L<sa>¢0}‘ S(s,0)

where A5°(s,a) = Q7 (s,a)— Ji%,- Recall that 7 is the fixed policy which we use for h+1, ..., H—

For the rest of this section, we write @}, instead of Q7. Further we denote by AZ" (s,a) =
Qn(s,a) — Jp s(0,), the advantage function with respect to parameter 6,,.

We define the sets
15 ={a € As| Qn(s,a) = Ji5},
IT ={a € A | Qn(s,a) > Jp%},
I’ ={a € As|Qn(s,a) < Jp%}-
Note that we observe a fundamental difference to the proof of Agarwal et al.|(2021)) in the infinite

time setting. We do not need a limit of the state-action value function Q)}°, because ()}, is independent
of ¢ and only depends on 7. We aim to prove that I} is an empty set, then J3°, = J; .

Lemma B.2. There exists a time N1 > 0 such that for all n > N1, and s € Sy, we have
A A
AZ"(s,a) < fzfora el’®; Azn(s,a) > Zfora eli.
Proof. Fix s € S, arbitrarily. As J, s(6,,) — Ji5, for n — oo and Sy, is finite, we have that there
exists Ny > 0 such that foralln > N7 and s € S},

Tns(0n) > T2, —

Z.
It follows for all n > Ny, s € S, and a € I° by the definition of A:
A A A
Afln(s,a) = Qn(s,a) — Jns(0n) < Qn(s,a) — Jhos + i < -A+ i < I

Similarly, for all n > Ny, s € Sy and a € I we obtain from monotonicity and the definition of A,

A
AZ”(S’G) = Qh(s,a) - Jh,swn) > Qh(s,a) Jh s > A> -
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554

555

556

557

558

559

560

561

Lemma B.3. It holds that 3‘;]:((39,2)) — 0asn — oo forall s € Sy, a € As. This implies that for

a € I3 UI%, 7% (als) — 0 and that Zaelg 7o (a|s) — 1 forn — .

Proof. From (Beck, 2017, Theorem 10.15) we deduce for any S-smooth function f : R? — R,
that ||V f(z*)[[ = 0 for k — oo, if 2**! = a¥ — ZV f(a*). By LemmaJh(~) is Bj,-smooth.

0Jn (6n)
90,,(s,a)

It follows by our choice of 7, < B% that —0asn — oo forall s € Sy, a € A;. Now

remember from Lemma [3.2]

m = un(s)7% (a|s) A9 (s, a),

and by Lemma |AZ" (s,a)| > £ foralln > Ny anda € I§ UT*. As pu(s) > 0 by assumption
it follows that 7% (a|s) — 0 for n — oo forall a € I{ U I* from %
The last claim, Zaelg 79 (a|s) — 1 for n — oo, follows immediately from D acA. 70 (als) =1
by:

— 0asn — oo.

nhﬁngo Z 7o (als) = nhﬁn;()( Z 70 (als) — Z 7on (a|3))

a€lf ac A, aclFuIs
=1- E lim 7% (als)
n—oo
aeIfqu
=1

O

Lemma B.4. For a € I3, the sequence (0,,(s,a))n>0 is strictly increasing for n > N1 and for
a € I?, the sequence (0,,(s,a))n>0 is strictly decreasing for n > Nj.

Proof. With Lemma [B.2] we know that for n > Ny

Al (s,a) >0 forae I5;  Alr(s,a) <0 fora € I°,

and by Lemma [3.2]
OJn(6n)
59 l(s 7;) = un(s)7% (a|s) Al (s, a).
As pp(s) > 0and 7% (a|s) > 0 by the definition of softmax parametrization, we have for all n. > N,
0Jn(6r) OJn(0n)
—— >0 f Ii;, ———=5<0f I°.
90, (s, ) orac ly; D6, (s, a) orac i’
This implies for a € 7,
0Jn(6,)
Ont1(s,a) = On(s,a) = npo——s >0,
+1(s,a) = On(s,a) (s a)

i.e. (0n(s,a))n>0 is strictly increasing for n > N; and similar fora € I°,

SO <

9n+1 (57 CL) - Hn(S, CL)
i.e. (0n(s,a))n>o is strictly decreasing for n > Nj. O

Lemma B.5. Forall s € Sy, where I3 # 0, we have that

max6,(s,a) - oo and min 0,(s,a) > —c0 forn — oo.
acl§ a€A;

18
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563

564
565

566

567

568

569

570

571

572
573

574

575

576
577

Proof. By assumption I3 # () there exists an a. € I and by Lemma |B.3|we have 7% (a|s) — 0,
as n — oo. Hence, by softmax parametrization this is equivalent to

exp (0, (s, ay))

. exp(fn(s,a))

a€EA;

— 0, forn — oo.

Using Lemma[B.4] i.e. 0,,(s, a.y) is strictly increasing for n > Ny, we imply that exp(6, (s, a)) is
strictly increasing for n > N;. This implies that

Z exp(6n (s,

acA;

Again by Lemma [B23] we know that

i.e. by definition

D

a€cl

implying

a)) — oo, forn — oo.

Z 7% (a|s) = 1, forn — oo,
acly

exp(0, (s, a))

s

> exp(fn(s,a’))

0 a’'eAg

As > exp(O,(s,a’)) — oo it follows that

Z exp(f

a€lj

max 0, (s,
acly

For the second claim it holds that

8Jh(
90, (s, a)

a€A,

By induction, we obtain AL

ZH s, a)

a€Ag

min 6, (
a€A,

Since max,e 4, 0 (s, a) — oo, because max,ess 0, (s, a) — oo, we conclude minge 4, 0, (s, a)

—oo for n — oo.

0

§ ,n—n.

) — oo, for

acA

un(s) (B, ",

= pn(8)(Jn,

=0.

s(en) - Jh,s

— 1, forn — oo.

n — oo

a) — 0o, forn — co.

Qh S a) Jh,s(an))

[Qh(Sha Ah)] - Jh75(9n))

()

On(s,a) = 3 4ca. Oo(s,a) := cforevery n > 0 and hence

Lemma B.6. Suppose a; € If.

7% (a|s), then for all m > n it holds that 7 (a|s) < 7

If there exists a € I such that for some n > 0, 7 (als)

O (ass).

0, —
— max 0, (s,a)

~ max 0.(s,a) + c.

A O

Proof. Suppose there exists a € I§ such that for an n > 0, 7% (a|s) < 7% (a|s). We show that
n9n+1(als) < w%+1(ay|s), then the claim follows by induction. We have

87,6,

00, (s,

)

a)

— i (s)7" (a

|$)(@n(s,a) -

Jh73(971))

< pn(8)m"" (ax|8)(Qn(s, ay) = Jn.s(6n))

at]h(an)

~ 00,(s,ay)’
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579
580

581

582

583

584

585

586
587
588
589

590

591
592

593

595
596

597
598
599
600

601
602

where the inequality follows with
Qn(s,at) = Qn(s,a4) — I + Jps
> Jis
=Qn(s,a) — Jhos + Jhs
= Qn(s,a),
as Qn(s,a4) — JiS, > 0 as. foray € I3 and Qpu(s,a) — Ji5, = O as. fora € I. Now by

assumption we have 7% (a|s) < 7% (a|s) and thus 0,,(s,a) < 0,,(s,a, ). It follows

81, (6,, 971 (0
0n+1(87a) = en(sva) —|—'f]hM < en(sva+) +77h30?s(a3_)

00,,(s,a) = On+a(s,at)-

Now define for every a4 € I3 the set
Bi(ay) = {a € I§|7% (ay|s) < 7% (a|s) forall I > 0}
and denote its complement in I§ as Bj(ay) = I3 \ Bs(ay).
Lemma B.7. Suppose I3 # (. For all ay € I3, we have that B§(ay) # 0 and
Z 7 (als) = 1, asn — oco.
a€Bj(a+)
This implies:

max 0,(s,a) — oo, forn — oco.
a€Bj(as)

Proof. Let ay € If and consider a € Bjj(a ). Then by definition of B§j(a.) there exists n’ > 0
such that 7% (a4 |s) > 7% (a|s). Hence, by Lemma[B.6|for all n > n’ we have 7% (ay|s) >
7% (als). As % (a|s) — 0 for n — oo. We obtain 7% (a|s) — 0 forn — oo, forall a € B§(ay ).
Since by Lemma Zaelg 7% (a|s) — 1 for n — oo, we have that B§(a, ) # () and that

ZaeBS(M) 7% (als) — 1, as n — co. The second claim follows from this as in Lemma O

Lemma B.8. Consider s € Sy, such that I3 # (. Then, for any a € I3, there exists an N, such
that for alln > N, we have

7% (ay|s) > 7% (a|s) forall a € B(ay).

Proof. For every a € B§(a. ) exists time n, such that
7 (ay|s) > 7% (a|s) forall a € Bi(ay)
for all n > n, by definition. Set No, = maxX,e¢ s (q, ) Ma and the proof is completed. O

Lemma B.9. Assume again I3 # (). For all actions a € I%, we have that 6,,(s, a) is bounded from
below as n — oo. And for all a € 1%, we have that 0,,(s,a) — —00 as n — 0.

Proof. The first claim follows directly with Lemma as 0,,(s,a) is strictly increasing for all
a € I3, n > N; and thus for all n > N; we have 6,,(s,a) > 0y, (s,a). Now suppose a € I°,
then by Lemma we have that 6,,(s, a) is strictly decreasing for n > N;. Assume there exists
b such that nll)ngo 0, (s,a) = b, then 0,,(s,a) > b for all n > N;. By Lemma W there exists an

action a’ € A, such that 8,,(s, a’) — —oo for n — oo. Consider § > 0 such that O, (s,a’) > b — 4.
Define for all n > N;

7(n) = max{k € (N1,n] : O (s,a’) > b—d}.

20



603 Define also

OJn(6n)
(n) — / . h <
T {T(n)<n <n: D0 (5, a') _0},

o4 as the set of all indices n’ in (7(n),n), where 0, (s,a’) is decreasing. Next we define Z,, :=
605 D .icT(n) %, then it holds that
OJn(0n)

Ly = —_—
" 00, (s,a")

n’/eT ()

"i 0. (0r)
00, (s,a")

n’=7(n)+1

X 0 (00) | OTn(Ormy)
- )89nr(s,a’) 00-(n)(s,a’) 1’

n'=1(n

606 By Lemma[3.2]and the bounded reward assumption we have

o

aJh (67'(77.) )

0 0, n .

607 Hence,

n—1
OJn(6,)
< TR\
Zn = | 00, (s,a")

n’=1(n

= %(en(sva/) - HT(n)(s,a/)) + (H - h)R*

+ (H - h)R*

%(en(s,a’) —b+0)+(H—-h)R".

IN

6l

o

s Then 0,(s,a’) = —oo for n — oo implies that Z,, — —oo for n — co. As we chose a € I* it

609 holds that |AZ" (s,a)| > % for n > N; with Lemmaand soforalln’ € T(™):

o

oJy Gnl ,
g | | w% (als) A (5, a)
h{Up’ ’ 0,1
g | | @l (s, )
< 7o' (a]s) A
~ 7O (a'|s) 4(H — h)R*
A
= exp(ﬂn/(s, a) - Gn/(s, a/))m
A
A
= eXP((S)m,

sto  where we used in the last inequality that 6,,/(s,a’) < b — ¢ forall n’ > 7(n) and 0, (s,a) > b for
s11 all n’ > Nj. By the definition of 7(") these inequalities holds especially for all n’ € 7). Using

=
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612

613

614

615

616
617

618

619

620
621
622

623

624

626
627

628

629

this we can imply that for all n > N, with 7(") = (j,

n—1
1 ( OJn(0)
— 0N, (s,a —Hns,a>: _—
" Nl( ) ( ) i 00, (3’ a)
< gé]h (en’)
ez 00w (5,0)
A aJh(en’)
< exp(0) v por 20 (e o
4(H — h)R = 00y (s,a’)
A
= 5 7Zﬂ?
PO =R
where the first inequality holds because 8,/ (s, a) is strictly decreasing for n’ > Ny, i.e. % >0
foralln’ € {N; +1,...,n — 1}. In the second inequality we used
AJn(6,)
90,/ (s,a) A
50,0 | 2 PO g R
90,,/(s,a’)
Note that gé] ”/((95";)) < 0and %&;)) < 0 so that the sign of the inequality reverses.
Finally, we deduce from Z,, — —oo that ,,(s,a) — oo for n — oo, which is a contradiction to
0..(s, a) strictly decreasing for all n > Nj. O

Lemma B.10. Consider s € Sy, such that I3, # (). Then for any a. € I3 it holds that

Z 0.(s,a) = 00, for n — 0.

a€Bj(ay)

Proof. Letay € I and a € Bj(a4 ). Then by definition of Bj(a.) we have
70 (ay]s) < 7% (als)

for all n > 0 and hence by softmax parametrization 6,,(s,ay) < 6,(s,a) for all n > 0. By
Lemma we have that 6,,(s,ay) and thus also 6,,(s,a) is bounded from below for n — oo.
Together with

max  0,(s,a) - o0, for n — o0
{a€Bj(a+)}

by Lemma[B.7| we deduce the claim. O

Finally, we are ready to prove the asymptotic convergence of policy gradient with tabular softmax
parametrization.

Proof of Theorem[3.5] We have to show that I = () for all s € S;,. So assume there exists s € S,
such that I§ # () and let a; € I3. Then by Lemma we have

Z 0.(s,a) = oo, for n — oco. (15)

a€Bj(as)
For any a € I® we have by Lemma[B.9]that

' (als)
———— =exp(O,(s,a) — 6O,(s,a —0, n—o0.
7o (ai|s) (\_(\,_2 \—(v—+-)’ )

——00 bounded from below
Hence, there exists N5 > N7 such that for all n > Ny
7% (a|s) < A
mfn(ayls) ~ 16| A|(H — h)R*’
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630 which leads for n > N5 to
A
—(H - h)R* agls 70 (als) > —1—67r9" (ayls). (16)

e31  Note that if 75 = () we can just ignore this sum later on.

632 Next consider a € Bg(ay) C I§. By the definition of I§ we have that A% (s,a) — A% (s,a) = 0
633 forn — co. By Lemma[B.8|we have forn > N,

7 (0, |5
7on (als)

e3¢ Thus, there exists N3 > max{N3, N, } such that for all n > N3

7o (ayls) A
7o (als) 16]A|°

1<

45" (s,0)] <
635 This implies

A
ST (als) A (s )| < 7 asls) T

a€B§(ay)
636 and so
A A
—_ 071, —_ 0’", 077, 9
7" (at|s) 6 < Z 7' (als) Ay (s,a) < 7 (ay|s )16 (17)
a€B§(ay)

637 for all n > 3. We can conclude again for n > N3,

O—Zﬂ' Ae”sa)

acA
= Z We’b(a\s)AZ"(s,a)—i— Z Wen(a\s)AZ"(s,a)
a€Bg§(ay) acBj(ay)
+ Z " (a|s) A (s,a) + Z 70 (als) A% (s, a)
a(c'IS acl?s
> S O (als) AL (s,a) — 70 (ayls) 2 + 0 (as|8) 2 — (H = RS S 7 (als)
' hom 16 4 :
a€B§(ay) a€l?
A A A
n O n
> Y A (AR (s0) — 7 sl + " asls) T - Ser (ol
a€B§(ay)
> > 7" (als)Ap (s, a),
a€Bg(ay)

s3s where we used Equation and Lemma [B.2]in the first inequality and Equation (I6) in the second
e39 inequality. Finally, by our assumption and Equation (T3] for n > N3,

0 "N (On(s.a) — On,(s,a))
a€Bj(ayt)
_ - Jn(6,)
— Z Z 00, (s, a)
n’=N3 a€Bj(a4)
=, Z pr(8) Z 7r9”(a\s)AZ"(s,a),

n'=N3 a€B§(ay)

s40 which contradicts ZaeB $(as) 7% (a|s) Al (s,a) < 0. O
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B.2 Proofs of Section

Lemma 3.6 (weak PL-inequality). For the objective Jy, it holds that
IVIn(9)]2 = min (aj,(s)1s) (T — In(6)),

where aj (s) = argmax,¢ 4 7 (als) and J; = supy Ju(0).

Proof. First note that by the definition of 7, we have J;: = V}fﬁh’ﬂ("“’) (1), because the tabular
softmax parametrization can approximate any deterministic policy arbitrarily well. We denote by

T o= V,fﬂ’t’ﬁ“‘“)) (s) the optimal h-state value function for all s € Sj,, when the policy after A is
fixed. Using the performance difference lemma with fixed policy after i (Corollary [2.3)), we obtain

%%,

(2 ¥ (S gy

s'e€Sy a E.A ’ SESH

> 3 )| 5onelO) |

2900, a7 (5))

= 3 () (@ (s)|s) AT T (5, i ()
SES)

= 3 (&) (@i (5)]s) (Jis — Tns(9))
SESH

> min 7 (a; (9)s) (Ji — Ju(6))

where the first inequality is due to the positiveness of all other terms, and we just drop them, and in
il

* &
the last equation we used Corollary [2.3| i.e. A(7T Tr““'”)(s, ay(s)) = EE, :S[Aé ’ “‘“’)(St, Ay)].
' O

This proves the claim.
Lemma 3.7. Let h € H, pup(s) > 0forall s € Sy, and consider the sequence (0,)nen, generated by
[ for arbitrarily initialized 6o € R Then it holds that cy, := inf,>o minges, 7% (a}(s)|s) > 0.

All in all the proof follows the outline of (Mei et al., 2020, Lemma 9), but has to be adjusted to the
finite-time setting in a few steps.

Proof. First note that
Tns(8) =Y i (als)Qf (s, a),
a€A,

where QZ(S, a) is independent of 6. We will drop the subscript 7 in @}, for the rest of the proof and
define for all s € S},

A*(s) = Qn(s,ap(s)) — max Qn(s,a) >0, and A" = min A*(s) >0
a#aj (s) SESH

Now consider for any s € Sy, the following sets

(. Odns(0)  _ 0Jns(0) §
Ri(s) = {9. 9005, @ ()) > 90(s.a)’ for all a # ah(s)},

Ra(s) = {0, : Jna(0) > Quls,aj () — 21

, forall n’ > n}
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Furthermore, we define ¢(s) = IAIH=R) " _ (:))R* 1 and
0/ * C(S)
— : >
Ne(s) = {0 (@i o)) > 50}

We divide the proof into the following Claims:

Claim 1. R(s) = R1(s) NRa(s) is a nice region, i.e.
@) 0, € R(s ):>9n+1e7€( ).
(i) 7o+ (aj (s)]s) = 7% (aj,(s)]s).
Claim 2. N_(s) NRa2(s) C R1(s) N Ra(s).

Claim 3. For every s € Sy, there exists a finite-time 1o (s) > 1, such that 0, 5y € N(s5) NRa(s) C
R15 N Ra(s) and thus inf,>1 70 (@} (s)[s) = ming <<, (s) 70 (af(s)]5).

If all three claims hold true, we can finally define ng = maxges, no(s), such that

inf On (% _ : 9"0 * )
poinf o m(ap(s)ls) = _ min o 7o (a(s)]s)

Due to the positiveness of the softmax parametrization the assertion follows.
Claim 1. We first pro Let 0,, € R(s) and a # aj(s). Then 6,,41 € R2(s) by definition of
Ra(s). Using Lemma e obtain
9Jp,s(n) o 0,5 ()
00(s,az(s)) — 00(s,a) (18)
& 1% (a,(5)15) (Qn(5, a4 (5) = Ins(0)) = 7" (als)(Qn(s,a) = Tn,s(bn))-

‘We divide into two cases:

a) 7 (aj,(s)]s) = 7% (als),

b) 7' (aj,(s)]s)

AN

3
>

3
—
e
=

In a) the assumption 7% (a (s)|s) > 7% (a|s) implies 0,,(s, a} (s )) > 0,(s,a). Thus,

0Jp,s(0 n)
Z 0o+ ()
= 9n+1(57a)7

which implies 7% +1 (a} (s)|s) > w%2+1(a|s). By the optimality of aj;(s) we follow

7 (0 (9)]8) (Qn (s, 03(5)) = Tns (Ons1)) > 70" (als) (Qn(s, @) = Jn,s(On11)),
which is by equation (T8) equivalent to
aJhﬁ(enJrl) > aJh,s(en+1)
00n41(s,a5(s)) — 00p41(s,a) '

Hence, 0,11 € R1(s).
In b) assume now that 7% (a} (s)|s) < 7% (a|s). As 6,, € R1(s) equation (T8) is also true in this
case and rearranging of terms gives
8Jh,s(9n) > 8Jh,s(0n)
00, (s,a;(s)) — 00,(s,a)

< Qn(s,ap(s)) — Qn(s,a) > (1 —exp(0,(s,ar(s)) — Qn(s,a)) (Qh(s, ay(s)) — Jhys(en)).
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ss0  Note next that by #(") € R, (s) and definition of R, (s) we have

Ont1(s; ap(s)) = Onta(s; a)

=0,(s,a}(s)) + nhm = On(s,a) — W

> 0,(s,aj,(5)) — On(s, a)
ss1  and is follows (1—exp(0n+1(s, a},(s)) —Ont1(s,a))) < (1—exp(On(s, aj(s))—0n(s,a))) < 1by

es2 assumption b). We already know 6,,1 € Ra(s) and therefore Jj, s(0,41) > Qn(s, aji(s)) — AT(S)
683 This leads to

Q.15 — Tns(Onr) < 21 < Qu(s,01(5)) — Qus,0),

es4 where the last inequality is due to the definition of A*(s). Combining everything leads to
(1= exp(Bns1(5. @5(5)) = Ons1(5,0))) [ Qs 07 ()) = T (Bus1)]

S Qh(S,GZ(S)) - Qh(87 a>7
e85 which is by equation (T9) equivalent to 6,1 € R1(s).

686 Now we come to Claim [(i)]
%+ (aj, (s)]s)

_ exp(Be (5, (5))
S exp(fus1(s.a)

acA

- exp (0 (s, aj(s)) + Uhagan%a(h?))))

X exp(Oals.0) +m %))
a€As

. exp(0n(s,a;(s))) eXp(nhﬁ%)
3 exp(Pu(s,0) explm 52ty

= ' (aj(s)]s),
es7 where the inequality follows by 6,, € R1(s).
sss  Claim 2. Assume 0 € MN.(s) N Ra(s) and divide again in two cases. If a) 7%(a}(s)|s) >
69 Max 79 (als), then for all @ # aj;(s) we have
_OJn(0)
90(s, aj,(s))
= pun(s)’ (ax (s)|s)A™ (s, aj,(s))

)
> pn(s)m’ (als)A™ (s, a)
_ 9Jn(0)
30(5,a)

ss0 Hence, 6 € Rq(s).
eo1  The case b) where % (a} (s)|s) < max 7% (als) is not possible for § € N.(s). Assume there exists
a€As

sz a # aj(s) such that 7% (aj (s)|s) < 7%(als). Then
AAH-WE" _

2¢(s) A () 2A%(s) 2
0, * o — = - — >1,
7 (aj(s)|s) + 7’ (als) > G 41 ‘A'%}”))R* 2 — AH - R = > 2 A

e9a  because A*(s) < (H — h)R* by definition and |.A| > 2. This is a contradiction as 7 is a probability
694 distribution and Claim 2 is proven.
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Claim 3. By the asymptotic convergence for finite-time setting Theorem [3.5] we have that
70 (a*(s)|s) — 1 for n — co. Thus, there exists an No(s) > 0, such that 70 (a*(s)|s) > -2

= c(s)+1

for all n > Ny(s), i.e. 0, € N.(s) foralln > Ny(s).
Furthermore, J;,(6,) — J}; = Qn(s, a*(s)) for n — oo which implies the existence of N; > 0 such
that 0,, € Ra(s) forall n > N;(s). We choose ng(s) = max{Ny(s), N1(s)} which proves Claim 3.
O

Theorem 3.8. Let h € H, up(s) > 0forall s € Sy, and consider the sequence (0,,)nen, generated
by () for arbitrarily initialized 6y € R%. Define ¢;, = inf,>¢minses, 7% (aj(s)|s) > 0 by
Lemmaand choose step size n, = BL with By, = 2(H — h)R*| A|. Then it holds that

h

Jr— Jn(0,) < w

2 )
cpn

where J}; = supy J5(9).

Proof. For any 3-smooth function f : R? — R the descent lemma gives (see Beck, 2017, Lemma
5.7)

F(w) < J@) + VI @)y~ 2) + Sy — )

As — f is also B-smooth we follow

() < 1)~ V@)~ 2) + Dy~ ],

which is equivalent to

F) = f@) + V@) (y—2) = Slly — | (20)
Now for gradient ascent updates

Tp41 = xf + aV ()
we have that

Flonen) 2 Flen) + V) (s = a) = S llonss — P

= f@) +al Vil - P
= @) + (o= N )

It follows for the maximum f(x*) of f that

IV £ ()2

F) = Flaien) < £~ flaw) — (o= 2) 9 s

Using this for our objective function .J,, we obtain for the gradient ascent updates
6n+1 - en + nhVJh(en)
and J;' = supy J5(0) that

2
Ji = O) < J = 00— (= ) 6]
—_———

>c2 (J;—JIn(6n))?
:257 >07f0r"7h:%h hATh "

(Ji = Jn(60)) ).

2
n_

< (= I (1= 55
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The second inequality follows with the PL-type inequality in Lemma 3.6
Define q= m > 0 then

1
T = Iulbo) < (H = )R* < .

We conclude using an argument similar to |[Nesterov| (2013, Thm. 2.1.14). Therefore, define d,, =
Ji — Jn(6y), then

1
dn-l—l < dn - 7d$1
q

Thus,
1 1 d,, 1 1
> 4 >

dn+1 o dn qdn-l—l o dn q,

where the first inequality is due to dividing by d,,d,,+1 and the second inequality follows by mono-
tonicity (Lemma[B.T). Using a telescope-sum argument we obtain

1 g 1 n
— =d i >dy + —.
R R Dl et L R
k=0
Finally,
) e L AUT=WRIA]
n+dy ~ g(n+1) an

C Proofs of Sectiond|

Lemma C.1. Consider the tabular softmax parametrization. For any h € H and Ky > 0 it holds
that

TFS, T)(ht1)) 1S h
Ef, 0 [T 5 (0)] = V.,.(0)

and

2 (P ey o 5(H — h)?(R*)? C
Bl 190 0) - Vo)) < TR S
h

Proof. By the definition of V.JX we have

E;(Z; :(ﬁ)(h+1))[§JKh (9)]
_ g @) V log(n¥ (Ai|S! S, Al
Z (" (41151 Qu (S}, A7)

=By, 0 [ log(r” (44155 @n(S1, 4})]

o H-1
=By, T [V log(n? (A1150) D r(Sks A,
k=h
where we used that we consider independent samples for i = 1, ..., K},. From the proof of the policy
gradient Theorem [2.2] we obtain that
0 (x ~
()
(,(F) (n+1)) S
=B D) T log(a? (41154)) S r(Sks Ak)]
k=h

= VJ,(6).
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730 For the second claim we have
Efn @) [19750(6) ~ V. 0)]P]

1 (7 1 A
< B P (19 10g(x (An]S1))Qu(Sh An) = TIu(6)]]

1 H-1

_ - Ez;e,(fr)(thl))[ Z Z (1s=Sh(1a=A;L —7T6(a|5)) Z T(Sk,Ak)

s€S, acAg k=h
0 (= 2
_,UJh(S)WG(a|S)A§:r ’(W)(Hl))(s,a)) }7

731 by the definition of V.J ,f( "(6) and the derivative of V.J;, () for the softmax parametrization. Further,

g Do) [”VJKh (0) — VJh,(Q)HZ}

H-1 2
< K—E,(L,L OIS (L, =7 (@S (Y 7(Sk, An))
a€A, k=h
= (=°,(%) )
=2 ) (La=a, — 7°(alSh)) Z (S A)n(s)7° (al Sp) A, (S, a)
acAs =
(TF 7(71')()1 1))
DI I AP 0],
SES, acAg

732 We consider all three terms separately. For the first term we have
-1

~ H
B O[S (s, 2l (Y (S A0) |

ac€Ag k=h
H—-1

— g ®on) [ (I:Z::r(Sk,Ak)) |- 2B @ 20 (anlsn (S r(Sk,Ak)>2]

k=h
0 (~ -
—|—ES; ,(ﬂ')(h+1))|: Z Cl|Sh (Z r Sk,Ak ) :|

a€A, k=h

< ((H=h)R")? =0+ ((H - h)R")?
= 2((H - h)R")?,
733 by bounded reward assumption and the fact that 7% is a probability distribution. For the second

734 term, we note that A,
735 and obtain

% (7 = (7
2El(ih i )(h+1))|: Z (1a:Ah a|S’h Z Sk;Ak Mh ) 9(a|5h)|A§1 i )(Hl))(sh’a)”
a€As k=h

(W) ns1) (Sh, a) can be negative, therefore we consider the absolute value

< oE(™ B en) [ S 1-(H-hR-1-7%alSy) (Hfh)R*]
acA,
=2((H — h)R*)*.
736 For the last term we have

i [ D0 2 wls)*wl als) AT (s,a)?] < ((H — m)RY)2.

SESH aEA;

737 In tOta], it holds that
7'r9’ T < K 5 H - h R* 2
ELh ( )(h+1)) [|| ;; Jh h (9) - C Jh(0)|‘2:| < —(( Kh) ) .

738 O
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C.1 Proofs of Section[4.1]

We state the stochastic approximation theorem in Bertsekas and Tsitsiklis|(2000) to prove convergence
of stochastic softmax policy gradient to a stationary point.

Proposition C.2 (Bertsekas and Tsitsiklis| (2000), Proposition 3). Let F : R? — R be an L-smooth
function, i.e.

IVF(z) = VF(y) < Lllz —y|.
Consider (X,,) a sequence generated by
Xn+1 = Xn + ’Yn(Sn + Wn)7

where (7yy,) is deterministic positive step size, Sy, a descent direction, and W, is a random noise term.
Let (F,,) be an increasing sequence of o-fields. We assume the following:

(i) ZnZl Yp = 00, and ZnZl V2 < 0.
(ii) (Xn)n>0 and (Wy)n>0 are (Fy,)-measurable.

(iii) There exists positive constants Cy and Cy such that for alln > 1
CiIVFE(X,)|? < =VF(X,)"S, and ||Sa|| < Co(1+ |[VF(X,)|%),

(iv) There exists a positive deterministic constant C' such that for alln > 1,
E[Wn|Fo] =0 and E[|W,|*|F] < C(1+ [ VF(X0)[?).
Then either F(X,,) — oo fort — oo or F(X,) converges to a finite function such that
lim,, 0 VF(X,,) = 0 almost-surely.
Theorem 4.1. For any h € H consider the stochastic process (0y,)n>0 generated by
0”+1 = 0” + n}(zn) ﬁjflfh (9),
for arbitrary batch size Kj, > 1 and initial 0y such that E[Jy(0y)] < co. Furthermore, suppose that

7]2") is decreasing, such that ), -, 172") =ooandy <, (n,(ln))2 < 00. Then VJp(0,,) — 0 almost
surely for n — oo. - -

Proof. We apply Proposition[C.2] as follows:
The function F' is the negative objective function with respect to parameter 6, i.e.

F:R™ SR, 0 —Ju(6).
Further, let

o ’I’LEQ’HA

« S, =—VF(0,) = VJ,(0),
« W, = VJ5"(0,) — VJu(0,) and

* In = 77}(1”)-

Then,

Ont1 =00+ ﬁén)ﬁjfh (an) =X, + 77L(Sn + Wn)
Denote by (F,)»>0 the natural filtration of the stochastic process (6,,)n>0. Then, X,, and W, are
F,-measurable and Condition [(ii)]is obviously satisfied using C; = C> = 1. By Lemma[C.1| we
have that

and

~ C
B{IV 7, 0n) = VIOl 70] < 52

Thus, Condition is satisfied. Given the fact that the value function is bounded by the bounded
reward assumption we conclude

VJr(0,) — 0 forn — oco.
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C.2 Proofs of Section[d.2]
Lemma C.3. The softmax policy n°(a|s) is \/2-Lipschitz with respect to 0 € R? for every s, a.
Proof. The derivative of the softmax function is
o (als) 4 [1a/:a exp(f(s, a))(Z&eAS exp(f(s, EL))) —exp(f(s,a)) exp((s, a’))}
a0(s,a) (Saca exp(8(s,a)’
= Lo [Luam (als) = 7 (als)n” (a']s)]-

Therefore,

197 als)lls = | 3 (Lar=am®(als )—w9<a|s>w9<a'|s>)2

acAg
< [n(als)2 — 200 (als)t + 3 w(a]s)2n0 (als)?
acAs
< V2.

O

Lemma C.4. It holds almost surely that mino<,< minges, 7% (a*(s)|s) > < is strictly positive.

Proof. For every n < T we obtain by the v/2-Lipschitz continuity in Lemma that
wn (" (s)]s) = 7% (a*(s)]s) — 77" (a” (s)]s) = 7" (a"(5)]s)
> 7 (a* (s)|s) = V2[10; — On]|2

Ch
> > 0,
holds almost surely. The claim follows directly. O
. (n) 9¢i Ch 1 2 -
Lemma 4.2. Suppose ji,(s) > 0 for all s € Sy, the batch size K, > 32ﬁ}2LN,L% (1 2m)n is
increasing for some Ny, > 1 and the step size ny, = ﬁ for fixed h € H. Then,
* 16 \Y% ﬁh
E[(Jf = Jn(0n))1{n<ry] < —3(1 )
— sun)nn

Proof. Fix h € H. Let (F,,)p>0 be the natural filtration of (#),,>0. Exactly as in the proof of
Theorem 3.8 we deduce from the 3;,-smoothness of .J, that

Jh(0n+1) > Jh(en) + (VJh(en)) (0n+1 -0 )

‘We continue with

Tn(Ons1) = Ju(00) + 10 (VI (0,)) " VT (0,) -
— 0 (02) + 10 (VI0(02)) Y In(00) + 1 (VI (02)) T (VIE (6,) = VJ4(6,,))
= DU (9.71(6,) ~ V.71(6,)) + T (0]

Bh

T
H9n+1 9n||2, a.s.

Brnt &
5 LV (617

We denote &, := V.J ,f( "(0,,) — VJ(6,) and rewrite the above inequality
In(Ons1) = T (0n) + 0ul|V T (0n) 12 + 10V Tn(0r), &)

= P 2 26 VI (0 + IV T 0,)])

ﬁhnh /Bhn}%

=Jh(9n)+(nh— MV TR0+ (9 — Buni) (VI (0n), &n) — 1€ ]2
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Next, we take the conditional expectation on F,,. Then with Lemma[C.I] we obtain
Brn
E[JO)I7] = 0.0+ (m = 2Y 191,002 + (= 80 ) (790, Bl )
Bun
— R 1217

ﬂhnh 2 5h77;210h
>J0,)+ (n vJ(0,)|* — .
() + (= 222 ) 9.7 (6) e

We take the expectation of this inequality on both sides under the event {n + 1 < 7}. Note that
{n+1< 7} ={r <n}? is F,-measurable and that 1<y < 1gn<r) as., thus
E[(J;; - Jh(0n+1))1{n+1§7}]
= EB[E[(J; ~ (1)) 1o 1120
E[(J;; - E[Jh(‘gn-i-l”]:n} ) 1{n§r}}

< E[(J;; - Jh(an)n{ng}} - (nh - ﬁhT’ﬁb)E[|\VJh(9n)\|21{n§T}] n

BrnCh

2K ™
By Lemma|3.6we have that || V.J;,(6,,)]|? > mlnseg 70 (a*(s|5))?(J; —Jn(0,))? almost surely, and
by Lemma [C.4{we have that ming<,<, minses 7" (a*(s|s))? > % > 0 almost surely. Therefore,

E[(J;; - Jh(0n+l))1{n+1§7}]

[0~ a0 Linzn ] = (o~ P VB i 0GR — )Lz

2 seS
Brni Ch
2K
* ﬁ 772 CQL * 2 ﬂ 7720
< E[(Jh - Jh((‘)n))l{ng}} - (nh - %)Z’E[(Jh - Jh(f)n))l{ngf}] + ;K'émh’
h

where we used Jensen’s inequality in the last step.

For d,, := E[(J;; - Jh(ﬁn))l{ng}} we imply the recursive inequality

ﬁhﬁ}%)idz n B Cn

dn 1 S dn - (nh - n .
! 2 /4 2K ™)

2 2
Define w := (nh—m)% >0and B = % > 0, then

B
dn+1 S dn(l — wdn) + W
K,
and by our choice of 7,
K}sn) 2 9ChCh 1— 1 )n2 — ngn27
3282N; 2Ny 4
Moreover, we have
4 16VNwBp
3w 3(1— 2\/1N7h)c,2l'
For 8, = 2(H — h)R*|A|, it holds that
4 4
d H—-hR" < < — < —
1= ( ) ﬁh = 3w 3w R 17
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because ¢;, < 1 and ﬁ(l - ﬁ) < 1 for all N, > 1. Suppose the induction assumption
d,, < ﬁ holds true, then for d,, 41,

B
Ky,
The function f ( ) = 2 — wz? is monotonically increasing in [0, ;-] and by induction assumption
dyp < 70— < 5. So d,, — wd% < z2— which implies
dn+l S dn - U)d% + (n)
Ky,
4 16 B

~— 3wn 9Yuwn?2 K,

< 4 16 4B

~ 3wn  9wn?  YwBn?

4 12
3wn  9wn?

_ 4 (l N i)

 3w\n n2

<4

~ 3w(n+1)’
where we used that K ,(ln) > 2wBn?. We follow the claim

goo A 16VNp

< = .
"= 3wn 31— 2\/1N7h)cin

O

Lemma 4.3. Suppose pp(s) > 0 forall s € Sy. Then, for any 6 > 0, we have P(T1 < n) < § if
K, > 16271252 and n, = \/%ﬁhl

Proof. By the definition of 7 we have
_ Ch
P(r<n)=P - >
(r < n) =P(max [|6: — 6:| = ),

so we first study ||0; — 0;||. We emphasize that Ding et al.| (2022, Lemma 6.3) established a similar
recursive inequality.

t—1 -1
16 = Bcll = 160 + > mn VI (6x) — (60 + > maVTn(6k))|
k=1 k=1
t—1 R B
<Y mlIV I (61)V In(61)]
k=1
t—1 N B
< Y _(IVTE"(0k) = VI (0k)|| + |V Tn(01) — VIu(0k)]).
k=1

sos We define again &, = @J,f(" (0x) — VJr(6x) and continue

<~¢-

—1

10 = Ocll < nn > 1€kl + Brll O — Ol)
k
t—

Il
)—'H

€kl + 7 Bn ZHQk — 0.

=T

ES
I
—
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Using this inequality sequentially leads to

t—1 t—1
165 = Oell < 1 Y _l1€kll + Bn Y 10k — O]

k=1 k=1
t—1 t—2 ) t—2 t—2 )

< M€kl +mmBr Y110k — Okll + nn B (nh D lIEwll + B Y 10k — 9k||>
k=1 k=1 k=1 k=1
t—1 -2 t—2 -

=1 Y lI&xll + 7B Y €kl + (1 + mmBn)mnbn YN0k — Okl
k=1 k=1 k=1

t—2 t—2
= mnll&1ll +mn L+ 0nB) D Nkl + L+ mBr)mnBr > |0k — Ok

k=1 k=1
t—1
< Z (14 1080) 1kl
k=1

Applying Markov’s inequality results in

_ Cp,
P(r < n) = P(ax 16, — 6] = %)

n—1

n—k— C
<P (L +mup)" " HKM|2—£)
k=1
AT+ mnBu)" B
< -
n—1 C
_ dnnp (1 + npBr) B

— 3

Ch

where in the last inequality E[||¢x]]] < /E[|I€x 2] < % by Jensen’s inequality and Lemma

Now we plug in the choice of 1, = \/51 s

3 dn—d—(1+ ¢%ﬁhﬁh)"‘1x/§%g
cn
_ 4y/n(1+ ﬁ)n_l Ch
BrenVKn
_ /G
= BrenvKn’

P(r <n)

where the last step is due to f(z) = (1 + %)”1 < xforall z > 1. We follow that P(7 < n) < § if

16n3Cy,
Bepo?

Ky >

O

Theorem 4.4. Suppose the stochastic policy gradient updates are generated by () for arbitrary
initialization 0y € R, Suppose that uy,(s) > 0 for all s € Sy, and choose for any J, ¢ > 0,

. . 2

(i) the number of training steps Ny, > (:?;%’1 ) ,
Ch,€

i : _ 1 . _ 64NZCy

(ii) the step size ny, = VAT and the batch size Kj, = EETE
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Then, P((J;; — Jn(0n,)) =€) < 0.
Proof. We separate the probability using the stopping time 7 and obtain
B((J; = Ju0n,) > €) < B({7 > N} 0 {(Ff = Ju(0n,)) > €}
+B({r < N} 0 {3 = JuOw,) > ¢})

B[} = IO row]

IN

P(1 < Ny)

€
1 168,/ Ny, L0 )
— 2\/—)Ch]\[h 2

I

)
w
—~
—

where the second inequality it due to Lemma4.2]and Lemma[.3] The last inequality follows by our
choice of Ny:

161
36(1 Qr)chr

for N;, > ( sffc L %)2 which is satisfied for N;, > (3?46[3 L ) Note further that we could use

Lemma@m the equation above with a constant batch size K 1, because

3
max{ 9GCH 1\, 16Nh0h} 16N3C),

l\D\Qﬁ

n Y Y
3262]\/’% 2v/Np, 526}%%2 B2c2 252
forallnSNh,as(l—QF)<1ch<1and - < 1. O

D Proofs of Section 3]

Theorem 5.1. Assume that iy, (s) > 0 forall h € H, s € Sp. Let € > 0, the step size 0y, = 3, and
the batch size Ny, = w || H . Denote by * = (ﬂ'efl)vo, . ,7r9H—1 ) theﬁnal pollcy

from Algorithm[]] then for all s € S,
Vi(s) = V5 (s) <e

Proof. First note that by our choice of the future policy 7 = 7* we have

Tns (0N = Vi (s). @1)
By Theorem 3.8 we obtain
H *
J; Jh(g(Nh)) < w
ci Ny,

For every s € Sy, denote by J; the dirac measure on state s, then

* 65’ 5/ *
T = Il = 3 () TR = I l6)
ors fin(s')

P IUSEACA) @)
<MLL

2

35



833

834
835

836

837

838
839

840

841

842

843

844

845

846

847

848

1

where H
Hh

H = mMaXscs, ﬁ(s) > 0 by assumption. As Nj, = A(H = h)HR Al H H , it holds that

€
- H
for every s € Sy,. For h = H — 1 it follows directly by (2T) and the specialty of the last time point
that for all s € Sgr_1,

Vira(8) = VAL1(8) = Jir1 = Jns (0 < 7

Tty = Jns(0M) < (23)

S

Assume now that for all s € Sy,

o e(H—h
Vi)~ Vi () < L o4
Then it holds for all s € S;,_1 that,
T = max(r(s,0) + Y plsls a)Vii(s) = D pl(s'1s.a) (Vi (s) = Vi (s))
s s'e€Sn s'eSy
1 * E(H — h’)

> max (r(s,a) + Z p(s'|s,a)Vy, (s)) g (25)

s'eSy

_x G(H — h)

- Vh—l(s) o ’

by the Bellman expectation equation for finite-time MDPs (Puterman|(2005)). We close the backward
induction using (21)) such that for all s € Sj,_1,

Vi1 (s) = Vi i (s) = Vir_y(s) — Jho1stJIho1s— Viii(s)

<6(H—h) €
=" H 'H (26)
_ = (h-1))

2

Finally, it holds for h = 0 and all s € S that
Vo(s) = Vg (s) <e.

O
Theorem 5.2. Assume that uy(s) > 0 forallh € H, s € Sp,. Let §,¢ > 0, the step size n, = ﬁ,
. 648, H? || L 2 . 64N2H2C,
number of training steps Nj = ( T °°) and the batch size K;, = W. Denote by
h h
Np
T* = (71'0(1)% yenn ,71'9H1j1 ' ) the final policy from Algorithm then
P@se&:wﬂg—vﬁwgze)g&
Proof. As in the exact gradient case (ZT) we have by our choice of the future policy 7 = #* that
Tns(ON)) = ViE" (s). 27)

By Theorem 4.4 we have that

* Ny, € 0
M%%WYUZH‘I)SH’

LRI PSS
For every s € Sy, denote by § the dirac measure on state s, then as in dT_Z[)

by our choice of Ny, 15, and Kj,.

I,

S

— Jns(0Y) q‘H (i — Jn(0M))  as.
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Thus, for all A~ € H it holds that

N . € N € )
IP(E'S S Sh : Jh75 - Jh’S(H}(LN})) 2 E) § ]P(Jh - Jh(eéNh)) Z 1{’1) E (28)

IN

Hh

oo

Define the event Aj, := {J;L")Sthys(HéN")) < 5, Vs € Sp}. Then (29) is equivalent to P(A) < 2.
For h = H — 1 it follows directly with and the special property of the last time point that

* F* € * Np, € 0
]P’(Hs €Sh: Vi_y(s) = Vi~ (s) > E) - P(Hs €S Thy1s— Ju14(0N) > ﬁ) <
We close the proof by induction. Assume for some 0 < h < H that
H—h)
< . 2
H ) - H 29
Define By, := {V*(s) — Vi (s) < 21 s € ). Similar to (23), on the event By, it holds that

Jiors = max (r(s.a) + Y pl(sls @)Vii(s) = Y pls'ls, @)V () = ViT(5))

S5(H — h)

]P’(Els €Sy Vii(s) = VT (s) > el

s'€Sn s'€S),
/ * E(H _ h)
> max (r(s,a) + Z p(s'|s,a)V}, (s)) =g
s'€Sp
=Vi_i(s) H

We obtain on the event A, _1 N By, that (compare to @)
Vi_1(s) — Vhﬂj1(5) =Vii(8) = Jh1s+Jh1s— Vhﬁjl(s)
- e(H —h) L £
H H
_e(H - (h—1))
"
for every s € S,_1. Hence, Ap,_1 N By, C By,_1. Finally, we close the induction by

P(3 € Sur: Vity(o) = Vi () > S

=1-P(By—1) <1—-P(4y—1 N By) = P(A;_; U BY) < P(A;_) + P(BY)
* Np—1 €
- IP(HS €Sh1: Jfry — Tn1s (0N D) > ﬁ)

R ORI O R =y

o8 0 =)
- H H

_O6(H—(h—1))
_ - .

For h = 0 we have shown the claim

P(Hs €8y Vi(s) =V (s) > e) <.

E Proofs of Section

We denote by GEOM(p) the geometric distribution with parameter p € (0, 1].

Algorithm states the construction of an approximate gradient V.J X (6) ~ V.J(6). Note that for batch

size K =1, @Jl(ﬂ) is the estimator V.J(#) proposed in (Zhang et al.| 2020, Eq. (3.6)). Furthermore,
it is important to highlight that the tabular softmax parametrization meets the assumptions made by
(Zhang et al., 2020, Ass. 3.1):
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Algorithm 3: Estimate unbiased gradient for V.J(6)

Data: Let 6§ € ©. -

Result: Approximate gradient V.J%(6)

fori=1,...,Kdo

Sample T' ~ GEOM(1 — ~)

Sample trajectory (s§, ab, ..., s, a%), s.t. so ~ p, ai ~ w0 (:|si), st | ~ p(:|st, al)
Sample 7" ~ GEOM(l - %)

Set 3¢ = sb., ai) = ak,

Sample trajectory (sl,ai,...7§iT,7diT/) s.t. 8~ p(-|5_y,al_y),al ~m?(-8)

Set Q(STﬂaT) Zt’ ’Y%R(Ei’va’t/)'

end
Set VIK(0) = £ S8 | Q(sh, alr) Vlog(n? (alp|s5)).

* We assume that the rewards are bounded in [0, R*].

* The softmax parametrization is differentable with respect to 6, and V log(n?(a|s)) exists.
Moreover, by Lemma we have that the gradient of log(7?(als)) is Lipschitz and that
IV 1og (7’ (als))ll2 < /I Al.

Lemma E.1. The estimator ¥ J* (0) from algorithm is an unbiased estimator of VJ (0). Moreover,
there exists C' > 0 such that

E[9%(0) - VO3] < &

Proof. By (Zhang et al.,[2020| Theorem 4.3) we have that for # € © deterministic
E[VJ(0)] = V.J(6)
and

R*B = R*B
s IV O < —2—
(1= 1=y —n2)

where Bg such that ||[log(7?(a|s))||2 < Be. From the proof of Lemma 4we have that Bg = /| A|.
We deduce from Algorithm 3] that

IVJ(O)l2 <

a.s.,

K
E[VJ5(6)] = % SOE[S10)] = V.J(0).
=1

For the variance we have
E[|VJ5(0) - VI©O)[3] < —E[|V'(0) - VI (©O)]3]
= (Bl va )3+ 2E(19 T O) 19T Oz + [V (©)]13)

( IAI vo BVIAL RYVIAL (R*)QIAI)

—72)2 (1= (1 —n2)(1=7)2 (1)

IA
== N\

IA
= N\

)Q\AI( N
K \1—9)21-72)2 (1—-9p1-qz) 1=

1 2 1 )

— ()2 1 2 1 .
Define C = (R*) |A|((1—'y)2(1—'y%)2 + orah + (17W)4> proves the claim. O

Using this estimator we can formulate the REINFORCE algorithm as presented in |[Williams| (1992)
in Algorithm
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Algorithm 4: REINFORCE for discounted MDPs

Result: Approximate policy 7% ~ 7*

Initialize 6, € RISIIAl

Choose step size 7, number of training steps N and batch size K
forn=0,...,N—1do

Sample V.JX (6,) as in Algorithm

Setf,.1 =06, + n@JK(Gn)

end
Set # = o~
Lemma E.2.

Havﬂ(u)H S Hdﬂ*Hlminsesﬂe(a*(sﬂs)

5 LV =V ).

g7e  Proof. We rewrite the norm of the gradient as follows

RS HZ 22,
(X (S gr))’

s’eSa’eA seS

= (2 (Xute aesﬁ)

a’€A seS

879 Note that we can interchange the derivative and the sum without further arguments because the state
gso space S is assumed to be finite. We continue as in the proof of (Mei et al.| 2020, Lemma 8),

1750, 2 | S e
_ 8V“() ‘
90(-,a*(+))
72\61” (5)]5)A™ (5, 0" (5))]

SGS

S dr’ (5)7° (a*(5)]5)|A™ (5,0 (5))]
SES

=

1—x
R A

10
— 7y dz

g8t Furthermore, we can bound the distribution mismatch coefficient uniformly for all 6,
7]
dy, (8) > (L =)u(s),

=1 ¥
sz by Mei et al. (2020, Thm. 4), such that‘ Ll <a- 7)*1‘ g

n

‘—1

o BT l8) 2 (AT (500" (5)

.
dy,

27 || mina(a”(s)ls) (V7 (1) - V™ ().

oo sES

-1
O

oo o0

sss  Recall the definitions of (6,,),,>0 and (6,,),>0 from (TI). We denote by F,, the natural filtration of
ss4 the process (6,,),>0. With respect to this filtration we define the stopping time

T=min{n >0: |6, —0,] > g}, (30)

39



885
886

887

888
889

890

891

892
893

894
895

896

897
898

899

900

901
902

where ¢ = min,,>o minges 7 (a*(s)|s) > 0 by (Mei et al.; 2020, Lemma 9) and a*(s) the optimal
action of the deterministic optimal policy 7*.

Lemma E.3. It holds almost surely that ming<, <, minges 7% (a*(s)|s) > & is strictly positive.

Proof. Due to the Lipschitz continuity of the softmax function the proof is line-by-line as in

Lemma|C.4) O
=2

4. > 49(1 N*e*C 1 ‘ d ‘ 2

Lemma E4. Suppose u(s) > 0 forall s € S, batch size K, . (1- 2\/N) |

; _ 1
for some N > 1 and the step size 1 = SUN then

B
I

) 128v/N
E|(J —J(Gn))l{nsﬂ} < 3(1— 52=)(1 =) n‘

‘ oo

Proof. We slightly modify the proof of Lemma [.2] for finite-time MDPs. First, we deduce from the
[B-smoothness of J, with 5 = =k (Mei et al.[(2020), Agarwal et al.{(2021)) that

TOr1) = J0.) + (0= PENVION + (= ) (790).60) - 2 e

where £, = VJK (0) — VJ(6,). Next we take the conditional expectation on F,,. Then by
Lemma[ET] we obtain
Bn*C

> 2 2_
E[10m)17] > 70,0+ (n-20) 1976, T
Subtracting this equation form J* and taking the expectation under the event {n + 1 < 7} results in:

E[(J* - J(9n+1))1{n+1§r}}

<E|(J* = )1 gnzn] — (n- %TIZ)JE[HVJ( 0) L gnery] + 5’2?

With the PL-type inequality LemmaEand ming<,<, minges 7 (a*(s)|s) > £ by Lemma
we have

E[(J* - J(9n+1))1{n+1ST}}

pn*C
9K,

< E[(J* _ J(en))1{nST}] - (n - 52172)4(16—“ B

‘_2E[(J* - J(on))1{n9}} g

oo

Ford, :=E [(J —J (Gn))l{ngr}} we obtain the recursive inequality

B || 5 °C
e <= (- 2 ) B
2 =2 2
We define w := (n—ﬁg )ﬁ d%’ andB:%>Osuchthat

B

Note that w > 0 by the assumption p(s) > 0 for all s € S. Then by our choice of K, and 7 it holds
that

9(1 — ~)4c2 dr -2
2048 N 2 2V'N
2 1 d”* -2
= 9 5 (1— )‘L‘ 712:9an2
32(1 —v)232N> 2N p oo 4
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Furthermore, we have

4 16VNB(1—y)? cl;;*‘2
3w 31— gox)e I e
We obtain for g = = )3 that
1 4 4
d; < <Bl-—9)P2< —< ——
LSy S s S g
W* 2
N 1
;7)0021andﬁ( so%) < 1forall N > 1.

Suppose the induction assumption d,, < 3w holds true. The induction conclusion follows exactly as
in the proof of Lemma[d.2} First, recall the recursive inequality

B
dpi1 < dp —wd? + —.

K,
The function f(z) = z — wa? is monotonically increasing in [0, 5--], and by induction assumption
dyp < 70— < 5. Thus,
dpi1 < dp —wd? + e
4 16 B
~— 3wn 9Ywn? K,
4 16 4B
< _
~ 3wn  9wn?  9YwBn?
4 12
~ 3wn  9wn?
4 (1 1 )
 3w\n  n?
4
< By
- 3wn
by the choice of K,, > %anz. We deduce the claim
Lo 4 _16VNpQ —7)2’ sz 128N ’ dy; ’
"= 3wn 3(1 - ﬁ)ch polle  3(1— T)(l —y)e2nll p llso”

O

Lemma E.5. Suppose p(s) > 0forall s € S. Forany N > 1, if n, = (1\/%2: and K > W
then P(t < N) < 0.
Proof. The proof follows line by line from the proof of Lemma[4.3|for the finite-time MDP. O

Theorem 6.1. Let (0)n>0 and (0,,)n>0 be the (stochastic) policy gradient updates from (TT)) for
arbitrary initial 0y = 6y € O. Suppose u(s) > 0 for all s € S and choose for any 0,¢ > 0,
; . 258 2
(i) the number of training steps N > (m) )

(ii) step sizen = (S\F)

I
o

d"

N[ =

) 252

—2
(iii) batch size K = max {%(\/ﬁ - ’

)

Then, P((J* — J(0n)) > €) < 8, where J* = supy J (6).

4(1—7)61\[30}

oo
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Proof. We separate the probability using the stopping time 7 and obtain
P((J" = 7(0x)) = ) <P({r = N} {(J* = J(6n)) = })
+P({r < N} {(J" = J(6n)) 2 €})

IE[(J* - J(GN))l{er}}

IA

. —|—IP’(T <N
128\F ’
31-7(1 - 50%)

)
5
2

where the second inequality holds due to Lemma[E-4]and Lemma[E-3] The last inequality follows by
our choice of N:

128 ‘2 d
Be(1—7)(1— 2
. . 256 d:* 2 1 2 . . . . 258 2 d:* 4
if and only if N > (735&2(1—’@ m + 2) , Which is satisfied if N > (7366@(1—7)3) m
Note that we can use Lemma[E-4]in the ¢ equation above with a constant batch size, because
9(1 —9)*2C 1 1dn 172, (1—9)SN3C
max{( NEC >‘L’ n2, L2 }
2048 N 2 2Nl p oo 28
9(1 — y)4c2C 1.de =2 4(1 — y)SN3C
<o (- | )
= max{ 2048 (VN =3) 1 oo 252
foralln < N. O
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