⁴⁶² Supplementary Material

⁴⁶³ Subsequently, we provide a complete collection of proofs for the stated results in the main body. We ⁴⁶⁴ restate these results to enhance readability and ensure a clear understanding of the proof details.

⁴⁶⁵ A Proofs of Section 2

Lemma 2.1 (Performance difference lemma). *For any* $h \in \mathcal{H}$ *and for any pair of policies* π *and* π' 466 467 *the following holds true for every* $s \in S_h$:

$$
V_h^{\pi}(s) - V_h^{\pi'}(s) = \sum_{k=h}^{H-1} \mathbb{E}_{S_h=s}^{\pi_{(h)}} \Big[A_k^{\pi'}(S_k, A_k) \Big].
$$

Proof.

$$
V_h^{\pi}(s) - V_h^{\pi'}(s) = \mathbb{E}_{S_h = s}^{\pi_{(h)}} \Big[\sum_{k=h}^{H-1} r(S_k, A_k) \Big] - V_h^{\pi'}(s)
$$

\n
$$
= \mathbb{E}_{S_h = s}^{\pi_{(h)}} \Big[\sum_{k=h}^{H-1} r(S_k, A_k) + \sum_{k=h}^{H-1} V_h^{\pi'}(S_k) - \sum_{k=h}^{H-1} V_h^{\pi'}(S_k) \Big] - V_h^{\pi'}(s)
$$

\n
$$
= \mathbb{E}_{S_h = s}^{\pi_{(h)}} \Big[\sum_{k=h}^{H-1} r(S_k, A_k) + \sum_{k=h+1}^{H-1} V_h^{\pi'}(S_k) - \sum_{k=h}^{H-1} V_h^{\pi'}(S_k) \Big]
$$

\n
$$
= \mathbb{E}_{S_h = s}^{\pi_{(h)}} \Big[\sum_{k=h}^{H-1} r(S_k, A_k) + \sum_{k=h}^{H-2} V_{k+1}^{\pi'}(S_{k+1}) - \sum_{k=h}^{H-1} V_h^{\pi'}(S_k) \Big]
$$

\n
$$
= \mathbb{E}_{S_h = s}^{\pi_{(h)}} \Big[\sum_{k=h}^{H-1} (r(S_k, A_k) + V_{k+1}^{\pi'}(S_{k+1}) - V_h^{\pi'}(S_k)) \Big]
$$

\n
$$
= \mathbb{E}_{S_h = s}^{\pi_{(h)}} \Big[\sum_{k=h}^{H-1} A_h^{\pi'}(S_k, A_k) \Big]
$$

\n
$$
= \sum_{k=h}^{H-1} \mathbb{E}_{S_h = s}^{\pi_{(h)}} \Big[A_h^{\pi'}(S_k, A_k) \Big],
$$

468 where we have used that $r(S_k, A_k) + V_{k+1}^{\pi'}(S_{k+1}) = Q_k^{\pi'}(S_k, A_k)$. In the fifth equation we used the 469 notation $V_H \equiv 0$ and note that $Q_{H-1} \equiv r$ independent of any policy.

470 Unless explicitly specified, all differentiations are performed with respect to the variable θ .

471 Theorem 2.2. *For a fixed policy* $\tilde{\pi}$ *and* $h \in H$ *the gradient of* $J_{h,s}(\theta)$ *defined in* (6) *is given by*

$$
\nabla J_{h,s}(\theta) = \mathbb{E}_{S_h = s, A_h \sim \pi^{\theta}(\cdot | s)} [\nabla \log(\pi^{\theta}(A_h | S_h)) Q_h^{\pi}(S_h, A_h)].
$$

472 *Proof.* The probability of a trajectory $w = (s_h, a_h, \ldots, s_{H-1}, a_{H-1})$ under the policy 473 $(\pi^{\theta}, \tilde{\pi}_{(h+1)}) = (\pi^{\theta}, \tilde{\pi}_{h+1}, \dots, \tilde{\pi}_{H-1})$ and initial state distribution δ_s is given by

$$
\mathbb{P}_s^{(\pi^{\theta}, \tilde{\pi}_{(h+1)})}(w) = \delta_s(s_h)\pi^{\theta}(a_h|s_h) \prod_{k=h+1}^{H-1} p(s_k|s_{k-1}, a_{k-1})\tilde{\pi}_k(a_k|s_k).
$$

⁴⁷⁴ Then,

$$
\nabla \log(\mathbb{P}_{s}^{(\pi^{\theta}, \tilde{\pi}_{(h+1)})}(w)) = \nabla \Big(\log(\delta_{s}(s_{h})) + \log(\pi^{\theta}(a_{h}|s_{h})) + \sum_{k=h+1}^{H-1} \log(p(s_{k}|s_{k-1}, a_{k-1})) + \log(\tilde{\pi}_{k}(a_{k}|s_{k})) \Big) \n= \nabla \log(\pi^{\theta}(a_{h}|s_{h})),
$$

475 which is known as the log-trick. Let W be the set of all trajectories from h to $H - 1$. Note that W is 476 finite due to the assumption that state and action space is finite. Then for $s \in S_h$

$$
\nabla J_{h,s}(\theta) = \nabla \sum_{w \in \mathcal{W}} \mathbb{P}_{s}^{(\pi^{\theta}, \tilde{\pi}_{(h+1)})}(w) \sum_{k=h}^{H-1} r(s_{k}, a_{k})
$$
\n
$$
= \sum_{w \in \mathcal{W}} \mathbb{P}_{s}^{(\pi^{\theta}, \tilde{\pi}_{(h+1)})}(w) \nabla \log(\mathbb{P}_{s}^{(\pi^{\theta}, \tilde{\pi}_{(h+1)})}) \sum_{k=h}^{H-1} r(s_{k}, a_{k})
$$
\n
$$
= \sum_{w \in \mathcal{W}} \mathbb{P}_{s}^{(\pi^{\theta}, \tilde{\pi}_{(h+1)})}(w) \nabla \log(\pi^{\theta}(a_{h}|s_{h})) \sum_{k=h}^{H-1} r(s_{k}, a_{k})
$$
\n
$$
= \mathbb{E}_{S_{h}=s}^{(\pi^{\theta}, \tilde{\pi}_{(h+1)})} \left[\nabla \log(\pi^{\theta}(A_{h}|S_{h})) \sum_{k=h}^{H-1} r(S_{k}, A_{k}) \right]
$$
\n
$$
= \mathbb{E}_{S_{h}=s}^{(\pi^{\theta}, \tilde{\pi}_{(h+1)})} \left[\nabla \log(\pi^{\theta}(A_{h}|S_{h})) \mathbb{E}_{S_{h}}^{\tilde{\pi}} \left[\sum_{k=h}^{H-1} r(S_{k}, A_{k}) | S_{h}, A_{h} \right] \right]
$$
\n
$$
= \mathbb{E}_{S_{h}=s, A_{h} \sim \pi^{\theta}(\cdot|s)} \left[\nabla \log(\pi^{\theta}(A_{h}|S_{h})) Q_{h}^{\tilde{\pi}}(S_{h}, A_{h}) \right].
$$

477

478 Corollary 2.3. *For any* $h \in H$ *and two policies* π *and* π' : If $\pi_{(h+1)} = \pi'_{(h+1)}$ *, it holds that*

$$
V_h^{\pi}(s) - V_h^{\pi'}(s) = \mathbb{E}_{S_h = s}^{\pi_{(h)}} \Big[A_h^{\pi'}(S_h, A_h) \Big].
$$

$$
\begin{split}\n\text{Proof. Let } k > h, \text{ then} \\
\mathbb{E}_{S_h=s}^{\pi_{(h)}} \left[A_k^{\pi'}(S_k, A_k) \right] \\
&= \sum_{a \in \mathcal{A}} \pi_h(a|s) \sum_{s \in \mathcal{S}} p(s|s, a) \mathbb{E}_{S_{h+1}=s}^{\pi_{(h+1)}} \left[Q_k^{\pi'}(S_k, A_k) - V_k^{\pi'}(S_k) \right] \\
&= \sum_{a \in \mathcal{A}} \pi_h(a|s) \sum_{s \in \mathcal{S}} p(s|s, a) \mathbb{E}_{S_{h+1}=s}^{\pi'_{(h+1)}} \left[Q_k^{\pi'}(S_k, A_k) - V_k^{\pi'}(S_k) \right] \\
&= \sum_{a \in \mathcal{A}} \pi_h(a|s) \sum_{s \in \mathcal{S}} p(s|s, a) \left(\mathbb{E}_{S_{h+1}=s}^{\pi'_{(h+1)}} \left[\mathbb{E}_{S_k}^{\pi'}[Q_k^{\pi'}(S_k, A_k)] \right] - \mathbb{E}_{S_{h+1}=s}^{\pi'_{(h+1)}} \left[V_k^{\pi'}(S_k) \right] \right) \\
&= \sum_{a \in \mathcal{A}} \pi_h(a|s) \sum_{s \in \mathcal{S}} p(s|s, a) \left(\mathbb{E}_{S_{h+1}=s}^{\pi'_{(h+1)}} \left[V_k^{\pi'}(S_k) \right] - \mathbb{E}_{S_{h+1}=s}^{\pi'_{(h+1)}} \left[V_k^{\pi'}(S_k) \right] \right) \\
&= 0.\n\end{split}
$$

⁴⁸⁰ The claim follows with Lemma 2.1.

\Box

 \Box

481 B Proofs of Section 3

⁴⁸² B.1 Proofs of Section 3.1

483 First, we compute the derivative of the softmax policy for every $s \in S_h$ and $a \in A_s$,

$$
\pi^{\theta}(a|s) = \frac{e^{\theta(s,a)}}{\sum_{a' \in \mathcal{A}} e^{\theta(s,a')}},
$$

484 with parameter $\theta \in \mathbb{R}^{d_h}$:

$$
\frac{\partial \log(\pi^{\theta}(a|s))}{\partial \theta(a',s')} = \mathbf{1}_{\{s=s'\}}(\mathbf{1}_{\{a=a'\}} - \pi^{\theta}(a'|s')).
$$

⁴⁸⁵ Hence,

$$
\nabla \log(\pi^{\theta}(a|s)) = \left(\mathbf{1}_{\{s=s'\}}(\mathbf{1}_{\{a=a'\}} - \pi^{\theta}(a'|s'))\right)_{s' \in \mathcal{S}_h, a' \in \mathcal{A}_{s'}} \in \mathbb{R}^{d_h}.
$$

486 Lemma 3.2. Let $h \in H$, then the partial derivatives of J_h with respect to θ take the following form

$$
\frac{\partial J_h(\theta)}{\partial \theta(s, a)} = \mu(s) \pi^{\theta}(a|s) A_h^{(\pi^{\theta}, \tilde{\pi}_{(h+1)})}(s, a).
$$

⁴⁸⁷ *Proof.* By the policy gradient Theorem 2.2,

$$
\nabla J_h(\theta) = \nabla \mathbb{E}_{s \sim \mu}[J_{h,s}(\theta)]
$$

=
$$
\sum_{s \in S} \mu(s) \nabla J_{h,s}(\theta)
$$

=
$$
\sum_{s \in S} \mu(s) \mathbb{E}_{S_h = s, A_h \sim \pi^{\theta}(\cdot|s)} [\nabla \log(\pi^{\theta}(A_h|S_h)) Q_h^{\pi}(S_h, A_h)].
$$

⁴⁸⁸ Next we plug in the derivative of the softmax parametrization and obtain

$$
\nabla J_{h}(\theta) \n= \sum_{s \in S} \mu(s) \mathbb{E}_{S_{h} = s, A_{h} \sim \pi^{\theta}(\cdot | s)} \Big[\Big(\mathbf{1}_{\{S_{h} = s'\}} (\mathbf{1}_{\{A_{h} = a'\}} - \pi^{\theta}(a' | s')) \Big)_{s' \in S_{h}, a' \in A_{s'}} Q_{h}^{\tilde{\pi}}(S_{h}, A_{h}) \Big] \n= \Big(\sum_{s \in S} \mu(s) \sum_{a \in A_{s}} \pi^{\theta}(a | s) \mathbf{1}_{\{s = s'\}} (\mathbf{1}_{\{a = a'\}} - \pi^{\theta}(a' | s')) Q_{h}^{\tilde{\pi}}(s, a) \Big)_{s' \in S_{h}, a' \in A_{s'}} \n= \Big(\mu(s') \pi^{\theta}(a' | s') Q_{h}^{\tilde{\pi}}(s', a') - \mu(s') \pi^{\theta}(a' | s') \sum_{a \in A_{s}} \pi^{\theta}(a | s') Q_{h}^{\tilde{\pi}}(s', a) \Big)_{s' \in S_{h}, a' \in A_{s'}} \n= \Big(\mu(s') \pi^{\theta}(a' | s') (Q_{h}^{\tilde{\pi}}(s', a') - V_{h}^{(\pi^{\theta}, \tilde{\pi}_{(h+1)})}(s')) \Big)_{s' \in S_{h}, a' \in A_{s'}} \n= \Big(\mu(s') \pi^{\theta}(a' | s') A_{h}^{(\pi^{\theta}, \tilde{\pi}_{(h+1)})}(s', a') \Big)_{s' \in S_{h}, a' \in A_{s'}},
$$

where we used that $\sum_{a \in A_s} \pi^{\theta}(a|s') Q_h^{\tilde{\pi}}(s',a) = J_{h,s'}(\theta) = V_h^{(\pi^{\theta}, \tilde{\pi}_{(h+1)})}$ 489 where we used that $\sum_{a \in A_s} \pi^{\theta}(a|s') Q_h^{\tilde{\pi}}(s',a) = J_{h,s'}(\theta) = V_h^{(\pi^*, \pi_{(h+1)})}(s').$

490 Proposition 3.3. Let $h \in \mathcal{H}$ and consider the objective function $J_h(\theta)$. If there exists $G, M > 0$ ⁴⁹¹ *such that*

$$
||\nabla \log \pi^{\theta}(a|s)||_2 \leq G \quad \text{and} \quad ||\nabla^2 \log \pi^{\theta}(a|s)||_2 \leq M,
$$

 $_4$ 92 *for all* $s \in S_h$, $a \in A_s$, then for any initial state distribution μ_h of S_h the function $J_h(\theta)$ is β_h -smooth 493 *in* θ *with* $\beta_h = (H - h)R^*(G^2 + M)$.

A94 Proof. Define W as the set of all possible trajectories from h to H and consider $\hat{\pi}^{\theta} := (\pi^{\theta}, \tilde{\pi}_{(h+1)})$ 495 as in the proof of Theorem 2.2. Fix any initial state distribution μ_h on S_h , then the probability of w is

$$
p_{\mu_h}(w|\hat{\pi}^{\theta}) = \mu_h(s_h)\pi^{\theta}(a_h|s_h) \prod_{k=h+1}^{H-1} p(s_k|s_{k-1}, a_{k-1})\tilde{\pi}(a_k|s_k).
$$

⁴⁹⁶ It holds that

$$
\nabla^2 J_h(\theta) = \sum_{w \in \mathcal{W}} \nabla^2 p_{\mu_h}(w | \hat{\pi}^{\theta}) \underbrace{\sum_{k=h}^{H-1} r(s_k, a_k)}_{:=r(w)}.
$$
 (12)

 \Box

⁴⁹⁷ Now,

$$
\nabla^2 \log (p_{\mu_h}(w|\hat{\pi}^{\theta})) = \nabla \Big(p_{\mu_h}(w|\hat{\pi}^{\theta})^{-1} \nabla p_{\mu_h}(w|\hat{\pi}^{\theta}) \Big)
$$

\n
$$
= p_{\mu_h}(w|\hat{\pi}^{\theta})^{-1} \nabla^2 p_{\mu_h}(w|\hat{\pi}^{\theta})
$$

\n
$$
- p_{\mu_h}(w|\hat{\pi}^{\theta})^{-2} \nabla p_{\mu_h}(w|\hat{\pi}^{\theta}) \nabla p_{\mu_h}(w|\hat{\pi}^{\theta})^T,
$$

⁴⁹⁸ rearranging leads to

$$
\nabla^2 p_{\mu_h}(w|\hat{\pi}^{\theta}) = p_{\mu_h}(w|\hat{\pi}^{\theta}) \Big(\nabla^2 \log \left(p_{\mu}(w|\hat{\pi}^{\theta}) \right) + p_{\mu_h}(w|\hat{\pi}^{\theta})^{-2} \nabla p_{\mu_h}(w|\hat{\pi}^{\theta}) \nabla p_{\mu_h}(w|\hat{\pi}^{\theta})^T \Big)
$$
\n
$$
= p_{\mu_h}(w|\hat{\pi}^{\theta}) \Big(\nabla^2 \log \left(p_{\mu_h}(w|\hat{\pi}^{\theta}) \right) + \nabla \log (p_{\mu_h}(w|\hat{\pi}^{\theta})) \nabla \log (J_h(\theta))^T \Big). \tag{14}
$$

⁴⁹⁹ Substitute [\(14\)](#page-3-0) into [\(12\)](#page-2-0):

$$
\nabla^2 J_h(\theta)
$$

= $\sum_{w \in W} p_{\mu_h}(w|\hat{\pi}^{\theta}) \Big(\nabla^2 \log (p_{\mu_h}(w|\hat{\pi}^{\theta})) + \nabla \log (p_{\mu_h}(w|\hat{\pi}^{\theta})) \nabla \log (p_{\mu_h}(w|\hat{\pi}^{\theta}))^T \Big) r(w).$

⁵⁰⁰ Using the log-trick similar to Theorem 2.2 yields

$$
\nabla \log(p_{\mu_h}(w|\hat{\pi}^{\theta})) = \nabla \log(\pi^{\theta}(a_h|s_h))
$$

⁵⁰¹ and

$$
\nabla^2 \log(p_{\mu_h}(w|\hat{\pi}^{\theta})) = \nabla^2 \log(\pi^{\theta}(a_h|s_h)).
$$

⁵⁰² Together with the assumption we made on the derivative and hessian of the log parametrized policy ⁵⁰³ we obtain

$$
\|\nabla^2 J_h(\theta)\|_2
$$

\n
$$
= \|\sum_{w \in \mathcal{W}} p_{\mu_h}(w|\hat{\pi}^{\theta}) \Big(\nabla^2 \log (p_{\mu_h}(w|\hat{\pi}^{\theta})) + \nabla \log (p_{\mu_h}(w|\hat{\pi}^{\theta})) \nabla \log (p_{\mu_h}(w|\hat{\pi}^{\theta}))^T \Big) r(w) \|_2
$$

\n
$$
\leq \sum_{w \in \mathcal{W}} p_{\mu_h}(w|\hat{\pi}^{\theta}) r(w) \Big(\|\nabla^2 \log(\pi^{\theta}(a_h|s_h))\|_2 + \|\nabla \log(\pi^{\theta}(a_h|s_h))\|_2^2\Big)
$$

\n
$$
\leq \max_{w \in \mathcal{W}} r(w)(M + G^2)
$$

\n
$$
\leq (H - h)R^*(M + G^2),
$$

504 which completes the proof. Recall that R^* is the maximal reward.

$$
\Box
$$

505 **Lemma 3.4.** *Let* $h \in H$ *, then the h-state value function under softmax parametrization,* $\theta \mapsto J_h(\theta)$ *,* 506 *is* β_h -*smooth with* $\beta_h = 2(H - h)R^*|\mathcal{A}|$ *.*

⁵⁰⁷ *Proof.* We use Proposition 3.3 for the softmax parametrization and see that

$$
\|\nabla \log(\pi^{\theta}(a|s))\|_2 = \sqrt{\sum_{a' \in \mathcal{A}} (1_{\{a'=a\}} - \pi^{\theta}(a'|s))^2} \le \sqrt{|\mathcal{A}_s|} \le \sqrt{|\mathcal{A}|}
$$

⁵⁰⁸ and (Frobenius norm)

$$
||\nabla^2 \log(\pi^{\theta}(a|s))||_2 = \sqrt{\sum_{a^* \in \mathcal{A}_s} \sum_{a' \in \mathcal{A}_s} \left(\mathbf{1}_{\{a^* = a'\}} \pi^{\theta}(a'|s) - \pi^{\theta}(a^*|s) \pi^{\theta}(a'|s) \right)^2}
$$

\$\leq \sqrt{|\mathcal{A}_s| |\mathcal{A}_s|}\$
\$\leq |\mathcal{A}|\$.

509 Using Proposition 3.3 with $G = \sqrt{|\mathcal{A}|}$ and $M = |\mathcal{A}|$ yields the claim.

 \Box

510 **Theorem 3.5.** *Let* $h \in H$ *and consider the gradient ascent updates*

$$
\theta_{n+1} = \theta_n + \eta_h \nabla J_h(\theta_n) \tag{7}
$$

for arbitrary $\theta_0 \in \mathbb{R}^{d_h}$. We assume that $\mu_h(s) > 0$ for all $s \in \mathcal{S}_h$ and $0 < \eta_h \leq \frac{1}{\beta_h}$. Then, for all 512 $s \in S_h$, $J_{h,s}(\theta_n)$ *converges to* $J_{h,s}^*$ *for* $n \to \infty$ *, where* $J_{h,s}^* = \sup_{\theta} J_{h,s}(\theta) < \infty$ *.*

⁵¹³ The idea of the proof follows the line of arguments in Agarwal et al. (2021) for the asymptotic ⁵¹⁴ convergence of softmax policy gradient in the discounted stationary MDP setting. Thus, we first have ⁵¹⁵ to show a row of lemmata, compare to Lemma 41 to 51 in Agarwal et al. (2021).

516 **Lemma B.1** (Monotonicity). If the learning rate satisfies $0 < \eta_h \leq \frac{1}{\beta_h} = \frac{1}{2(H-h)R^*|A|}$ then $J_{h,s}(\theta_{n+1}) \geq J_{h,s}(\theta_n)$ for any $s \in S_h$. Furthermore, for all $s \in S_h$ there exists a limit $J_{h,s}^{\infty}$ such ⁵¹⁸ *that*

$$
\lim_{n \to \infty} J_{h,s}(\theta_n) = J_{h,s}^{\infty} < \infty.
$$

Froof. By (Beck, 2017, Theorem 10.4) we have for any β-smooth function $f : \mathbb{R}^d \to \mathbb{R}$, that 520 $(f(x^k))_{k\geq 0}$ is non-increasing sequence, when $x^{k+1} = x^k - \eta \nabla f(x^k)$ with $\eta_h \leq \frac{1}{\beta}$.

521 First note that $-J_{h,s}$ is also β_h -smooth. Then we have

$$
\nabla J_h(\theta) = \nabla \Big(\sum_{s \in S_h} \mu_h(s) J_{h,s}(\theta) \Big) = \sum_{s \in S_h} \mu_h(s) \nabla J_{h,s}(\theta),
$$

522 and $\frac{\partial J_{h,s}(\theta)}{\partial \theta(s',a)} = 0$ whenever $s' \neq s$. Denote by $\theta(s) = \theta(s, \cdot) \in \mathbb{R}^{|A_s|}$, then

$$
\theta(s)_{n+1} = \theta_n(s) + \eta_h \mu_h(s) \nabla J_{h,s}(\theta).
$$

523 With the assumption $0 < \mu_h(s) \leq 1$ for all $s \in S_h$ the first claim follows by (Beck, 2017, Theorem ⁵²⁴ 10.4).

525 As $J_{h,s}(\theta_n) \leq (H-h)R^*$ is bounded for all $n \in \mathbb{N}$ the second claim follows directly from ⁵²⁶ monotonicity. \Box

527 To save notation we fix an $h \in \mathcal{H}$. All results hold true for an arbitrary epoch. We introduce the 528 following definitions without a subscript h:

$$
\Delta = \min_{\{s, a | A_h^{\infty}(s, a) \neq 0\}} |A_h^{\infty}(s, a)|
$$

529 where $A_h^{\infty}(s, a) = Q_h^{\tilde{\pi}}(s, a) - J_{h, s}^{\infty}$. Recall that $\tilde{\pi}$ is the fixed policy which we use for $h+1, \ldots, H-1$. 530 For the rest of this section, we write Q_h instead of Q_h^{π} . Further we denote by $A_h^{\theta_n}(s, a) :=$

531 $Q_h(s, a) - J_{h,s}(\theta_n)$, the advantage function with respect to parameter θ_n .

⁵³² We define the sets

$$
I_0^s = \{ a \in A_s \, | \, Q_h(s, a) = J_{h,s}^{\infty} \},
$$

\n
$$
I_+^s = \{ a \in A_s \, | \, Q_h(s, a) > J_{h,s}^{\infty} \},
$$

\n
$$
I_-^s = \{ a \in A_s \, | \, Q_h(s, a) < J_{h,s}^{\infty} \}.
$$

⁵³³ Note that we observe a fundamental difference to the proof of Agarwal et al. (2021) in the infinite 534 time setting. We do not need a limit of the state-action value function Q_h^{∞} , because Q_h is independent

535 of θ and only depends on $\tilde{\pi}$. We aim to prove that I^s_+ is an empty set, then $J^{\infty}_{h,s} = J^*_{h,a}$.

536 **Lemma B.2.** *There exists a time* $N_1 > 0$ *such that for all* $n > N_1$ *, and* $s \in S_h$ *, we have*

$$
A_h^{\theta_n}(s, a) < -\frac{\Delta}{4} \text{ for } a \in I^s_-; \quad A_h^{\theta_n}(s, a) > \frac{\Delta}{4} \text{ for } a \in I^s_+.
$$

Froof. Fix $s \in S_h$ arbitrarily. As $J_{h,s}(\theta_n) \to J_{h,a}^{\infty}$ for $n \to \infty$ and S_h is finite, we have that there 538 exists $N_1 > 0$ such that for all $n > N_1$ and $s \in S_h$,

$$
J_{h,s}(\theta_n) > J_{h,s}^{\infty} - \frac{\Delta}{4}.
$$

539 It follows for all $n > N_1$, $s \in S_h$ and $a \in I^s_-$ by the definition of Δ :

$$
A_h^{\theta_n}(s, a) = Q_h(s, a) - J_{h,s}(\theta_n) \le Q_h(s, a) - J_{h,s}^{\infty} + \frac{\Delta}{4} \le -\Delta + \frac{\Delta}{4} < -\frac{\Delta}{4}.
$$

540 Similarly, for all $n > N_1$, $s \in S_h$ and $a \in I^s_+$ we obtain from monotonicity and the definition of Δ ,

$$
A_h^{\theta_n}(s, a) = Q_h(s, a) - J_{h,s}(\theta_n) \ge Q_h(s, a) - J_{h,s}^{\infty} \ge \Delta > \frac{\Delta}{4}
$$

541

 \Box

.

542 *Lemma B.3. It holds that* $\frac{\partial J_h(\theta_n)}{\partial \theta_n(s,a)}$ → 0 *as* n → ∞ *for all* $s \in S_h$ *, a* ∈ \mathcal{A}_s *. This implies that for* 543 $a \in I^s_+ \cup I^s_-, \pi^{\theta_n}(a|s) \to 0$ and that $\sum_{a \in I^s_0} \pi^{\theta_n}(a|s) \to 1$ for $n \to \infty$.

Froof. From (Beck, 2017, Theorem 10.15) we deduce for any β -smooth function $f : \mathbb{R}^d \to \mathbb{R}$, 545 that $\|\nabla f(x^k)\| \to 0$ for $k \to \infty$, if $x^{k+1} = x^k - \frac{1}{\beta} \nabla f(x^k)$. By Lemma 3.4 $J_h(\cdot)$ is β_h -smooth. 546 It follows by our choice of $\eta_h < \frac{1}{\beta_h}$ that $\frac{\partial J_h(\theta_n)}{\partial \theta_n(s,a)} \to 0$ as $n \to \infty$ for all $s \in \mathcal{S}_h$, $a \in \mathcal{A}_s$. Now ⁵⁴⁷ remember from Lemma 3.2

$$
\frac{\partial J_h(\theta_n)}{\partial \theta_n(s,a)} = \mu_h(s)\pi^{\theta_n}(a|s)A_h^{\theta_n}(s,a),
$$

548 and by Lemma [B.2](#page-4-0) $|A_h^{\theta_n}(s, a)| > \frac{\Delta}{4}$ for all $n > N_1$ and $a \in I^S_+ \cup I^s_-,$ As $\mu_h(s) > 0$ by assumption 549 it follows that $\pi^{\theta_n}(a|s) \to 0$ for $n \to \infty$ for all $a \in I^S_+ \cup I^s_-$ from $\frac{\partial J_h(\theta_n)}{\partial \theta_n(s,a)} \to 0$ as $n \to \infty$.

550 The last claim, $\sum_{a\in I_0^s}\pi^{\theta_n}(a|s)\to 1$ for $n\to\infty$, follows immediately from $\sum_{a\in {\cal A}_s}\pi^{\theta_n}(a|s)=1$ ⁵⁵¹ by:

$$
\lim_{n \to \infty} \sum_{a \in I_0^s} \pi^{\theta_n}(a|s) = \lim_{n \to \infty} \left(\sum_{a \in \mathcal{A}_s} \pi^{\theta_n}(a|s) - \sum_{a \in I_+^S \cup I_-^s} \pi^{\theta_n}(a|s) \right)
$$

$$
= 1 - \sum_{a \in I_+^S \cup I_-^s} \lim_{n \to \infty} \pi^{\theta_n}(a|s)
$$

$$
= 1.
$$

552

553 **Lemma B.4.** *For* $a \in I^s_+$, the sequence $(\theta_n(s, a))_{n \geq 0}$ is strictly increasing for $n > N_1$ and for 554 $a \in I^s_-,$ the sequence $(\theta_n(s, a))_{n \geq 0}$ is strictly decreasing for $n > N_1$.

555 *Proof.* With Lemma [B.2](#page-4-0) we know that for $n > N_1$

$$
A_h^{\theta_n}(s, a) > 0 \text{ for } a \in I^s_+; \quad A_h^{\theta_n}(s, a) < 0 \text{ for } a \in I^s_-
$$

⁵⁵⁶ and by Lemma 3.2

$$
\frac{\partial J_h(\theta_n)}{\partial \theta_n(s,a)} = \mu_h(s)\pi^{\theta_n}(a|s)A_h^{\theta_n}(s,a).
$$

557 As $\mu_h(s) > 0$ and $\pi^{\theta_n}(a|s) > 0$ by the definition of softmax parametrization, we have for all $n > N_1$

$$
\frac{\partial J_h(\theta_n)}{\partial \theta_n(s, a)} > 0 \text{ for } a \in I^s_+; \quad \frac{\partial J_h(\theta_n)}{\partial \theta_n(s, a)} < 0 \text{ for } a \in I^s_-.
$$

558 This implies for $a \in I^s_+,$

$$
\theta_{n+1}(s,a) - \theta_n(s,a) = \eta_h \frac{\partial J_h(\theta_n)}{\partial \theta_n(s,a)} > 0,
$$

559 i.e. $(\theta_n(s, a))_{n \ge 0}$ is strictly increasing for $n > N_1$ and similar for $a \in I^s_-,$

$$
\theta_{n+1}(s,a) - \theta_n(s,a) = \eta_h \frac{\partial J_h(\theta_n)}{\partial \theta_n(s,a)} < 0,
$$

- 560 i.e. $(\theta_n(s, a))_{n \geq 0}$ is strictly decreasing for $n > N_1$.
- 561 **Lemma B.5.** For all $s \in S_h$ where $I^s_+ \neq \emptyset$, we have that

$$
\max_{a\in I_0^s} \theta_n(s, a) \to \infty \quad \text{and} \quad \min_{a\in A_s} \theta_n(s, a) \to -\infty \quad \text{for } n \to \infty.
$$

 \Box

 \Box

Froof. By assumption $I^s_+ \neq \emptyset$ there exists an $a_+ \in I^s_+$ and by Lemma [B.3](#page-5-0) we have $\pi^{\theta_n}(a_+|s) \to 0$, 563 as $n \to \infty$. Hence, by softmax parametrization this is equivalent to

$$
\frac{\exp(\theta_n(s, a_+))}{\sum\limits_{a \in \mathcal{A}_s} \exp(\theta_n(s, a))} \to 0, \text{ for } n \to \infty.
$$

564 Using Lemma [B.4,](#page-5-1) i.e. $\theta_n(s, a_+)$ is strictly increasing for $n > N_1$, we imply that $\exp(\theta_n(s, a_+))$ is 565 strictly increasing for $n > N_1$. This implies that

$$
\sum_{a\in\mathcal{A}_s}\exp(\theta_n(s,a))\to\infty,\,\,\text{for }n\to\infty.
$$

⁵⁶⁶ Again by Lemma [B.3](#page-5-0) we know that

$$
\sum_{a\in I_0^s}\pi^{\theta_n}(a|s)\to 1,\,\text{ for }n\to\infty,
$$

⁵⁶⁷ i.e. by definition

$$
\sum_{a\in I_0^s}\frac{\exp(\theta_n(s,a))}{\sum\limits_{a'\in \mathcal{A}_s}\exp(\theta_n(s,a'))}\to 1, \text{ for } n\to\infty.
$$

As Σ 568 As $\sum_{a' \in A_s} \exp(\theta_n(s, a')) \to \infty$ it follows that

$$
\sum_{a\in I_0^s} \exp(\theta_n(s, a)) \to \infty, \text{ for } n \to \infty
$$

⁵⁶⁹ implying

$$
\max_{a\in I_0^s}\theta_n(s,a)\to\infty,\,\,\text{for }n\to\infty.
$$

⁵⁷⁰ For the second claim it holds that

$$
\sum_{a \in A_s} \frac{\partial J_h(\theta_n)}{\partial \theta_n(s, a)} = \mu_h(s) \sum_{a \in A} \pi^{\theta_n}(a|s) (Q_h(s, a) - J_{h,s}(\theta_n))
$$

$$
= \mu_h(s) (\mathbb{E}_{S_h = s}^{\pi^{\theta_n}}[Q_h(S_h, A_h)] - J_{h,s}(\theta_n))
$$

$$
= \mu_h(s) (J_{h,s}(\theta_n) - J_{h,s}(\theta_n))
$$

$$
= 0.
$$

571 By induction, we obtain $\sum_{a \in A_s} \theta_n(s, a) = \sum_{a \in A_s} \theta_0(s, a) := c$ for every $n > 0$ and hence

$$
\min_{a \in \mathcal{A}_s} \theta_n(s, a) < \sum_{a \in \mathcal{A}_s} \theta_n(s, a) - \max_{a \in \mathcal{A}_s} \theta_n(s, a) = -\max_{a \in \mathcal{A}_s} \theta_n(s, a) + c.
$$

572 Since $\max_{a \in A_s} \theta_n(s, a) \to \infty$, because $\max_{a \in I_0^s} \theta_n(s, a) \to \infty$, we conclude $\min_{a \in A_s} \theta_n(s, a) \to \infty$ 573 $-\infty$ for $n \to \infty$. \Box

574 **Lemma B.6.** *Suppose* $a_+ \in I^s_+$ *. If there exists* $a \in I^s_0$ such that for some $n > 0$, $\pi^{\theta_n}(a|s) \leq$ 575 $\pi^{\theta_n}(a_+|s)$ *, then for all* $m>n$ *it holds that* $\pi^{\theta_m}(a|s) \leq \pi^{\theta_m}(a_+|s)$ *.*

Froof. Suppose there exists $a \in I_0^s$ such that for an $n > 0$, $\pi^{\theta_n}(a|s) \leq \pi^{\theta_n}(a_+|s)$. We show that $\pi^{\theta_{n+1}}(a|s) \leq \pi^{\theta_{n+1}}(a_+|s)$, then the claim follows by induction. We have

$$
\frac{\partial J_h(\theta_n)}{\partial \theta_n(s, a)} = \mu_h(s) \pi^{\theta_n}(a|s) (Q_h(s, a) - J_{h, s(\theta_n)})
$$

\n
$$
\leq \mu_h(s) \pi^{\theta_n}(a_+|s) (Q_h(s, a_+) - J_{h, s}(\theta_n))
$$

\n
$$
= \frac{\partial J_h(\theta_n)}{\partial \theta_n(s, a_+)},
$$

⁵⁷⁸ where the inequality follows with

$$
Q_h(s, a_+) = Q_h(s, a_+) - J_{h,s}^{\infty} + J_{h,s}^{\infty}
$$

> $J_{h,s}^{\infty}$
= $Q_h(s, a) - J_{h,s}^{\infty} + J_{h,s}^{\infty}$
= $Q_h(s, a)$,

579 as $Q_h(s, a_+) - J_{h,s}^{\infty} > 0$ a.s. for $a_+ \in I_+^s$ and $Q_h(s, a) - J_{h,s}^{\infty} = 0$ a.s. for $a \in I_0^s$. Now by 580 assumption we have $\pi^{\theta_n}(a|s) \leq \pi^{\theta_n}(a_+|s)$ and thus $\theta_n(s, a) \leq \theta_n(s, a_+)$. It follows

$$
\theta_{n+1}(s,a) = \theta_n(s,a) + \eta_h \frac{\partial J_h(\theta_n)}{\partial \theta_n(s,a)} \le \theta_n(s,a_+) + \eta_h \frac{\partial J_h(\theta_n)}{\partial \theta_n(s,a_+)} = \theta_{n+1}(s,a_+).
$$

581

582 Now define for every $a_+ \in I^s_+$ the set

$$
B_0^s(a_+) = \{ a \in I_0^s | \pi^{\theta_n}(a_+|s) \le \pi^{\theta_n}(a|s) \text{ for all } l > 0 \}
$$

583 and denote its complement in I_0^s as $\bar{B}_0^s(a_+) = I_0^s \setminus B_0^s(a_+)$.

584 **Lemma B.7.** Suppose $I^s_+ \neq \emptyset$. For all $a_+ \in I^s_+$, we have that $B^s_0(a_+) \neq \emptyset$ and

$$
\sum_{a\in B_0^s(a_+)}\pi^{\theta_n}(a|s)\to 1, \text{ as } n\to\infty.
$$

⁵⁸⁵ *This implies:*

$$
\max_{a \in B_0^s(a_+)} \theta_n(s, a) \to \infty, \text{ for } n \to \infty.
$$

- 586 *Proof.* Let $a_+ \in I^s_+$ and consider $a \in \overline{B}^s_0(a_+)$. Then by definition of $\overline{B}^s_0(a_+)$ there exists $n' > 0$ 587 such that $\pi^{\theta_{n'}}(a_+|s) \geq \pi^{\theta_{n'}}(a|s)$. Hence, by Lemma [B.6](#page-6-0) for all $n \geq n'$ we have $\pi^{\theta_n}(a_+|s) \geq$ 588 $\pi^{\theta_n}(a|s)$. As $\pi^{\theta_n}(a_+|s) \to 0$ for $n \to \infty$. We obtain $\pi^{\theta_n}(a|s) \to 0$ for $n \to \infty$, for all $a \in \overline{B_0^s}(a_+)$. 589 Since by Lemma [B.3](#page-5-0) $\sum_{a \in I_0^s} \pi^{\theta_n}(a|s) \to 1$ for $n \to \infty$, we have that $B_0^s(a_+) \neq \emptyset$ and that
- 590 $\sum_{a \in B_0^s(a_+)} \pi^{\theta_n}(a|s) \to 1$, as $n \to \infty$. The second claim follows from this as in Lemma [B.5.](#page-5-2) \Box
- \mathbf{f}_{591} **Lemma B.8.** Consider $s \in \mathcal{S}_h$ such that $I^s_+ \neq \emptyset$. Then, for any $a_+ \in I^s_+$, there exists an N_{a_+} such 592 *that for all* $n > N_{a_{+}}$ *we have*

$$
\pi^{\theta_n}(a_+|s) > \pi^{\theta_n}(a|s) \text{ for all } a \in \overline{B}_0^s(a_+).
$$

593 *Proof.* For every $a \in \overline{B}_0^s(a_+)$ exists time n_a such that

$$
\pi^{\theta_n}(a_+|s) > \pi^{\theta_n}(a|s) \text{ for all } a \in \overline{B}_0^s(a_+)
$$

594 for all $n > n_a$ by definition. Set $N_{a_+} = \max_{a \in \bar{B}_0^s(a_+)} n_a$ and the proof is completed.

595 **Lemma B.9.** Assume again $I^s_+ \neq \emptyset$. For all actions $a \in I^s_+$, we have that $\theta_n(s, a)$ is bounded from 596 *below as* $n \to \infty$. And for all $a \in I^s_-,$ we have that $\theta_n(s, a) \to -\infty$ as $n \to \infty$.

597 *Proof.* The first claim follows directly with Lemma [B.4](#page-5-1) as $\theta_n(s, a)$ is strictly increasing for all 598 $a \in I^s_+, n > N_1$ and thus for all $n > N_1$ we have $\theta_n(s, a) \ge \theta_{N_1}(s, a)$. Now suppose $a \in I^s_-,$ 599 then by Lemma [B.4](#page-5-1) we have that $\theta_n(s, a)$ is strictly decreasing for $n > N_1$. Assume there exists 600 *b* such that $\lim_{n\to\infty} \theta_n(s, a) = b$, then $\theta_n(s, a) > b$ for all $n > N_1$. By Lemma [B.5](#page-5-2) there exists an 601 action $a' \in A_s$ such that $\theta_n(s, a') \to -\infty$ for $n \to \infty$. Consider $\delta > 0$ such that $\theta_{N_1}(s, a') \ge b - \delta$. 602 Define for all $n > N_1$

$$
\tau(n) = \max\{k \in (N_1, n] : \theta_k(s, a') \ge b - \delta\}.
$$

 \Box

 \Box

⁶⁰³ Define also

$$
\mathcal{T}^{(n)} = \Big\{\tau(n) < n' < n : \frac{\partial J_h(\theta_{n'})}{\partial \theta_{n'}(s, a')} \le 0\Big\},\
$$

604 as the set of all indices n' in $(\tau(n), n)$, where $\theta_{n'}(s, a')$ is decreasing. Next we define $Z_n :=$ 605 $\sum_{n' \in \mathcal{T}^{(n)}} \frac{\partial J_h(\theta_{n'})}{\partial \theta_{n'}(s, a')}$, then it holds that

$$
Z_n = \sum_{n' \in \mathcal{T}^{(n)}} \frac{\partial J_h(\theta_{n'})}{\partial \theta_{n'}(s, a')}
$$

\n
$$
\leq \sum_{n' = \tau(n)+1}^{n-1} \frac{\partial J_h(\theta_{n'})}{\partial \theta_{n'}(s, a')}
$$

\n
$$
\leq \sum_{n' = \tau(n)}^{n-1} \frac{\partial J_h(\theta_{n'})}{\partial \theta_{n'}(s, a')} + \left| \frac{\partial J_h(\theta_{\tau(n)})}{\partial \theta_{\tau(n)}(s, a')} \right|.
$$

⁶⁰⁶ By Lemma 3.2 and the bounded reward assumption we have

$$
\left|\frac{\partial J_h(\theta_{\tau(n)})}{\partial \theta_{\tau(n)}(s,a')}\right| = = \mu_h(s)\pi^{\theta_{\tau(n)}}(a'|s)|A_h^{\theta_{\tau(n)}}(s,a')| \leq (H-h)R^*.
$$

⁶⁰⁷ Hence,

$$
Z_n \leq \sum_{n'= \tau(n)}^{n-1} \frac{\partial J_h(\theta_{n'})}{\partial \theta_{n'}(s, a')} + (H - h)R^*
$$

= $\frac{1}{\eta} (\theta_n(s, a') - \theta_{\tau(n)}(s, a')) + (H - h)R^*$
 $\leq \frac{1}{\eta} (\theta_n(s, a') - b + \delta) + (H - h)R^*.$

608 Then $\theta_n(s, a') \to -\infty$ for $n \to \infty$ implies that $Z_n \to -\infty$ for $n \to \infty$. As we chose $a \in I^s_-$ it 609 holds that $|A_h^{\theta_n}(s, a)| \geq \frac{\Delta}{4}$ for $n > N_1$ with Lemma [B.2](#page-4-0) and so for all $n' \in \mathcal{T}^{(n)}$:

$$
\begin{split}\n\left| \frac{\frac{\partial J_h(\theta_{n'})}{\partial \theta_{n'}(s,a)}}{\frac{\partial J_h(\theta_{n'})}{\partial \theta_{n'}(s,a')}} \right| &= \left| \frac{\pi^{\theta_{n'}}(a|s) A_h^{\theta_{n'}}(s,a)}{\pi^{\theta_{n'}}(a'|s) A_h^{\theta_{n'}}(s,a')} \right| \\
&\geq \frac{\pi^{\theta_{n'}}(a|s)}{\pi^{\theta_{n'}}(a'|s)} \frac{\Delta}{4(H-h)R^*} \\
&= \exp(\theta_{n'}(s,a) - \theta_{n'}(s,a')) \frac{\Delta}{4(H-h)R^*} \\
&\geq \exp(b - (b - \delta)) \frac{\Delta}{4(H-h)R^*} \\
&= \exp(\delta) \frac{\Delta}{4(H-h)R^*},\n\end{split}
$$

610 where we used in the last inequality that $\theta_{n'}(s, a') \leq b - \delta$ for all $n' > \tau(n)$ and $\theta_{n'}(s, a) > b$ for 611 all $n' > N_1$. By the definition of $\mathcal{T}^{(n)}$ these inequalities holds especially for all $n' \in \mathcal{T}^{(n)}$. Using 612 this we can imply that for all $n > N_1$ with $\mathcal{T}^{(n)} \neq \emptyset$,

$$
\frac{1}{\eta} \Big(\theta_{N_1}(s, a) - \theta_n(s, a) \Big) = \sum_{n'=N_1+1}^{n-1} \frac{\partial J_h(\theta_{n'})}{\partial \theta_{n'}(s, a)}
$$
\n
$$
\leq \sum_{n' \in \mathcal{T}^{(n)}} \frac{\partial J_h(\theta_{n'})}{\partial \theta_{n'}(s, a)}
$$
\n
$$
\leq \exp(\delta) \frac{\Delta}{4(H - h)R^*} \sum_{n' \in \mathcal{T}^{(n)}} \frac{\partial J_h(\theta_{n'})}{\partial \theta_{n'}(s, a')}
$$
\n
$$
= \exp(\delta) \frac{\Delta}{4(H - h)R^*} Z_n,
$$

613 where the first inequality holds because $\theta_{n'}(s, a)$ is strictly decreasing for $n' > N_1$, i.e. $\frac{\partial J_h(\theta_{n'})}{\partial \theta_{n'}(s, a)} > 0$ 614 for all $n' \in \{N_1 + 1, \ldots, n - 1\}$. In the second inequality we used

$$
\left|\frac{\frac{\partial J_h(\theta_{n'})}{\partial \theta_{n'}(s,a)}}{\frac{\partial J_h(\theta_{n'})}{\partial \theta_{n'}(s,a')}}\right|\geq \exp(\delta)\frac{\Delta}{4(H-h)R^*}.
$$

615 Note that $\frac{\partial J_h(\theta_n)}{\partial \theta_{n'}(s,a)} < 0$ and $\frac{\partial J_h(\theta_{n'})}{\partial \theta_{n'}(s,a')} < 0$ so that the sign of the inequality reverses.

616 Finally, we deduce from $Z_n \to -\infty$ that $\theta_n(s, a) \to \infty$ for $n \to \infty$, which is a contradiction to 617 $\theta_n(s, a)$ strictly decreasing for all $n > N_1$.

618 **Lemma B.10.** *Consider* $s \in S_h$ *such that* $I^s_+ \neq \emptyset$ *. Then for any* $a_+ \in I^s_+$ *it holds that*

$$
\sum_{a\in B_0^s(a_+)}\theta_n(s,a)\to\infty,\quad\text{for }n\to\infty.
$$

619 *Proof.* Let $a_+ \in I^s_+$ and $a \in B^s_0(a_+)$. Then by definition of $B^s_0(a_+)$ we have

$$
\pi^{\theta_n}(a_+|s) \le \pi^{\theta_n}(a|s)
$$

- 620 for all $n > 0$ and hence by softmax parametrization $\theta_n(s, a_+) \leq \theta_n(s, a)$ for all $n > 0$. By
- 621 Lemma [B.9](#page-7-0) we have that $\theta_n(s, a_+)$ and thus also $\theta_n(s, a)$ is bounded from below for $n \to \infty$. ⁶²² Together with

$$
\max_{\{a \in B_0^s(a_+)\}} \theta_n(s, a) \to \infty, \quad \text{ for } n \to \infty
$$

⁶²³ by Lemma [B.7](#page-7-1) we deduce the claim.

⁶²⁴ Finally, we are ready to prove the asymptotic convergence of policy gradient with tabular softmax ⁶²⁵ parametrization.

626 *Proof of Theorem 3.5.* We have to show that $I^s_+ = \emptyset$ for all $s \in S_h$. So assume there exists $s \in S_h$ sez such that $I^s_+ \neq \emptyset$ and let $a_+ \in I^s_+$. Then by Lemma [B.10](#page-9-0) we have

$$
\sum_{a \in B_0^s(a_+)} \theta_n(s, a) \to \infty, \quad \text{for } n \to \infty.
$$
 (15)

628 For any $a \in I^s_-$ we have by Lemma [B.9](#page-7-0) that

$$
\frac{\pi^{\theta_n}(a|s)}{\pi^{\theta_n}(a_+|s)} = \exp(\underbrace{\theta_n(s,a)}_{\to -\infty} - \underbrace{\theta_n(s,a_+)}_{\text{bounded from below}}) \to 0, \quad n \to \infty.
$$

629 Hence, there exists $N_2 > N_1$ such that for all $n > N_2$

$$
\frac{\pi^{\theta_n}(a|s)}{\pi^{\theta_n}(a_+|s)} < \frac{\Delta}{16|\mathcal{A}|(H-h)R^*},
$$

 \Box

630 which leads for $n > N_2$ to

$$
-(H-h)R^* \sum_{a \in I^s_-} \pi^{\theta_n}(a|s) > -\frac{\Delta}{16} \pi^{\theta_n}(a_+|s). \tag{16}
$$

- 631 Note that if $I_{-}^{s} = \emptyset$ we can just ignore this sum later on.
- 632 Next consider $a \in \bar{B}_0^s(a_+) \subseteq I_0^s$. By the definition of I_0^s we have that $A_h^{\theta_n}(s, a) \to A_h^{\infty}(s, a) = 0$
- 633 for $n \to \infty$. By Lemma [B.8](#page-7-2) we have for $n \geq N_{a_+}$

$$
1 < \frac{\pi^{\theta_n}(a_+|s)}{\pi^{\theta_n}(a|s)}.
$$

634 Thus, there exists $N_3 > \max\{N_2, N_{a_+}\}\)$ such that for all $n \ge N_3$

$$
|A_h^{\theta_n}(s,a)| < \frac{\pi^{\theta_n}(a_+|s)}{\pi^{\theta_n}(a|s)} \frac{\Delta}{16|\mathcal{A}|}.
$$

⁶³⁵ This implies

$$
\sum_{a\in \bar{B}^s_0(a_+)}\pi^{\theta_n}(a|s)|A^{\theta_n}_h(s,a)|<\pi^{\theta_n}(a_+|s)\frac{\Delta}{16}
$$

⁶³⁶ and so

$$
-\pi^{\theta_n}(a_+|s)\frac{\Delta}{16} < \sum_{a \in \bar{B}_0^s(a_+)} \pi^{\theta_n}(a|s) A_h^{\theta_n}(s, a) < \pi^{\theta_n}(a_+|s)\frac{\Delta}{16},\tag{17}
$$

637 for all $n > N_3$. We can conclude again for $n > N_3$,

$$
0 = \sum_{a \in A} \pi^{\theta_n}(a|s) A_h^{\theta_n}(s, a)
$$

\n
$$
= \sum_{a \in B_0^s(a_+)} \pi^{\theta_n}(a|s) A_h^{\theta_n}(s, a) + \sum_{a \in B_0^s(a_+)} \pi^{\theta_n}(a|s) A_h^{\theta_n}(s, a)
$$

\n
$$
+ \sum_{a \in I_+^s} \pi^{\theta_n}(a|s) A_h^{\theta_n}(s, a) + \sum_{a \in I_-^s} \pi^{\theta_n}(a|s) A_h^{\theta_n}(s, a)
$$

\n
$$
> \sum_{a \in B_0^s(a_+)} \pi^{\theta_n}(a|s) A_h^{\theta_n}(s, a) - \pi^{\theta_n}(a_+|s) \frac{\Delta}{16} + \pi^{\theta_n}(a_+|s) \frac{\Delta}{4} - (H - h)R^* \sum_{a \in I_-^s} \pi^{\theta_n}(a|s)
$$

\n
$$
\geq \sum_{a \in B_0^s(a_+)} \pi^{\theta_n}(a|s) A_h^{\theta_n}(s, a) - \pi^{\theta_n}(a_+|s) \frac{\Delta}{16} + \pi^{\theta_n}(a_+|s) \frac{\Delta}{4} - \frac{\Delta}{16} \pi^{\theta_n}(a_+|s)
$$

\n
$$
> \sum_{a \in B_0^s(a_+)} \pi^{\theta_n}(a|s) A_h^{\theta_n}(s, a),
$$

⁶³⁸ where we used Equation [\(17\)](#page-10-0) and Lemma [B.2](#page-4-0) in the first inequality and Equation [\(16\)](#page-10-1) in the second 639 inequality. Finally, by our assumption and Equation [\(15\)](#page-9-1) for $n > N_3$,

$$
\infty \stackrel{n \to \infty}{\longleftarrow} \sum_{a \in B_0^s(a_+)} (\theta_n(s, a) - \theta_{N_3}(s, a))
$$

=
$$
\eta_h \sum_{n'=N_3}^n \sum_{a \in B_0^s(a_+)} \frac{\partial J_h(\theta_n)}{\partial \theta_{n'}(s, a)}
$$

=
$$
\eta_h \sum_{n'=N_3}^n \mu_h(s) \sum_{a \in B_0^s(a_+)} \pi^{\theta_n}(a|s) A_h^{\theta_n}(s, a),
$$

640 which contradicts $\sum_{a \in B_0^s(a_+)} \pi^{\theta_n}(a|s) A_h^{\theta_n}(s, a) < 0$.

 \Box

⁶⁴¹ B.2 Proofs of Section 3.2

642 **Lemma 3.6** (weak PL-inequality). *For the objective* J_h *it holds that*

$$
\|\nabla J_h(\theta)\|_2 \ge \min_{s \in \mathcal{S}_h} \pi^{\theta}(a_h^*(s)|s)(J_h^* - J_h(\theta)),
$$

643 where $a_h^*(s) = \text{argmax}_{a \in A_s} \pi_h^*(a|s)$ and $J_h^* = \sup_{\theta} J_h(\theta)$.

644 *Proof.* First note that by the definition of π_h^* , we have $J_h^* = V_h^{(\pi_h^*, \tilde{\pi}_{(h+1)})}(\mu)$, because the tabular ⁶⁴⁵ softmax parametrization can approximate any deterministic policy arbitrarily well. We denote by $J_{h,s}^* = V_h^{(\pi_h^*, \tilde{\pi}_{(h+1)})}(s)$ the optimal h-state value function for all $s \in S_h$, when the policy after h is 647 fixed. Using the performance difference lemma with fixed policy after h (Corollary 2.3), we obtain

$$
\begin{split}\n&\left\|\frac{\partial J_h(\theta)}{\partial \theta}\right\|_2 \\
&= \left\|\sum_{s\in S_h} \mu_h(s) \frac{\partial J_{h,s}(\theta)}{\partial \theta}\right\|_2 \\
&= \left[\sum_{s'\in S_h} \sum_{a'\in A_{s'}} \left(\sum_{s\in S_h} \mu_h(s) \frac{\partial J_{h,s}(\theta)}{\partial \theta(s',a')} \right)^2\right]^{\frac{1}{2}} \\
&\geq \sum_{s\in S_h} \mu_h(s) \left|\frac{\partial J_{h,s}(\theta)}{\partial \theta(s, a_h^*(s))}\right| \\
&= \sum_{s\in S_h} \mu_h(s) \pi^{\theta}(a_h^*(s)|s) A_h^{(\pi^{\theta}, \tilde{\pi}_{(h+1)})}(s, a_h^*(s)) \\
&= \sum_{s\in S_h} \mu_h(s) \pi^{\theta}(a_h^*(s)|s) \left(J_{h,s}^* - J_{h,s}(\theta)\right) \\
&\geq \min_{s\in S_h} \pi^{\theta}(a_h^*(s)|s) \left(J_h^* - J_h(\theta)\right),\n\end{split}
$$

- ⁶⁴⁸ where the first inequality is due to the positiveness of all other terms, and we just drop them, and in the last equation we used Corollary 2.3, i.e. $A_h^{(\pi^{\theta}, \tilde{\pi}_{(h+1)})}$ $\mathbb{E}_{h}^{\pi^{\theta}, \tilde{\pi}_{(h+1)})}(s, a_{h}^{*}(s)) = \mathbb{E}_{S_{h}=s}^{\pi^{*}}[A_{h}^{(\pi^{\theta}, \tilde{\pi}_{(h+1)})}]$ 649 the last equation we used Corollary 2.3, i.e. $A_h^{\binom{n}{k}}(s, a_h^*(s)) = \mathbb{E}_{S_h = s}^{\pi^*}[A_h^{\binom{n}{k}}(s, a_h^*(s))]$. ⁶⁵⁰ This proves the claim.
- ϵ ₅₁ **Lemma 3.7.** Let $h \in H$, $\mu_h(s) > 0$ for all $s \in S_h$ and consider the sequence $(\theta_n)_{n \in \mathbb{N}_0}$ generated by 652 (7) for arbitrarily initialized $\theta_0 \in \mathbb{R}^{d_h}$. Then it holds that $c_h := \inf_{n \geq 0} \min_{s \in S_h} \pi^{\bar{\theta}_n}(a_h^*(s)|s) > 0$.

⁶⁵³ All in all the proof follows the outline of (Mei et al., 2020, Lemma 9), but has to be adjusted to the ⁶⁵⁴ finite-time setting in a few steps.

⁶⁵⁵ *Proof.* First note that

$$
J_{h,s}(\theta) = \sum_{a \in \mathcal{A}_s} \pi_t^{\theta}(a|s) Q_h^{\tilde{\pi}}(s,a),
$$

656 where $Q_h^{\pi}(s, a)$ is independent of θ . We will drop the subscript $\tilde{\pi}$ in Q_h for the rest of the proof and 657 define for all $s \in S_h$,

$$
\Delta^*(s) = Q_h(s, a_h^*(s)) - \max_{a \neq a_h^*(s)} Q_h(s, a) > 0, \text{ and } \Delta^* = \min_{s \in S_h} \Delta^*(s) > 0.
$$

658 Now consider for any $s \in S_h$ the following sets

$$
\mathcal{R}_1(s) = \Big\{\theta : \frac{\partial J_{h,s}(\theta)}{\partial \theta(s, a_h^*(s))} \ge \frac{\partial J_{h,s}(\theta)}{\partial \theta(s, a)}, \text{ for all } a \ne a_h^*(s) \Big\},\
$$

$$
\mathcal{R}_2(s) = \Big\{\theta_n : J_{h,s}(\theta_{n'}) \ge Q_h(s, a_h^*(s)) - \frac{\Delta^*(s)}{2}, \text{ for all } n' \ge n \Big\}.
$$

659 Furthermore, we define $c(s) = \frac{|\mathcal{A}|(H-h)R^*}{\Delta^*(s)} - 1$ and

$$
N_c(s)=\Big\{\theta: \pi^\theta\big(a^*_h(s)\vert s\big)\geq \frac{c(s)}{c(s)+1}\Big\}.
$$

⁶⁶⁰ We divide the proof into the following Claims:

661 Claim 1. $\mathcal{R}(s) = \mathcal{R}_1(s) \cap \mathcal{R}_2(s)$ is a *nice* region, i.e.

$$
662 \t\t\t (i) \t\t \theta_n \in \mathcal{R}(s) \Rightarrow \theta_{n+1} \in \mathcal{R}(s).
$$

- 663 (ii) $\pi^{\theta_{n+1}}(a_h^*(s)|s) \geq \pi^{\theta_n}(a_h^*(s)|s).$
- 664 Claim 2. $\mathcal{N}_c(s) \cap \mathcal{R}_2(s) \subseteq \mathcal{R}_1(s) \cap \mathcal{R}_2(s)$.
- 665 Claim 3. For every $s \in S_h$, there exists a finite-time $n_0(s) \geq 1$, such that $\theta_{n_0(s)} \in \mathcal{N}_c(s) \cap \mathcal{R}_2(s) \subseteq$ 666 $\mathcal{R}_1 s \cap \mathcal{R}_2(s)$ and thus $\inf_{n \geq 1} \pi^{\theta_n}(a_h^*(s)|s) = \min_{1 \leq n \leq n_0(s)} \pi^{\theta_{n_0(s)}}(a_h^*(s)|s).$

667 If all three claims hold true, we can finally define $n_0 = \max_{s \in S_h} n_0(s)$, such that

$$
\inf_{n\geq 1, s\in S_h} \pi^{\theta_n}(a_h^*(s)|s) = \min_{1\leq n\leq n_0, s\in S_h} \pi^{\theta_{n_0}}(a_h^*(s)|s).
$$

⁶⁶⁸ Due to the positiveness of the softmax parametrization the assertion follows.

669 Claim 1. We first prove [\(i\).](#page-12-0) Let $\theta_n \in \mathcal{R}(s)$ and $a \neq a_h^*(s)$. Then $\theta_{n+1} \in \mathcal{R}_2(s)$ by definition of 670 $\mathcal{R}_2(s)$. Using Lemma 3.2we obtain

$$
\frac{\partial J_{h,s}(\theta_n)}{\partial \theta(s, a_h^*(s))} \ge \frac{\partial J_{h,s}(\theta_n)}{\partial \theta(s, a)} \n\Leftrightarrow \pi^{\theta_n}(a_h^*(s)|s) \big(Q_h(s, a_h^*(s)) - J_{h,s}(\theta_n)\big) \ge \pi^{\theta_n}(a|s) \big(Q_h(s, a) - J_{h,s}(\theta_n)\big).
$$
\n(18)

⁶⁷¹ We divide into two cases:

672 **a**) $\pi^{\theta_n}(a_h^*(s)|s) \geq \pi^{\theta_n}(a|s),$

673 \t\t b)
$$
\pi^{\theta_n}(a_h^*(s)|s) < \pi^{\theta_n}(a|s)
$$
.

674 In *a*) the assumption $\pi^{\theta_n}(a_h^*(s)|s) \ge \pi^{\theta_n}(a|s)$ implies $\theta_n(s, a_h^*(s)) \ge \theta_n(s, a)$. Thus,

$$
\theta_{n+1}(s, a_n^*(s)) = \theta_n(s, a_n^*(s)) + \eta_h \frac{\partial J_{h,s}(\theta_n)}{\partial \theta_n(s, a_n^*(s))}
$$

\n
$$
\geq \theta_n(s, a) + \eta_h \frac{\partial J_{h,s}(\theta_n)}{\partial \theta_n(s, a)}
$$

\n
$$
= \theta_{n+1}(s, a),
$$

675 which implies $\pi^{\theta_{n+1}}(a_h^*(s)|s) \geq \pi^{\theta_{n+1}}(a|s)$. By the optimality of $a_h^*(s)$ we follow

$$
\pi_t^{\theta_{n+1}}(a_h^*(s)|s)\big(Q_h(s,a_h^*(s)) - J_{h,s}(\theta_{n+1})\big) \geq \pi_t^{\theta_{n+1}}(a|s)\big(Q_h(s,a) - J_{h,s}(\theta_{n+1})\big),
$$

⁶⁷⁶ which is by equation [\(18\)](#page-12-1) equivalent to

$$
\frac{\partial J_{h,s}(\theta_{n+1})}{\partial \theta_{n+1}(s, a_h^*(s))} \ge \frac{\partial J_{h,s}(\theta_{n+1})}{\partial \theta_{n+1}(s,a)}.
$$

677 Hence, $\theta_{n+1} \in \mathcal{R}_1(s)$.

678 In b) assume now that $\pi^{\theta_n}(a_h^*(s)|s) < \pi^{\theta_n}(a|s)$. As $\theta_n \in \mathcal{R}_1(s)$ equation [\(18\)](#page-12-1) is also true in this ⁶⁷⁹ case and rearranging of terms gives

$$
\frac{\partial J_{h,s}(\theta_n)}{\partial \theta_n(s, a_h^*(s))} \ge \frac{\partial J_{h,s}(\theta_n)}{\partial \theta_n(s, a)}
$$
\n
$$
\Leftrightarrow Q_h(s, a_h^*(s)) - Q_h(s, a) \ge \left(1 - \frac{\pi^{\theta_n}(a_h^*(s)|s)}{\pi^{\theta_n}(a|s)}\right) \left(Q_h(s, a_h^*(s)) - J_{h,s}(\theta_n)\right)
$$
\n
$$
\Leftrightarrow Q_h(s, a_h^*(s)) - Q_h(s, a) \ge \left(1 - \exp(\theta_n(s, a_h^*(s)) - \theta_n(s, a)\right) \left(Q_h(s, a_h^*(s)) - J_{h,s}(\theta_n)\right).
$$
\n(19)

680 Note next that by $\theta^{(n)} \in \mathcal{R}_1(s)$ and definition of $\mathcal{R}_1(s)$ we have

$$
\theta_{n+1}(s, a_n^*(s)) - \theta_{n+1}(s, a)
$$

= $\theta_n(s, a_n^*(s)) + \eta_n \frac{\partial J_{h,s}(\theta_n)}{\partial \theta_n(s, a_n^*(s))} - \theta_n(s, a) - \eta \frac{\partial J_{h,s}(\theta_n)}{\partial \theta_n(s, a)}$
 $\geq \theta_n(s, a_n^*(s)) - \theta_n(s, a)$

681 and is follows $\left(1-\exp(\theta_{n+1}(s,a^*_h(s))-\theta_{n+1}(s,a))\right)\leq \left(1-\exp(\theta_n(s,a^*_h(s))-\theta_n(s,a))\right)<1$ by assumption b). We already know $\theta_{n+1} \in \mathcal{R}_2(s)$ and therefore $J_{h,s}(\theta_{n+1}) \geq Q_h(s, a_h^*(s)) - \frac{\Delta^*(s)}{2}$ 682 assumption b). We already know $\theta_{n+1} \in \mathcal{R}_2(s)$ and therefore $J_{h,s}(\theta_{n+1}) \geq Q_h(s, a_h^*(s)) - \frac{\Delta(s)}{2}$. ⁶⁸³ This leads to

$$
Q_h(s, a_h^*(s)) - J_{h,s}(\theta_{n+1}) \le \frac{\Delta^*(s)}{2} \le Q_h(s, a_h^*(s)) - Q_h(s, a),
$$

 684 where the last inequality is due to the definition of $\Delta^*(s)$. Combining everything leads to

$$
(1 - \exp(\theta_{n+1}(s, a_h^*(s)) - \theta_{n+1}(s, a))) [Q_h(s, a_h^*(s)) - J_{h,s}(\theta_{n+1})]
$$

$$
\leq Q_h(s, a_h^*(s)) - Q_h(s, a),
$$

685 which is by equation [\(19\)](#page-12-2) equivalent to $\theta_{n+1} \in \mathcal{R}_1(s)$.

⁶⁸⁶ Now we come to Claim [\(ii\).](#page-12-3)

$$
\pi^{\theta_{n+1}}(a_h^*(s)|s)
$$
\n
$$
= \frac{\exp(\theta_{n+1}(s, a_h^*(s)))}{\sum_{a \in \mathcal{A}} \exp(\theta_{n+1}(s, a))}
$$
\n
$$
= \frac{\exp(\theta_n(s, a_h^*(s)) + \eta_h \frac{\partial J_{h,s}(\theta_n)}{\partial \theta_n(s, a_h^*(s))})}{\sum_{a \in \mathcal{A}_s} \exp(\theta_n(s, a) + \eta_h \frac{\partial J_{h,s}(\theta_n)}{\partial \theta_n(s, a)})}
$$
\n
$$
\geq \frac{\exp(\theta_n(s, a_h^*(s))) \exp(\eta_h \frac{\partial J_{h,s}(\theta_n)}{\partial \theta_n(s, a_h^*(s))})}{\sum_{a \in \mathcal{A}_s} \exp(\theta_n(s, a)) \exp(\eta_h \frac{\partial J_{h,s}(\theta_n)}{\partial \theta_n(s, a_h^*(s))})}
$$
\n
$$
= \pi^{\theta_n}(a_h^*(s)|s),
$$

- 687 where the inequality follows by $\theta_n \in \mathcal{R}_1(s)$.
- 688 **Claim 2.** Assume $\theta \in \mathcal{N}_c(s) \cap \mathcal{R}_2(s)$ and divide again in two cases. If a) $\pi^{\theta}(a_h^*(s)|s) \ge$ 689 max $\pi^{\theta}(a|s)$, then for all $a \neq a_h^*(s)$ we have a∈A

$$
\frac{\partial J_h(\theta)}{\partial \theta(s, a_h^*(s))}
$$
\n
$$
= \mu_h(s)\pi^{\theta}(a*(s)|s)A^{\pi^{\theta}}(s, a_h^*(s))
$$
\n
$$
\geq \mu_h(s)\pi^{\theta}(a|s)A^{\pi^{\theta}}(s, a)
$$
\n
$$
= \frac{\partial J_h(\theta)}{\partial \theta(s, a)}.
$$

690 Hence, $\theta \in \mathcal{R}_1(s)$.

691 The case b) where $\pi^{\theta}(a_h^*(s)|s) < \max_{a \in \mathcal{A}_s} \pi^{\theta}(a|s)$ is not possible for $\theta \in \mathcal{N}_c(s)$. Assume there exists 692 $a \neq a_h^*(s)$ such that $\pi^\theta(a_h^*(s)|s) < \pi^\theta(a|s)$. Then

$$
\pi^\theta(a^*_h(s)|s)+\pi^\theta(a|s)>\frac{2c(s)}{c(s)+1}=\frac{\frac{2|\mathcal{A}|(H-h)R^*}{\Delta^*(s)}-2}{\frac{|\mathcal{A}|(H-h)R^*}{\Delta^*(s)}}=2-\frac{2\Delta^*(s)}{|\mathcal{A}|(H-h)R^*}\geq2-\frac{2}{|\mathcal{A}|}\geq1,
$$

693 because $\Delta^*(s)$ ≤ $(H-h)R^*$ by definition and $|\mathcal{A}| \geq 2$. This is a contradiction as π^{θ} is a probability ⁶⁹⁴ distribution and Claim 2 is proven.

695 Claim 3. By the asymptotic convergence for finite-time setting Theorem 3.5, we have that 696 $\pi^{\theta_n}(a^*(s)|s) \to 1$ for $n \to \infty$. Thus, there exists an $N_0(s) > 0$, such that $\pi^{\theta_n}(a^*(s)|s) \ge \frac{c(s)}{c(s)+1}$ 697 for all $n \ge N_0(s)$, i.e. $\theta_n \in N_c(s)$ for all $n \ge N_0(s)$.

698 Furthermore, $J_h(\theta_n) \to J_h^* = Q_h(s, a^*(s))$ for $n \to \infty$ which implies the existence of $N_1 > 0$ such 699 that $\theta_n \in \mathcal{R}_2(s)$ for all $n \geq N_1(s)$. We choose $n_0(s) = \max\{N_0(s), N_1(s)\}\$ which proves Claim 3. 700 П

701 **Theorem 3.8.** Let $h \in H$, $\mu_h(s) > 0$ for all $s \in S_h$ and consider the sequence $(\theta_n)_{n \in \mathbb{N}_0}$ generated *by* (7) *for arbitrarily initialized* $\theta_0 \in \mathbb{R}^{d_h}$. Define $c_h := \inf_{n \geq 0} \min_{s \in \mathcal{S}_h} \pi^{\theta_n}(a_h^*(s)|s) > 0$ by *r*os Lemma 3.7 and choose step size $η_h = \frac{1}{β_h}$ with $β_h = 2(H - h)R^*|A|$. Then it holds that

$$
J_h^* - J_h(\theta_n) \le \frac{4(H-h)R^*|\mathcal{A}|}{c_h^2 n},
$$

704 where $J_h^* = \sup_{\theta} J_h(\theta)$.

Proof. For any β -smooth function $f : \mathbb{R}^d \to \mathbb{R}$ the descent lemma gives (see Beck, 2017, Lemma ⁷⁰⁶ 5.7)

$$
f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} \|y - x\|^2.
$$

707 As $-f$ is also β -smooth we follow

$$
-f(y) \le -f(x) - \nabla f(x)^{T} (y - x) + \frac{\beta}{2} \|y - x\|^{2},
$$

⁷⁰⁸ which is equivalent to

$$
f(y) \ge f(x) + \nabla f(x)^{T} (y - x) - \frac{\beta}{2} \|y - x\|^{2}.
$$
 (20)

⁷⁰⁹ Now for gradient ascent updates

$$
x_{k+1} = x_k + \alpha \nabla f(x_k)
$$

⁷¹⁰ we have that

$$
f(x_{k+1}) \ge f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) - \frac{\beta}{2} ||x_{k+1} - x_k||^2
$$

= $f(x_k) + \alpha ||\nabla f(x_k)||^2 - \frac{\beta \alpha^2}{2} ||\nabla f(x_k)||^2$
= $f(x_k) + \left(\alpha - \frac{\beta \alpha^2}{2}\right) ||\nabla f(x_k)||^2$.

711 It follows for the maximum $f(x^*)$ of f that

$$
f(x^*) - f(x_{k+1}) \le f(x^*) - f(x_k) - \left(\alpha - \frac{\beta \alpha^2}{2}\right) \|\nabla f(x_k)\|^2.
$$

 712 Using this for our objective function J_h , we obtain for the gradient ascent updates

$$
\theta_{n+1} = \theta_n + \eta_h \nabla J_h(\theta_n)
$$

713 and $J_h^* = \sup_{\theta} J_h(\theta)$ that

$$
J_h^* - J_h(\theta_{n+1}) \leq J_h^* - J_h(\theta_n) - \underbrace{\left(\eta_h - \frac{\beta_h \eta_h^2}{2}\right)}_{=\frac{1}{2\beta_h} > 0, \text{ for } \eta_h = \frac{1}{\beta_h}} \underbrace{\|\nabla J_h(\theta_n)\|^2}_{\geq c_h^2 (J_h^* - J_h(\theta_n))^2}
$$

$$
\leq (J_h^* - J_h(\theta_n)) \left(1 - \frac{c_h^2}{2\beta_h} (J_h^* - J_h(\theta_n))\right).
$$

⁷¹⁴ The second inequality follows with the PL-type inequality in Lemma 3.6.

715 Define $q = \frac{c_h^2}{4(H-h)R^*|\mathcal{A}|} = \frac{c_h^2}{2\beta_h} > 0$, then

$$
J_h^* - J_h(\theta_0) \le (H - h)R^* \le \frac{1}{q}.
$$

716 We conclude using an argument similar to Nesterov (2013, Thm. 2.1.14). Therefore, define $d_n =$ 717 $J_h^* - J_h(\theta_n)$, then

$$
d_{n+1}\leq d_n-\frac{1}{q}d_n^2.
$$

⁷¹⁸ Thus,

$$
\frac{1}{d_{n+1}} \geq \frac{1}{d_n} + \frac{d_n}{qd_{n+1}} \geq \frac{1}{d_n} + \frac{1}{q},
$$

719 where the first inequality is due to dividing by $d_n d_{n+1}$ and the second inequality follows by mono-

⁷²⁰ tonicity (Lemma [B.1\)](#page-4-1). Using a telescope-sum argument we obtain

$$
\frac{1}{d_n} = d_0 + \sum_{k=0}^{n-1} \frac{1}{d_k} - \frac{1}{d_{k-1}} \ge d_0 + \frac{n}{q}.
$$

⁷²¹ Finally,

$$
J_h^* - J_h(\theta_n) = d_n \le \frac{1}{\frac{1}{q}n + d_0} \le \frac{1}{q(n+1)} \le \frac{4(H - h)R^*|\mathcal{A}|}{c_h^2 n}.
$$

722

⁷²³ C Proofs of Section 4

724 **Lemma C.1.** *Consider the tabular softmax parametrization. For any* $h \in H$ *and* $K_0 > 0$ *it holds* ⁷²⁵ *that*

$$
\mathbb{E}_{\mu_h}^{(\pi^\theta,(\tilde{\pi})(h+1))}[\widehat{\nabla} J_h^{K_h}(\theta)]=\nabla J_h(\theta)
$$

⁷²⁶ *and*

$$
\mathbb{E}_{\mu_h}^{(\pi^{\theta}, (\tilde{\pi})(h+1))}[||\widehat{\nabla} J_h^{K_h}(\theta) - \nabla J_h(\theta)||^2] \le \frac{5(H-h)^2 (R^*)^2}{K_h} =: \frac{C_h}{K}
$$

.

 \Box

Proof. By the definition of $\widehat{\nabla} J_h^K$ we have

$$
\mathbb{E}_{\mu_h}^{(\pi^{\theta}, (\tilde{\pi})(h+1))} [\hat{\nabla} J_h^{K_h}(\theta)]
$$
\n
$$
= \mathbb{E}_{\mu_h}^{(\pi^{\theta}, (\tilde{\pi})(h+1))} \Big[\frac{1}{K_h} \sum_{i=1}^{K_h} \nabla \log(\pi^{\theta}(A_t^i | S_t^i)) \hat{Q}_h(S_h^i, A_h^i) \Big]
$$
\n
$$
= \mathbb{E}_{\mu_h}^{(\pi^{\theta}, (\tilde{\pi})(h+1))} \Big[\nabla \log(\pi^{\theta}(A_h^1 | S_h^1)) \hat{Q}_h(S_h^1, A_h^1) \Big]
$$
\n
$$
= \mathbb{E}_{\mu_h}^{(\pi^{\theta}, (\tilde{\pi})(h+1))} \Big[\nabla \log(\pi^{\theta}(A_1 | S_h)) \sum_{k=h}^{H-1} r(S_k, A_k) \Big],
$$

728 where we used that we consider independent samples for $i = 1, \ldots, K_h$. From the proof of the policy ⁷²⁹ gradient Theorem 2.2, we obtain that

$$
\mathbb{E}_{\mu_h}^{(\pi^{\theta}, (\tilde{\pi})(h+1))} [\widehat{\nabla} J_h^{K_h}(\theta)]
$$
\n
$$
= \mathbb{E}_{\mu_h}^{(\pi^{\theta}, (\tilde{\pi})(h+1))} \Big[\nabla \log(\pi^{\theta}(A_1|S_h)) \sum_{k=h}^{H-1} r(S_k, A_k) \Big]
$$
\n
$$
= \nabla J_h(\theta).
$$

⁷³⁰ For the second claim we have

$$
\mathbb{E}_{\mu_h}^{(\pi^{\theta}, (\tilde{\pi})(h+1))} \Big[\| \widehat{\nabla} J_h^{K_h}(\theta) - \nabla J_h(\theta) \|^2 \Big] \n\leq \frac{1}{K_h} \mathbb{E}_{\mu_h}^{(\pi^{\theta}, (\tilde{\pi})(h+1))} \Big[\| \nabla \log (\pi^{\theta} (A_h | S_h)) \hat{Q}_h(S_h, A_h) - \nabla J_h(\theta) \|^2 \Big] \n= \frac{1}{K_h} \mathbb{E}_{\mu_h}^{(\pi^{\theta}, (\tilde{\pi})(h+1))} \Big[\sum_{s \in S_h} \sum_{a \in A_s} \left(\mathbf{1}_{s = S_h} (\mathbf{1}_{a = A_h} - \pi^{\theta}(a|s)) \sum_{k=h}^{H-1} r(S_k, A_k) \Big) \n- \mu_h(s) \pi^{\theta}(a|s) A_h^{(\pi^{\theta}, (\tilde{\pi})(h+1))}(s, a) \Big)^2 \Big],
$$

731 by the definition of $\hat{\nabla} J_h^{K_h}(\theta)$ and the derivative of $\nabla J_h(\theta)$ for the softmax parametrization. Further,

$$
\mathbb{E}_{\mu_h}^{(\pi^{\theta}, (\tilde{\pi})_{(h+1)})} \Big[\| \hat{\nabla} J_h^{K_h}(\theta) - \nabla J_h(\theta) \|^2 \Big] \n\leq \frac{1}{K_h} \mathbb{E}_{\mu_h}^{(\pi^{\theta}, (\tilde{\pi})_{(h+1)})} \Big[\sum_{a \in A_s} (\mathbf{1}_{a = A_h} - \pi^{\theta}(a|S_h))^2 \Big(\sum_{k=h}^{H-1} r(S_k, A_k) \Big)^2 \n- 2 \sum_{a \in A_s} (\mathbf{1}_{a = A_h} - \pi^{\theta}(a|S_h)) \sum_{k=h}^{H-1} r(S_k, A_k) \mu_h(s) \pi^{\theta}(a|S_h) A_h^{(\pi^{\theta}, (\tilde{\pi})_{(h+1)})}(S_h, a) \n+ \sum_{s \in S_h} \sum_{a \in A_s} \mu(s)^2 \pi^{\theta}(a|s)^2 A_h^{(\pi^{\theta}, (\tilde{\pi})_{(h+1)})}(s, a)^2 \Big].
$$

⁷³² We consider all three terms separately. For the first term we have

$$
\mathbb{E}_{\mu_h}^{(\pi^{\theta}, (\tilde{\pi})(h+1))} \Big[\sum_{a \in A_s} (\mathbf{1}_{a=A_h} - \pi^{\theta}(a|S_h))^2 \Big(\sum_{k=h}^{H-1} r(S_k, A_k) \Big)^2 \Big]
$$
\n
$$
= \mathbb{E}_{\mu_h}^{(\pi^{\theta}, (\tilde{\pi})(h+1))} \Big[\Big(\sum_{k=h}^{H-1} r(S_k, A_k) \Big)^2 \Big] - 2 \mathbb{E}_{\mu_h}^{(\pi^{\theta}, (\tilde{\pi})(h+1))} \Big[\pi^{\theta}(A_h|S_h) \Big(\sum_{k=h}^{H-1} r(S_k, A_k) \Big)^2 \Big]
$$
\n
$$
+ \mathbb{E}_{\mu_h}^{(\pi^{\theta}, (\tilde{\pi})(h+1))} \Big[\sum_{a \in A_s} \pi^{\theta}(a|S_h)^2 \Big(\sum_{k=h}^{H-1} r(S_k, A_k) \Big)^2 \Big]
$$
\n
$$
\leq ((H-h)R^*)^2 - 0 + ((H-h)R^*)^2
$$
\n
$$
= 2((H-h)R^*)^2,
$$

733 by bounded reward assumption and the fact that π^{θ} is a probability distribution. For the second term, we note that $A_h^{(\pi^{\theta}, (\tilde{\pi})_{(h+1)})}$ $\lim_{h \to 0}$ we note that $A_h^{(n)}$, $\lim_{h \to 0} (S_h, a)$ can be negative, therefore we consider the absolute value ⁷³⁵ and obtain

$$
2\mathbb{E}_{\mu_h}^{(\pi^{\theta}, (\tilde{\pi})(h+1))} \Big[\sum_{a \in A_s} (\mathbf{1}_{a = A_h} - \pi^{\theta}(a|S_h)) \sum_{k=h}^{H-1} r(S_k, A_k) \mu_h(s) \pi^{\theta}(a|S_h) |A_h^{(\pi^{\theta}, (\tilde{\pi})(h+1))}(S_h, a)| \Big]
$$

\n
$$
\leq 2\mathbb{E}_{\mu_h}^{(\pi^{\theta}, (\tilde{\pi})(h+1))} \Big[\sum_{a \in A_s} 1 \cdot (H-h) R^* \cdot 1 \cdot \pi^{\theta}(a|S_h) \cdot (H-h) R^* \Big]
$$

\n
$$
= 2((H-h)R^*)^2.
$$

⁷³⁶ For the last term we have

$$
\mathbb{E}_{\mu}^{\pi_t^{\theta}} \Big[\sum_{s \in \mathcal{S}_h} \sum_{a \in \mathcal{A}_s} \mu(s)^2 \pi_t^{\theta}(a|s)^2 A_t^{\pi_t^{\theta}}(s,a)^2 \Big] \le ((H-h)R^*)^2.
$$

⁷³⁷ In total, it holds that

$$
\mathbb{E}_{\mu_h}^{(\pi^{\theta}, (\tilde{\pi})(h+1))} \Big[\|\widehat{\nabla} J_h^{K_h}(\theta) - \nabla J_h(\theta) \|^2 \Big] \le \frac{5((H-h)R^*)^2}{K_h}
$$

738

 \Box

.

⁷³⁹ C.1 Proofs of Section 4.1

⁷⁴⁰ We state the stochastic approximation theorem in Bertsekas and Tsitsiklis (2000) to prove convergence ⁷⁴¹ of stochastic softmax policy gradient to a stationary point.

Proposition C.2 (Bertsekas and Tsitsiklis (2000), Proposition 3). Let $F : \mathbb{R}^d \to \mathbb{R}$ be an L-smooth ⁷⁴³ *function, i.e.*

$$
\|\nabla F(x) - \nabla F(y)\| \le L\|x - y\|.
$$

744 *Consider* (X_n) *a sequence generated by*

$$
X_{n+1} = X_n + \gamma_n (S_n + W_n),
$$

745 *where* (γ_n) *is deterministic positive step size,* S_n *a descent direction, and* W_n *is a random noise term.* 746 *Let* (\mathcal{F}_n) *be an increasing sequence of* σ *-fields. We assume the following:*

$$
747 \qquad (i) \ \sum_{n\geq 1} \gamma_n = \infty, \text{ and } \sum_{n\geq 1} \gamma_n^2 < \infty.
$$

748 (ii)
$$
(X_n)_{n\geq 0}
$$
 and $(W_n)_{n\geq 0}$ are (\mathcal{F}_n) -measurable.

rag (iii) There exists positive constants C_1 *and* C_2 *such that for all* $n \ge 1$ $C_1|\nabla F(X_n)|^2 \leq -\nabla F(X_n)^T S_n$ *and* $||S_n|| \leq C_2(1 + ||\nabla F(X_n)||^2)$,

750 *(iv) There exists a positive deterministic constant C such that for all* $n \geq 1$ *,* $\mathbb{E}[W_n|\mathcal{F}_n] = 0$ and $\mathbb{E}[\|W_n\|^2|\mathcal{F}_n] \leq C(1 + \|\nabla F(X_n)\|^2).$

- 751 *Then either* $F(X_n) \to \infty$ *for* $t \to \infty$ *or* $F(X_n)$ *converges to a finite function such that* 752 $\lim_{n\to\infty} \nabla F(X_n) = 0$ *almost-surely.*
- **Theorem 4.1.** *For any* $h \in \mathcal{H}$ *consider the stochastic process* $(\theta_n)_{n>0}$ *generated by*

$$
\theta_{n+1} = \theta_n + \eta_h^{(n)} \, \widehat{\nabla} J_h^{K_h}(\theta),
$$

 754 *for arbitrary batch size* $K_h \geq 1$ *and initial* θ_0 such that $\mathbb{E}[J_h(\theta_0)] < \infty$. Furthermore, suppose that $\eta_h^{(n)}$ $\eta_h^{(n)}$ is decreasing, such that $\sum_{n\geq 0} \eta_h^{(n)}=\infty$ and $\sum_{n\geq 0} \left(\eta_h^{(n)}\right)$ 755 $\eta_h^{(n)}$ is decreasing, such that $\sum_{n\geq 0}\eta_h^{(n)}=\infty$ and $\sum_{n\geq 0}\left(\eta_h^{(n)}\right)^2<\infty$. Then $\nabla J_h(\theta_n)\to 0$ almost 756 *surely for* $n \to \infty$ *.*

- ⁷⁵⁷ *Proof.* We apply Proposition [C.2](#page-17-0) as follows:
- 758 The function F is the negative objective function with respect to parameter θ , i.e.

$$
F: \mathbb{R}^{d_h} \to \mathbb{R}, \quad \theta \mapsto -J_h(\theta).
$$

⁷⁵⁹ Further, let

$$
760 \qquad \bullet \ X_n \equiv \theta_n,
$$

$$
\mathbf{F}_{n} = -\nabla F(\theta_{n}) = \nabla J_{h}(\theta_{n}),
$$

$$
{}_{762} \qquad \bullet \ W_n \equiv \widehat{\nabla} J_h^{K_h}(\theta_n) - \nabla J_h(\theta_n) \text{ and}
$$

$$
\qquad \qquad \bullet \ \gamma_n \equiv \eta_h^{(n)}.
$$

⁷⁶⁴ Then,

$$
\theta_{n+1} = \theta_n + \eta_h^{(n)} \widehat{\nabla} J_h^{K_h}(\theta_n) = X_n + \gamma_n (S_n + W_n).
$$

765 Denote by $(\mathcal{F}_n)_{n\geq 0}$ the natural filtration of the stochastic process $(\theta_n)_{n\geq 0}$. Then, X_n and W_n are 766 \mathcal{F}_n -measurable and Condition [\(iii\)](#page-17-1) is obviously satisfied using $C_1 = C_2 = 1$. By Lemma [C.1](#page-15-0) we ⁷⁶⁷ have that

$$
\mathbb{E}[\widehat{\nabla}J_h^{K_h}(\theta_n)|\mathcal{F}_n] = \nabla J_h(\theta_n)
$$

⁷⁶⁸ and

$$
\mathbb{E}[\|\widehat{\nabla}J_h^{K_h}(\theta_n)-\nabla J_h(\theta_n)\|^2|\mathcal{F}_n]\leq \frac{C_h}{K_h}.
$$

⁷⁶⁹ Thus, Condition [\(iv\)](#page-17-2) is satisfied. Given the fact that the value function is bounded by the bounded

⁷⁷⁰ reward assumption we conclude

$$
\nabla J_h(\theta_n) \to 0 \text{ for } n \to \infty.
$$

771

⁷⁷² C.2 Proofs of Section 4.2

- **173** Lemma C.3. The softmax policy $\pi^{\theta}(a|s)$ is $\sqrt{2}$ -Lipschitz with respect to $\theta \in \mathbb{R}^d$ for every s, a.
- ⁷⁷⁴ *Proof.* The derivative of the softmax function is

$$
\frac{\partial \pi^{\theta}(a|s)}{\partial \theta(s',a')} = \mathbf{1}_{s'=s} \Big[\frac{\mathbf{1}_{a'=a} \exp(\theta(s,a)) \big(\sum_{\tilde{a} \in \mathcal{A}_s} \exp(\theta(s,\tilde{a})) \big) - \exp(\theta(s,a)) \exp(\theta(s,a'))}{\big(\sum_{\tilde{a} \in \mathcal{A}_s} \exp(\theta(s,\tilde{a})) \big)^2} \Big]
$$

= $\mathbf{1}_{s'=s} \Big[\mathbf{1}_{a'=a} \pi^{\theta}(a|s) - \pi^{\theta}(a|s) \pi^{\theta}(a'|s) \Big].$

⁷⁷⁵ Therefore,

$$
\begin{aligned} \|\nabla \pi^{\theta}(a|s)\|_{2} &= \sqrt{\sum_{\tilde{a}\in\mathcal{A}_{s}} \left(\mathbf{1}_{a'=a} \pi^{\theta}(a|s) - \pi^{\theta}(a|s) \pi^{\theta}(a'|s) \right)^{2}} \\ &\leq \sqrt{\pi^{\theta}(a|s)^{2} - 2\pi^{\theta}(a|s)^{3} + \sum_{\tilde{a}\in\mathcal{A}_{s}} \pi^{\theta}(a'|s)^{2} \pi^{\theta}(a|s)^{2}} \\ &\leq \sqrt{2} .\end{aligned}
$$

776

Lemma C.4. *It holds almost surely that* $\min_{0 \le n \le \tau} \min_{s \in S_h} \pi^{\theta_n}(a^*(s)|s) \ge \frac{c_h}{2}$ is strictly positive.

- *Proof.* For every $n \leq \tau$ we obtain by the $\sqrt{2}$ -Lipschitz continuity in Lemma [C.3](#page-18-0) that $\pi^{\theta_n}(a^*(s)|s) \geq \pi^{\bar{\theta}_n}(a^*(s)|s) - |\pi^{\bar{\theta}_n}(a^*(s)|s) - \pi^{\theta_n}(a^*(s)|s)|$ $\geq \pi^{\bar{\theta}_n}(a^*(s)|s) \sqrt{2} \|\theta_t - \bar{\theta}_n\|_2$ $\frac{c_h}{\Omega}$ $\frac{2^{n}}{2} > 0,$
- ⁷⁷⁹ holds almost surely. The claim follows directly.
- **Lemma 4.2.** Suppose $\mu_h(s) > 0$ for all $s \in S_h$, the batch size $K_h^{(n)} \ge \frac{9c_h^2 C_h}{2.283 \text{ N}^2}$ $\frac{3}{32\beta_h^2 N_h^{\tfrac{3}{2}}}$ $(1 - \frac{1}{2})$ 780 **Lemma 4.2.** Suppose $\mu_h(s) > 0$ for all $s \in S_h$, the batch size $K_h^{(n)} \ge \frac{9c_h^2 C_h}{22 \pi^2 h^{\frac{3}{2}}} (1 - \frac{1}{2\sqrt{N_h}}) n^2$ is *increasing for some* $N_h \geq 1$ *and the step size* $\eta_h = \frac{1}{\beta_{h,h}}$ 781 *increasing for some* $N_h \ge 1$ and the step size $\eta_h = \frac{1}{\beta_h \sqrt{N_h}}$, for fixed $h \in H$. Then,

$$
\mathbb{E}\left[(J_h^* - J_h(\theta_n))\mathbf{1}_{\{n \leq \tau\}}\right] \leq \frac{16\sqrt{N_h}\beta_h}{3(1 - \frac{1}{2\sqrt{N_h}})c_h^2 n}.
$$

782 *Proof.* Fix $h \in \mathcal{H}$. Let $(\mathcal{F}_n)_{n\geq 0}$ be the natural filtration of $(\theta)_{n\geq 0}$. Exactly as in the proof of 783 Theorem 3.8 we deduce from the β_h -smoothness of J_h that

$$
J_h(\theta_{n+1}) \geq J_h(\theta_n) + \left(\nabla J_h(\theta_n)\right)^T (\theta_{n+1} - \theta_n) - \frac{\beta_h}{2} \|\theta_{n+1} - \theta_n\|^2, \quad \text{a.s.}
$$

⁷⁸⁴ We continue with

$$
J_h(\theta_{n+1}) \geq J_h(\theta_n) + \eta_h (\nabla J_h(\theta_n))^{T} \widehat{\nabla} J_h^{K_h}(\theta_n) - \frac{\beta_h \eta_h^{2}}{2} \|\widehat{\nabla} J_h^{K_h}(\theta_n)\|^{2}
$$

= $J_h(\theta_n) + \eta_h (\nabla J_h(\theta_n))^{T} \nabla J_h(\theta_n) + \eta_h (\nabla J_h(\theta_n))^{T} (\widehat{\nabla} J_h^{K_h}(\theta_n) - \nabla J_h(\theta_n))$
- $\frac{\beta_h \eta_h^{2}}{2} \| (\widehat{\nabla} J_h^{K_h}(\theta_n) - \nabla J_h(\theta_n)) + \nabla J_h(\theta_n) \|^{2}.$

785 We denote $\xi_n := \widehat{\nabla} J_h^{K_h}(\theta_n) - \nabla J_h(\theta_n)$ and rewrite the above inequality

$$
J_h(\theta_{n+1}) \geq J_h(\theta_n) + \eta_h \|\nabla J_h(\theta_n)\|^2 + \eta_h \langle \nabla J_h(\theta_n), \xi_n \rangle
$$

$$
- \frac{\beta_h \eta_h^2}{2} (\|\xi_n\|^2 + 2\langle \xi_n, \nabla J_h(\theta_n) \rangle + \|\nabla J_h(\theta_n)\|^2)
$$

\n
$$
= J_h(\theta_n) + \left(\eta_h - \frac{\beta_h \eta_h^2}{2}\right) \|\nabla J_h(\theta_n)\|^2 + \left(\eta_h - \beta_h \eta_h^2\right) \langle \nabla J_h(\theta_n), \xi_n \rangle - \frac{\beta_h \eta_h^2}{2} \|\xi_n\|^2.
$$

 \Box

 \Box

786 Next, we take the conditional expectation on \mathcal{F}_n . Then with Lemma [C.1,](#page-15-0) we obtain

$$
\mathbb{E}\Big[J(\theta_{n+1})|\mathcal{F}_n\Big] \ge J(\theta_n) + \left(\eta_h - \frac{\beta_h \eta_h^2}{2}\right) \|\nabla J_h(\theta_n)\|^2 + \left(\eta_h - \beta_h \eta_h^2\right) \langle \nabla J(\theta_n), \mathbb{E}\big[\xi_n|\mathcal{F}_n\big]\rangle
$$

$$
- \frac{\beta_h \eta_h^2}{2} \mathbb{E}\big[\|\xi_n\|^2|\mathcal{F}_n\big]
$$

$$
\ge J(\theta_n) + \left(\eta_h - \frac{\beta_h \eta_h^2}{2}\right) \|\nabla J(\theta_n)\|^2 - \frac{\beta_h \eta_h^2 C_h}{2K_h^{(n)}}.
$$

787 We take the expectation of this inequality on both sides under the event $\{n+1 \leq \tau\}$. Note that 788 ${n+1 \leq \tau} = {\tau \leq n}^C$ is \mathcal{F}_n -measurable and that $\mathbf{1}_{\{n+1 \leq \tau\}} \leq \mathbf{1}_{\{n \leq \tau\}}$ a.s., thus

$$
\mathbb{E}\Big[(J_h^* - J_h(\theta_{n+1}))\mathbf{1}_{\{n+1 \leq \tau\}}\Big]
$$
\n
$$
= \mathbb{E}\Big[\mathbb{E}\Big[(J_h^* - J_h(\theta_{n+1}))|\mathcal{F}_n\Big]\mathbf{1}_{\{n+1 \leq \tau\}}\Big]
$$
\n
$$
\leq \mathbb{E}\Big[\Big(J_h^* - \mathbb{E}\Big[J_h(\theta_{n+1})|\mathcal{F}_n\Big]\Big)\mathbf{1}_{\{n \leq \tau\}}\Big]
$$
\n
$$
\leq \mathbb{E}\Big[(J_h^* - J_h(\theta_n))\mathbf{1}_{\{n \leq \tau\}}\Big] - \Big(\eta_h - \frac{\beta_h \eta_h^2}{2}\Big)\mathbb{E}\Big[\|\nabla J_h(\theta_n)\|^2\mathbf{1}_{\{n \leq \tau\}}\Big] + \frac{\beta_h \eta_h^2 C_h}{2K_h^{(n)}}.
$$

789 By Lemma 3.6 we have that $\|\nabla J_h(\theta_n)\|^2 \ge \min_{s \in S} \pi^{\theta_n}(a^*(s|s))^2 (J_h^* - J_h(\theta_n))^2$ almost surely, and 790 by Lemma [C.4](#page-18-1) we have that $\min_{0 \le n \le \tau} \min_{s \in \mathcal{S}} \pi^{\theta_n}(a^*(s|s))^2 \ge \frac{c_h}{2} > 0$ almost surely. Therefore,

$$
\mathbb{E}\Big[(J_h^* - J_h(\theta_{n+1}))\mathbf{1}_{\{n+1\leq\tau\}}\Big]
$$
\n
$$
\leq \mathbb{E}\Big[(J_h^* - J_h(\theta_n))\mathbf{1}_{\{n\leq\tau\}}\Big] - \left(\eta_h - \frac{\beta_h \eta_h^2}{2}\right) \mathbb{E}\Big[\min_{s\in\mathcal{S}} \pi^{\theta_n}(a^*(s|s))^2 (J_h^* - J_h(\theta_n))^2 \mathbf{1}_{\{n\leq\tau\}}\Big]
$$
\n
$$
+ \frac{\beta_h \eta_h^2 C_h}{2K_h^{(n)}},
$$
\n
$$
\leq \mathbb{E}\Big[(J_h^* - J_h(\theta_n))\mathbf{1}_{\{n\leq\tau\}}\Big] - \left(\eta_h - \frac{\beta_h \eta_h^2}{2}\right) \frac{c_h^2}{4} \mathbb{E}\Big[(J_h^* - J_h(\theta_n))\mathbf{1}_{\{n\leq\tau\}}\Big]^2 + \frac{\beta_h \eta_h^2 C_h}{2K_h^{(n)}},
$$

⁷⁹¹ where we used Jensen's inequality in the last step.

792 For $d_n := \mathbb{E} \Big[(J_h^* - J_h(\theta_n)) \mathbf{1}_{\{n \leq \tau\}} \Big]$ we imply the recursive inequality $d_{n+1} \leq d_n - \left(\eta_h - \frac{\beta_h \eta_h^2}{2}\right)$ 2 $\binom{c_h^2}{h}$ $\frac{c_{h}^{2}}{4}d_{n}^{2}+\frac{\beta _{h}\eta _{h}^{2}C_{h}^{2}}{2K_{h}^{(n)}}$ $2K_h^{(n)}$ h .

793 Define $w := \left(\eta_h - \frac{\beta_h \eta_h^2}{2}\right) \frac{c_h^2}{4} > 0$ and $B = \frac{\beta_h \eta_h^2 C_h}{2} > 0$, then $d_{n+1} \leq d_n(1 - w d_n) + \frac{B}{\sigma_n}$ $K_h^{(n)}$ h

794 and by our choice of η_h ,

$$
K_h^{(n)} \geq \frac{9c_h^2 C_h}{32 \beta_h^2 N_h^\frac{3}{2}} (1 - \frac{1}{2\sqrt{N_h}}) n^2 = \frac{9}{4} w B n^2,
$$

⁷⁹⁵ Moreover, we have

$$
\frac{4}{3w} = \frac{16\sqrt{N_h}\beta_h}{3(1 - \frac{1}{2\sqrt{N_h}})c_h^2}.
$$

796 For $\beta_h = 2(H - h)R^*|\mathcal{A}|$, it holds that

$$
d_1 \le (H - h)R^* \le \beta_h \le \frac{4}{3w} \le \frac{4}{3w \cdot 1},
$$

because $c_h \leq 1$ and $\frac{1}{\sqrt{N}}$ $\frac{1}{N_h}(1-\frac{1}{2\sqrt{l}}$ 797 because $c_h \leq 1$ and $\frac{1}{\sqrt{N_h}}(1 - \frac{1}{2\sqrt{N_h}}) < 1$ for all $N_h \geq 1$. Suppose the induction assumption 798 $d_n \leq \frac{4}{3wn}$ holds true, then for d_{n+1} ,

$$
d_{n+1} \le d_n - w d_n^2 + \frac{B}{K_h^{(n)}}.
$$

799 The function $f(x) = x - wx^2$ is monotonically increasing in $[0, \frac{1}{2w}]$ and by induction assumption 800 $d_n \leq \frac{1}{4wn} \leq \frac{1}{2w}$. So $d_n - wd_n^2 \leq \frac{4}{3wn}$ which implies

$$
d_{n+1} \leq d_n - wd_n^2 + \frac{B}{K_h^{(n)}} \n\leq \frac{4}{3wn} - \frac{16}{9wn^2} + \frac{B}{K_n} \n\leq \frac{4}{3wn} - \frac{16}{9wn^2} + \frac{4B}{9wBn^2} \n= \frac{4}{3wn} - \frac{12}{9wn^2} \n= \frac{4}{3w} \left(\frac{1}{n} - \frac{1}{n^2}\right) \n\leq \frac{4}{3w(n+1)},
$$

⁸⁰¹ where we used that $K_h^{(n)} \geq \frac{9}{4} w B n^2$. We follow the claim

$$
d_n \le \frac{4}{3wn} = \frac{16\sqrt{N_h}\beta}{3(1 - \frac{1}{2\sqrt{N_h}})c_h^2 n}.
$$

802

803 **Lemma 4.3.** *Suppose* $\mu_h(s) > 0$ *for all* $s \in S_h$ *. Then, for any* $\delta > 0$ *, we have* $\mathbb{P}(\tau \leq n) < \delta$ *if* 804 $K_h \ge \frac{16n^3C_h}{\beta^2c_h^2\delta^2}$ and $\eta_h = \frac{1}{\sqrt{n}\beta_h}$.

805 *Proof.* By the definition of τ we have

$$
\mathbb{P}(\tau \leq n) = \mathbb{P}(\max_{0 \leq t \leq n} \|\theta_t - \bar{\theta}_t\| \geq \frac{c_h}{4}),
$$

so we first study $\|\theta_t - \bar{\theta}_t\|$. We emphasize that Ding et al. (2022, Lemma 6.3) established a similar ⁸⁰⁷ recursive inequality.

$$
\|\theta_t - \bar{\theta}_t\| = \|\theta_0 + \sum_{k=1}^{t-1} \eta_h \widehat{\nabla} J_h^{K_h}(\theta_k) - (\theta_0 + \sum_{k=1}^{l-1} \eta_h \nabla J_h(\bar{\theta}_k))\|
$$

$$
\leq \sum_{k=1}^{t-1} \eta_h \|\widehat{\nabla} J_h^{K_h}(\theta_k) \nabla J_h(\bar{\theta}_k)\|
$$

$$
\leq \eta_h \sum_{k=1}^{t-1} (\|\widehat{\nabla} J_h^{K_h}(\theta_k) - \nabla J_h(\theta_k)\| + \|\nabla J_h(\theta_k) - \nabla J_h(\bar{\theta}_k)\|).
$$

808 We define again $\xi_k = \widehat{\nabla} J_h^{K_h}(\theta_k) - \nabla J_h(\theta_k)$ and continue

$$
\|\theta_t - \bar{\theta}_t\| \leq \eta_h \sum_{k=1}^{t-1} (\|\xi_k\| + \beta_h \|\theta_k - \bar{\theta}_k\|)
$$

=
$$
\eta_h \sum_{k=1}^{t-1} \|\xi_k\| + \eta_h \beta_h \sum_{k=1}^{t-1} \|\theta_k - \bar{\theta}_k\|.
$$

⁸⁰⁹ Using this inequality sequentially leads to

$$
\|\theta_{t} - \bar{\theta}_{t}\| \leq \eta_{h} \sum_{k=1}^{t-1} \|\xi_{k}\| + \eta_{h}\beta_{h} \sum_{k=1}^{t-1} \|\theta_{k} - \bar{\theta}_{k}\|
$$

\n
$$
\leq \eta_{h} \sum_{k=1}^{t-1} \|\xi_{k}\| + \eta_{h}\beta_{h} \sum_{k=1}^{t-2} \|\theta_{k} - \bar{\theta}_{k}\| + \eta_{h}\beta_{h} \left(\eta_{h} \sum_{k=1}^{t-2} \|\xi_{k}\| + \eta_{h}\beta_{h} \sum_{k=1}^{t-2} \|\theta_{k} - \bar{\theta}_{k}\|\right)
$$

\n
$$
= \eta_{h} \sum_{k=1}^{t-1} \|\xi_{k}\| + \eta_{h}^{2}\beta_{h} \sum_{k=1}^{t-2} \|\xi_{k}\| + (1 + \eta_{h}\beta_{h})\eta_{h}\beta_{h} \sum_{k=1}^{t-2} \|\theta_{k} - \bar{\theta}_{k}\|
$$

\n
$$
= \eta_{h} \|\xi_{t-1}\| + \eta_{h}(1 + \eta_{h}\beta_{h}) \sum_{k=1}^{t-2} \|\xi_{k}\| + (1 + \eta_{h}\beta_{h})\eta_{h}\beta_{h} \sum_{k=1}^{t-2} \|\theta_{k} - \bar{\theta}_{k}\|
$$

\n
$$
\leq \sum_{k=1}^{t-1} \eta_{h}(1 + \eta_{h}\beta_{h})^{t-k-1} \|\xi_{k}\|.
$$

⁸¹⁰ Applying Markov's inequality results in

$$
\mathbb{P}(\tau \le n) = \mathbb{P}(\max_{0 \le t \le n} \|\theta_t - \bar{\theta}_t\| \ge \frac{c_h}{4})
$$

\n
$$
\le \mathbb{P}(\sum_{k=1}^{n-1} \eta_h (1 + \eta_h \beta_h)^{n-k-1} \|\xi_k\| \ge \frac{c_h}{4})
$$

\n
$$
\le \frac{4 \sum_{k=1}^{n-1} \eta_h (1 + \eta_h \beta_h)^{n-k-1} \mathbb{E}[\|\xi_k\|]}{c_h}
$$

\n
$$
\le \frac{4n\eta_h (1 + \eta_h \beta_h)^{n-1} \sqrt{\frac{C_h}{K_h}}}{c_h},
$$

811 where in the last inequality $\mathbb{E}[\|\xi_k\|] \leq \sqrt{\mathbb{E}[\|\xi_k\|^2]} \leq \sqrt{\frac{C_h}{K_h}}$ by Jensen's inequality and Lemma [C.1.](#page-15-0) 812 Now we plug in the choice of $\eta_h = \frac{1}{\sqrt{n} \beta_h}$,

$$
\mathbb{P}(\tau \le n) \le \frac{4n \frac{1}{\sqrt{n\beta_h}} (1 + \frac{1}{\sqrt{n\beta_h}} \beta_h)^{n-1} \sqrt{\frac{C_h}{K_h}}}{c_h}
$$

$$
= \frac{4\sqrt{n}(1 + \frac{1}{\sqrt{n}})^{n-1} \sqrt{C_h}}{\beta_h c_h \sqrt{K_h}}
$$

$$
\le \frac{4\sqrt{n} n \sqrt{C_h}}{\beta_h c_h \sqrt{K_h}},
$$

813 where the last step is due to $f(x) = (1 + \frac{1}{\sqrt{x}})^{x-1} \le x$ for all $x \ge 1$. We follow that $\mathbb{P}(\tau < n) < \delta$ if

$$
K_h \ge \frac{16n^3C_h}{\beta_h^2c_h^2\delta^2}.
$$

 \Box

814

⁸¹⁵ Theorem 4.4. *Suppose the stochastic policy gradient updates are generated by* (9) *for arbitrary* **ightarroof** $\theta_0 \in \mathbb{R}^{d_h}$. Suppose that $\mu_h(s) > 0$ for all $s \in S_h$ and choose for any $\delta, \epsilon > 0$,

817 (i) the number of training steps
$$
N_h \geq \left(\frac{64\beta_h}{3\delta c_h^2 \epsilon}\right)^2
$$
,

818 (ii) the step size
$$
\eta_h = \frac{1}{\beta_h \sqrt{N_h}}
$$
 and the batch size $K_h = \frac{64N_h^3 C_h}{\beta^2 c_h^2 \delta^2}$.

- 819 Then, $\mathbb{P}\big((J_h^* J_h(\theta_{N_h})) \geq \epsilon\big) \leq \delta$.
- 820 *Proof.* We separate the probability using the stopping time τ and obtain

$$
\mathbb{P}\Big((J_h^* - J_h(\theta_{N_h})) \ge \epsilon\Big) \le \mathbb{P}\Big(\{\tau \ge N_h\} \cap \{(J_h^* - J_h(\theta_{N_h})) \ge \epsilon\}\Big) \n+ \mathbb{P}\Big(\{\tau \le N_h\} \cap \{(J_h^* - J_h(\theta_{N_h})) \ge \epsilon\}\Big) \n\le \frac{\mathbb{E}\Big[(J_h^* - J_h(\theta_{N_h}))\mathbf{1}_{\{\tau \ge N_h\}}\Big]}{\epsilon} + \mathbb{P}(\tau \le N_h) \n\le \frac{1}{\epsilon} \frac{16\beta_h\sqrt{N_h}}{3(1 - \frac{1}{2\sqrt{N_h}})c_h^2 N_h} + \frac{\delta}{2} \n\le \frac{\delta}{2} + \frac{\delta}{2} \n= \delta,
$$

821 where the second inequality it due to Lemma 4.2 and Lemma 4.3. The last inequality follows by our 822 choice of N_h :

$$
\frac{16\beta_h}{3\epsilon(1 - \frac{1}{2\sqrt{N_h}})c_h^2\sqrt{N_h}} \le \frac{\delta}{2}
$$

823 for $N_h \geq \left(\frac{32\beta_h}{3\epsilon\delta c_h^2} + \frac{1}{2}\right)^2$, which is satisfied for $N_h \geq \left(\frac{64\beta_h}{3\epsilon\delta c_h^2}\right)^2$. Note further that we could use 824 Lemma 4.2 in the equation above with a constant batch size \tilde{K}_h , because

$$
\max \left\{ \frac{9c_h^2 C_h}{32\beta_h^2 N_h^{\frac{3}{2}}} (1 - \frac{1}{2\sqrt{N_h}})n^2, \frac{16N_h^3 C_h}{\beta^2 c_h^2 \frac{\delta^2}{2}} \right\} = \frac{16N_h^3 C_h}{\beta^2 c_h^2 \frac{\delta^2}{2}},
$$

for all $n \leq N_h$, as $(1 - \frac{1}{2\sqrt{2}})$ 825 for all $n \le N_h$, as $(1 - \frac{1}{2\sqrt{N_h}}) < 1$, $c_h < 1$ and $\frac{C_h}{\beta^2} < 1$.

826 **D** Proofs of Section 5

Theorem 5.1. Assume that $\mu_h(s) > 0$ for all $h \in H$, $s \in S_h$. Let $\epsilon > 0$, the step size $\eta_h = \frac{1}{\beta_h}$ and *the batch size* $N_h = \frac{4(H-h)HR^*|\mathcal{A}|}{c^2 \epsilon}$ ses the batch size $N_h = \frac{4(H-h)HR^*|A|}{c_h^2 \epsilon} \Big\|\frac{1}{\mu_h}\Big\|_{\infty}$. Denote by $\hat{\pi}^* = (\pi^{\theta_0^{N_0}}, \dots, \pi^{\theta_{H-1}^{N_{H-1}}})$ the final policy 829 *from Algorithm 1, then for all* $s \in \mathcal{S}_0$,

$$
V_0^*(s) - V_0^{\hat{\pi}^*}(s) \le \epsilon.
$$

830 *Proof.* First note that by our choice of the future policy $\tilde{\pi} = \hat{\pi}^*$ we have

$$
J_{h,s}(\theta_h^{(N_h)}) = V_h^{\hat{\pi}^*}(s).
$$
 (21)

 \Box

⁸³¹ By Theorem 3.8 we obtain

$$
J_h^* - J_h(\theta_h^{(N_h)}) \le \frac{4(H-h)R^*|\mathcal{A}|}{c_h^2 N_h}.
$$

832 For every $s \in S_h$, denote by δ_s the dirac measure on state s, then

$$
J_{h,s}^{*} - J_{h,s}(\theta_h^{(N_h)}) = \sum_{s' \in S_h} \mu_h(s') \frac{\delta_s(s')}{\mu_h(s')} J_{h,s}^{*} - J_{h,s}(\theta_h^{(N_h)})
$$

$$
\leq \left\| \frac{1}{\mu_h} \right\|_{\infty} (J_h^{*} - J_h(\theta_h^{(N_h)}))
$$

$$
\leq \frac{4(H - h)R^*|\mathcal{A}|}{c_h^2 N_h} \left\| \frac{1}{\mu_h} \right\|_{\infty},
$$
 (22)

where \parallel \lim_{μ_h} $\left\| \frac{1}{\infty} \right\|$ = max_{s∈Sh} $\frac{1}{\mu_h(s)} > 0$ by assumption. As $N_h = \frac{4(H-h)HR^*|A|}{c_h^2 \epsilon}$ $\left\lvert\frac{d}{d\epsilon}\right\rvert_{\epsilon} \leq \frac{1}{\epsilon} \left\lvert\frac{d\epsilon}{d\epsilon}\right\rvert \left\lvert\frac{d\epsilon}{d\epsilon}\right\rvert$ 833 where $\left\|\frac{1}{\mu_h}\right\|_{\infty} = \max_{s \in \mathcal{S}_h} \frac{1}{\mu_h(s)} > 0$ by assumption. As $N_h = \frac{4(H-h)HR^*|\mathcal{A}|}{c_h^2 \epsilon} \left\|\frac{1}{\mu_h}\right\|_{\infty}$, it holds that $J_{h,s}^* - J_{h,s}(\theta_h^{(N_h)}) \leq \frac{\epsilon}{H}$ H (23)

834 for every $s \in S_h$. For $h = H - 1$ it follows directly by [\(21\)](#page-22-0) and the specialty of the last time point 835 that for all $s \in S_{H-1}$,

$$
V_{H-1}^{*}(s) - V_{H-1}^{\hat{\pi}^{*}}(s) = J_{H-1,s}^{*} - J_{h,s}(\theta_h^{(N_h)}) \le \frac{\epsilon}{H}.
$$

836 Assume now that for all $s \in S_h$,

$$
V_h^*(s) - V_h^{\hat{\pi}^*}(s) \le \frac{\epsilon(H - h)}{H}.
$$
 (24)

837 Then it holds for all $s \in S_{h-1}$ that,

$$
J_{h-1,s}^{*} = \max_{a \in A_s} \left(r(s, a) + \sum_{s' \in S_h} p(s'|s, a) V_h^{*}(s) - \sum_{s' \in S_h} p(s'|s, a) (V_h^{*}(s) - V_h^{\hat{\pi}^{*}}(s)) \right)
$$

\n
$$
\geq \max_{a \in A_s} \left(r(s, a) + \sum_{s' \in S_h} p(s'|s, a) V_h^{*}(s) \right) - \frac{\epsilon(H - h)}{H}
$$

\n
$$
= V_{h-1}^{*}(s) - \frac{\epsilon(H - h)}{H},
$$
\n(25)

⁸³⁸ by the Bellman expectation equation for finite-time MDPs (Puterman (2005)). We close the backward 839 induction using [\(21\)](#page-22-0) such that for all $s \in S_{h-1}$,

$$
V_{h-1}^{*}(s) - V_{h-1}^{\hat{\pi}^{*}}(s) = V_{h-1}^{*}(s) - J_{h-1,s}^{*} + J_{h-1,s}^{*} - V_{h-1}^{\hat{\pi}^{*}}(s)
$$

$$
\leq \frac{\epsilon(H-h)}{H} + \frac{\epsilon}{H}
$$

$$
= \frac{\epsilon(H-(h-1))}{H}.
$$
 (26)

840 Finally, it holds for $h = 0$ and all $s \in S_0$ that

$$
V_0^*(s) - V_0^{\hat{\pi}^*}(s) \le \epsilon.
$$

841

Theorem 5.2. Assume that $\mu_h(s) > 0$ for all $h \in \mathcal{H}$, $s \in \mathcal{S}_h$. Let $\delta, \epsilon > 0$, the step size $\eta_h = \frac{1}{\beta_h N_h}$, 843 *number of training steps* $N_h = \left(\frac{64\beta_h H^2 \left\| \frac{1}{\mu_h} \right\|_\infty}{3\delta c_h^2 \epsilon} \right)^2$ and the batch size $K_h = \frac{64N_h^2 H^2 C_h}{\beta_h c_h^2 \delta^2}$. Denote by $\hat{\pi}^* = (\pi^{\theta_0^{N_0}}, \dots, \pi^{\theta_{H-1}^{N_{H-1}}})$ *the final policy from Algorithm 2, then*

$$
\mathbb{P}\Big(\exists s\in\mathcal{S}_0:V_0^*(s)-V_0^{\hat{\pi}^*}(s)\geq\epsilon\Big)\leq\delta.
$$

845 *Proof.* As in the exact gradient case [\(21\)](#page-22-0) we have by our choice of the future policy $\tilde{\pi} = \hat{\pi}^*$ that

$$
J_{h,s}(\theta_h^{(N_h)}) = V_h^{\hat{\pi}^*}(s).
$$
 (27)

 \Box

⁸⁴⁶ By Theorem 4.4 we have that

$$
\mathbb{P}\Big(J_h^*-J_h(\theta_h^{(N_h)})\geq \frac{\epsilon}{H\Big\|\frac{1}{\mu_h}\Big\|_{\infty}}\Big)\leq \frac{\delta}{H},
$$

- 847 by our choice of N_h , η_h and K_h .
- 848 For every $s \in S_h$, denote by δ_s the dirac measure on state s, then as in [\(22\)](#page-22-1)

$$
J_{h,s}^* - J_{h,s}(\theta_h^{(N_h)}) \le \left\| \frac{1}{\mu_h} \right\|_{\infty} (J_h^* - J_h(\theta_h^{(N_h)}))
$$
 a.s.

849 Thus, for all $h \in \mathcal{H}$ it holds that

$$
\mathbb{P}\Big(\exists s\in\mathcal{S}_h: J^*_{h,s}-J_{h,s}(\theta_h^{(N_h)})\geq\frac{\epsilon}{H}\Big)\leq \mathbb{P}\Big(J^*_h-J_h(\theta_h^{(N_h)})\geq\frac{\epsilon}{H\Big\|\frac{1}{\mu_h}\Big\|_{\infty}}\Big)\leq\frac{\delta}{H}.\tag{28}
$$

850 Define the event $A_h := \{J_{h,s}^* - J_{h,s}(\theta_h^{(N_h)}) < \frac{\epsilon}{H}, \forall s \in \mathcal{S}_h\}$. Then [\(29\)](#page-24-0) is equivalent to $\mathbb{P}(A_h^C) \leq \frac{\delta}{H}$. 851 For $h = H - 1$ it follows directly with [\(27\)](#page-23-0) and the special property of the last time point that

$$
\mathbb{P}\Big(\exists s\in\mathcal{S}_h:V^*_{H-1}(s)-V^{\hat{\pi}^*}_{H-1}(s)\geq\frac{\epsilon}{H}\Big)=\mathbb{P}\Big(\exists s\in\mathcal{S}_h:J^*_{H-1,s}-J_{H-1,s}(\theta_h^{(N_h)})\geq\frac{\epsilon}{H}\Big)\leq\frac{\delta}{H}.
$$

852 We close the proof by induction. Assume for some $0 < h < H$ that

$$
\mathbb{P}\Big(\exists s\in\mathcal{S}_h:V_h^*(s)-V_h^{\hat{\pi}^*}(s)\geq\frac{\epsilon(H-h)}{H}\Big)\leq\frac{\delta(H-h)}{H}.\tag{29}
$$

Define $B_h := \{V_h^*(s) - V_h^{\hat{\pi}^*}(s) < \frac{\epsilon(H-h)}{H}\}$ 853 Define $B_h := \{V_h^*(s) - V_h^{\hat{\pi}^*}(s) < \frac{\epsilon(H-h)}{H}, \forall s \in S_h\}$. Similar to [\(25\)](#page-23-1), on the event B_h it holds that

$$
J_{h-1,s}^{*} = \max_{a \in A_s} \Big(r(s, a) + \sum_{s' \in S_h} p(s'|s, a) V_h^{*}(s) - \sum_{s' \in S_h} p(s'|s, a) (V_h^{*}(s) - V_h^{\hat{\pi}^{*}}(s)) \Big)
$$

>
$$
\max_{a \in A_s} \Big(r(s, a) + \sum_{s' \in S_h} p(s'|s, a) V_h^{*}(s) \Big) - \frac{\epsilon(H - h)}{H}
$$

=
$$
V_{h-1}^{*}(s) - \frac{\epsilon(H - h)}{H}.
$$

854 We obtain on the event $A_{h-1} \cap B_h$ that (compare to [\(26\)](#page-23-2))

$$
V_{h-1}^*(s) - V_{h-1}^{\hat{\pi}^*}(s) = V_{h-1}^*(s) - J_{h-1,s}^* + J_{h-1,s}^* - V_{h-1}^{\hat{\pi}^*}(s)
$$

$$
< \frac{\epsilon(H-h)}{H} + \frac{\epsilon}{H}
$$

$$
= \frac{\epsilon(H - (h-1))}{H},
$$

855 for every $s \in S_{h-1}$. Hence, $A_{h-1} \cap B_h \subseteq B_{h-1}$. Finally, we close the induction by

$$
\mathbb{P}\left(\exists s \in \mathcal{S}_{h-1} : V_{h-1}^*(s) - V_{h-1}^{\hat{\pi}^*}(s) \ge \frac{\epsilon(H - (h-1))}{H}\right)
$$
\n
$$
= 1 - \mathbb{P}(B_{h-1}) \le 1 - \mathbb{P}(A_{h-1} \cap B_h) = \mathbb{P}(A_{h-1}^C \cup B_h^C) \le \mathbb{P}(A_{h-1}^C) + \mathbb{P}(B_h^C)
$$
\n
$$
= \mathbb{P}\left(\exists s \in \mathcal{S}_{h-1} : J_{h-1,s}^* - J_{h-1,s}(\theta_{h-1}^{(N_{h-1})}) \ge \frac{\epsilon}{H}\right)
$$
\n
$$
+ \mathbb{P}\left(\exists s \in \mathcal{S}_h : V_h^*(s) - V_h^{\hat{\pi}^*}(s) \ge \frac{\epsilon(H - h)}{H}\right)
$$
\n
$$
\le \frac{\delta}{H} + \frac{\delta(H - h)}{H}
$$
\n
$$
= \frac{\delta(H - (h - 1))}{H}.
$$

856 For $h = 0$ we have shown the claim

$$
\mathbb{P}\Big(\exists s\in\mathcal{S}_0:V_0^*(s)-V_0^{\hat{\pi}^*}(s)\geq\epsilon\Big)\leq\delta.
$$

 \Box

858 E Proofs of Section 6

857

- 859 We denote by $GEM(p)$ the geometric distribution with parameter $p \in (0, 1]$.
- 860 Algorithm [3](#page-24-1) states the construction of an approximate gradient $\hat{\nabla} J^K(\theta) \approx \nabla J(\theta)$. Note that for batch
- set size $K = 1$, $\hat{\nabla}J^1(\theta)$ is the estimator $\hat{\nabla}J(\theta)$ proposed in (Zhang et al., 2020, Eq. (3.6)). Furthermore,

⁸⁶² it is important to highlight that the tabular softmax parametrization meets the assumptions made by ⁸⁶³ (Zhang et al., 2020, Ass. 3.1):

Algorithm 3: Estimate unbiased gradient for $\nabla J(\theta)$

Data: Let $\theta \in \Theta$. **Result:** Approximate gradient $\widehat{\nabla} J^K(\theta)$ for $i = 1, \ldots, K$ do Sample $T \sim$ GEOM(1 – γ) Sample trajectory $(s_0^i, a_0^i, \ldots, s_T^i, a_T^i)$, s.t. $s_0 \sim \mu$, $a_t^i \sim \pi^{\theta}(\cdot | s_t^i)$, $s_{t+1}^i \sim p(\cdot | s_t^i, a_t^i)$ Sample $T' \sim$ GEOM $(1 - \gamma^{\frac{1}{2}})$ Set $\tilde{s}_0^i = s_T^i$, $\tilde{a}_0^i = a_T^i$
Sample trajectory $(\tilde{s}_1^i, \tilde{a}_1^i, \dots, \tilde{s}_{T'}^i, \tilde{a}_{T'}^i)$, s.t. $\tilde{s}_t^i \sim p(\cdot | \tilde{s}_{t-1}^i, \tilde{a}_{t-1}^i)$, $\tilde{a}_t^i \sim \pi^{\theta}(\cdot | \tilde{s}_t^i)$ Set $\hat{Q}(s^i_T,a^i_T) := \sum^{T'}_{t' \texttt{I}}$ $T'_{t'=0} \gamma^{\frac{t'}{2}} R(\tilde{s}_{t'}^i, \tilde{a}_{t'}^i).$ end Set $\widehat{\nabla} J^K(\theta) = \frac{1}{K} \sum_{i=1}^K \hat{Q}(s_T^i, a_T^i) \nabla \log(\pi^\theta(a_T^i|s_T^i)).$

• We assume that the rewards are bounded in $[0, R^*]$.

 \bullet The softmax parametrization is differentable with respect to θ, and ∇ log($\pi^{\theta}(a|s)$) exists.

866 Moreover, by Lemma 3.4 we have that the gradient of $log(\pi^{\theta}(a|s))$ is Lipschitz and that 867 $\|\nabla \log(\pi^{\theta}(a|s))\|_2 \leq \sqrt{|\mathcal{A}|}.$

Lemma E.1. *The estimator* $\widehat{\nabla} J^K(\theta)$ *from algorithm* [3](#page-24-1) *is an unbiased estimator of* $\nabla J(\theta)$ *. Moreover,* ⁸⁶⁹ *there exists* C > 0 *such that*

$$
\mathbb{E}[\|\widehat{\nabla}J^K(\theta) - \nabla J(\theta)\|_2^2] \leq \frac{C}{K}.
$$

870 *Proof.* By (Zhang et al., 2020, Theorem 4.3) we have that for $\theta \in \Theta$ deterministic

$$
\mathbb{E}[\widehat{\nabla}J^1(\theta)] = \nabla J(\theta)
$$

⁸⁷¹ and

$$
\|\nabla J(\theta)\|_2\leq \frac{R^*B_\Theta}{(1-\gamma)^2},\quad \|\widehat{\nabla} J^1(\theta)\|_2\leq \frac{R^*B_\Theta}{(1-\gamma)(1-\gamma^{\frac{1}{2}})}\text{ a.s.},
$$

872 where B_Θ such that $\|\log(\pi^\theta(a|s))\|_2 \leq B_\Theta$. From the proof of Lemma 3.4 we have that $B_\Theta = \sqrt{|\mathcal{A}|}$.

⁸⁷³ We deduce from Algorithm [3,](#page-24-1) that

$$
E[\widehat{\nabla}J^K(\theta)] = \frac{1}{K}\sum_{i=1}^K \mathbb{E}[\widehat{\nabla}J^1(\theta)] = \nabla J(\theta).
$$

⁸⁷⁴ For the variance we have

$$
\mathbb{E}[\|\widehat{\nabla}J^K(\theta) - \nabla J(\theta)\|_2^2] \leq \frac{1}{K} \mathbb{E}[\|\widehat{\nabla}J^1(\theta) - \nabla J(\theta)\|_2^2] \n\leq \frac{1}{K} \Big(\mathbb{E}[\|\widehat{\nabla}J^1(\theta)\|_2^2] + 2\mathbb{E}[\|\widehat{\nabla}J^1(\theta)\|_2] \|\nabla J(\theta)\|_2 + \|\nabla J(\theta)\|_2^2 \Big) \n\leq \frac{1}{K} \Big(\frac{(R^*)^2 |\mathcal{A}|}{(1-\gamma)^2 (1-\gamma^{\frac{1}{2}})^2} + 2 \frac{R^* \sqrt{|\mathcal{A}|}}{(1-\gamma)(1-\gamma^{\frac{1}{2}})} \frac{R^* \sqrt{|\mathcal{A}|}}{(1-\gamma)^2} + \frac{(R^*)^2 |\mathcal{A}|}{(1-\gamma)^4} \Big) \n= \frac{(R^*)^2 |\mathcal{A}|}{K} \Big(\frac{1}{(1-\gamma)^2 (1-\gamma^{\frac{1}{2}})^2} + \frac{2}{(1-\gamma)^3 (1-\gamma^{\frac{1}{2}})} + \frac{1}{(1-\gamma)^4} \Big).
$$

875 Define
$$
C = (R^*)^2 |\mathcal{A}| \left(\frac{1}{(1-\gamma)^2 (1-\gamma^{\frac{1}{2}})^2} + \frac{2}{(1-\gamma)^3 (1-\gamma^{\frac{1}{2}})} + \frac{1}{(1-\gamma)^4} \right)
$$
 proves the claim.

⁸⁷⁶ Using this estimator we can formulate the REINFORCE algorithm as presented in Williams (1992) ⁸⁷⁷ in Algorithm [4.](#page-25-0)

Algorithm 4: REINFORCE for discounted MDPs

Result: Approximate policy $\hat{\pi}^* \approx \pi^*$ Initialize $\theta_0 \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$ Choose step size η , number of training steps N and batch size K for $n=0,\ldots,N-1$ do Sample $\widehat{\nabla} J^K(\theta_n)$ as in Algorithm [3](#page-24-1) Set $\theta_{n+1} = \theta_n + \eta \widehat{\nabla} J^K(\theta_n)$ end Set $\hat{\pi} = \pi^{\theta_N}$.

Lemma E.2.

 $\biggl\| \biggr.$

$$
\Big\|\frac{\partial V^\pi(\mu)}{\partial \theta}\Big\|_2 \ge \Big\|\frac{d^{\pi^\ast}_{\mu}}{\mu}\Big\|_\infty^{-1} \frac{\min_{s \in \mathcal{S}} \pi^\theta(a^\ast(s)|s)}{1-\gamma} (V^\ast(\mu) - V^{\pi^\theta}(\mu)).
$$

⁸⁷⁸ *Proof.* We rewrite the norm of the gradient as follows

$$
\left\|\frac{\partial V^{\pi}(\mu)}{\partial \theta}\right\|_{2} = \left\|\sum_{s \in \mathcal{S}} \mu(s) \frac{\partial V^{\pi}(s)}{\partial \theta}\right\|_{2}
$$

$$
= \left(\sum_{s' \in \mathcal{S}} \sum_{a' \in \mathcal{A}} \left(\sum_{s \in \mathcal{S}} \mu(s) \frac{\partial V^{\pi}(s)}{\partial \theta(s', a')}\right)^{2}\right)^{\frac{1}{2}}
$$

$$
= \left(\sum_{a' \in \mathcal{A}} \left(\sum_{s \in \mathcal{S}} \mu(s) \frac{\partial V^{\pi}(s)}{\partial \theta(s, a')}\right)^{2}\right)^{\frac{1}{2}}
$$

⁸⁷⁹ Note that we can interchange the derivative and the sum without further arguments because the state 880 space S is assumed to be finite. We continue as in the proof of (Mei et al., 2020, Lemma 8),

$$
\frac{\partial V^{\pi}(\mu)}{\partial \theta}\Big|_{2} \geq \Big| \sum_{s \in S} \mu(s) \frac{\partial V^{\pi}(s)}{\partial \theta(s, a^{*}(s))} \Big|
$$
\n
$$
= \Big| \frac{\partial V^{\pi}(\mu)}{\partial \theta(\cdot, a^{*}(\cdot))} \Big|
$$
\n
$$
= \frac{1}{1 - \gamma} \sum_{s \in S} |d^{\pi^{\theta}}_{\mu}(s)\pi^{\theta}(a^{*}(s)|s)A^{\pi^{\theta}}(s, a^{*}(s))|
$$
\n
$$
= \frac{1}{1 - \gamma} \sum_{s \in S} d^{\pi^{\theta}}_{\mu}(s)\pi^{\theta}(a^{*}(s)|s)|A^{\pi^{\theta}}(s, a^{*}(s))|
$$
\n
$$
\geq \frac{1}{1 - \gamma} \Big| \frac{d^{\pi^*}_{\mu}}{d^{\pi^{\theta}}_{\mu}} \Big| \Big|_{\infty}^{-1} \min_{s \in S} \pi^{\theta}(a^{*}(s)|s) \sum_{s \in S} d^{\pi^*}_{\mu}(s)A^{\pi^{\theta}}(s, a^{*}(s))|
$$
\n
$$
= \Big| \frac{d^{\pi^*}_{\mu}}{d^{\pi^{\theta}}_{\mu}} \Big| \Big|_{\infty}^{-1} \min_{s \in S} \pi^{\theta}(a^{*}(s)|s) (V^{*}(\mu) - V^{\pi^{\theta}}(\mu)).
$$

881 Furthermore, we can bound the distribution mismatch coefficient uniformly for all θ , θ

$$
d_{\mu}^{\pi^{\theta}}(s) \ge (1 - \gamma)\mu(s),
$$

882 by Mei et al. (2020, Thm. 4), such that $\left\|\frac{d_{\mu}^{\pi^*}}{d_{\mu}^{\pi^{\theta}}}\right\|_{\infty}^{-1} \le (1 - \gamma)^{-1} \left\|\frac{d_{\mu}^{\pi^*}}{\mu}\right\|_{\infty}^{-1}.$

883 Recall the definitions of $(\theta_n)_{n\geq 0}$ and $(\bar{\theta}_n)_{n\geq 0}$ from (11). We denote by \mathcal{F}_n the natural filtration of 884 the process $(\theta_n)_{n\geq 0}$. With respect to this filtration we define the stopping time

$$
\tau = \min\{n \ge 0 : \|\theta_n - \bar{\theta}_n\| \ge \frac{c}{4}\},\tag{30}
$$

- 885 where $c = \min_{n \geq 0} \min_{s \in \mathcal{S}} \pi^{\bar{\theta}_n}(a^*(s)|s) > 0$ by (Mei et al., 2020, Lemma 9) and $a^*(s)$ the optimal 886 action of the deterministic optimal policy π^* .
- 887 **Lemma E.3.** *It holds almost surely that* $\min_{0 \le n \le \tau} \min_{s \in S} \pi^{\theta_n}(a^*(s)|s) \ge \frac{c}{2}$ is strictly positive.
- ⁸⁸⁸ *Proof.* Due to the Lipschitz continuity of the softmax function the proof is line-by-line as in ⁸⁸⁹ Lemma [C.4.](#page-18-1)

Lemma E.4. *Suppose* $\mu(s) > 0$ *for all* $s \in S$ *, batch size* $K_n \geq \frac{9(1-\gamma)^4 c^2 C}{2.000 \times 10^{35}}$ $\frac{1-\gamma)^4c^2C}{2048N^{\frac{3}{2}}} (1-\frac{1}{2\sqrt{2}})$ $\frac{1}{2\sqrt{N}}$ $\frac{d_\mu^{\pi^*}}{\mu}\bigg\|$ −2 $\frac{1}{\infty}n^2$ 890 *for some* $N \geq 1$ *and the step size* $\eta = \frac{(1-\gamma)^3}{8\sqrt{N}}$ 891 *for some* $N \ge 1$ and the step size $\eta = \frac{(1-\gamma)^2}{8\sqrt{N}}$, then

$$
\mathbb{E}\Big[(J^*-J(\theta_n))\mathbf{1}_{\{n\leq\tau\}}\Big]\leq\frac{128\sqrt{N}}{3(1-\frac{1}{2\sqrt{N}})(1-\gamma)c^2n}\Big\|\frac{d^{\pi^*}_{\mu}}{\mu}\Big\|_{\infty}^2.
$$

Proof. We slightly modify the proof of Lemma 4.2 for finite-time MDPs. First, we deduce from the 893 β -smoothness of J, with $\beta = \frac{8}{(1-\gamma)^3}$ (Mei et al. (2020), Agarwal et al. (2021)) that

$$
J(\theta_{n+1}) \geq J(\theta_n) + \left(\eta - \frac{\beta \eta^2}{2}\right) \|\nabla J(\theta_n)\|^2 + \left(\eta - \beta \eta^2\right) \langle \nabla J(\theta_n), \xi_n \rangle - \frac{\beta \eta^2}{2} \|\xi_n\|^2,
$$

where $\xi_n := \widehat{\nabla} J^K(\theta_n) - \nabla J(\theta_n)$. Next we take the conditional expectation on \mathcal{F}_n . Then by ⁸⁹⁵ Lemma [E.1](#page-25-1) we obtain

$$
\mathbb{E}\Big[J(\theta_{n+1})|\mathcal{F}_n\Big] \geq J(\theta_n) + \left(\eta - \frac{\beta\eta^2}{2}\right) \|\nabla J(\theta_n)\|^2 - \frac{\beta\eta^2 C}{2K_n}.
$$

896 Subtracting this equation form J^* and taking the expectation under the event ${n+1 \leq \tau}$ results in:

$$
\mathbb{E}\left[\left(J^* - J(\theta_{n+1})\right) \mathbf{1}_{\{n+1 \leq \tau\}}\right] \n\leq \mathbb{E}\left[\left(J^* - J(\theta_n)\right) \mathbf{1}_{\{n \leq \tau\}}\right] - \left(\eta - \frac{\beta \eta^2}{2}\right) \mathbb{E}\left[\|\nabla J(\theta_n)\|^2 \mathbf{1}_{\{n \leq \tau\}}\right] + \frac{\beta \eta^2 C}{2K_n}
$$

897 With the PL-type inequality Lemma [E.2](#page-26-0) and $\min_{0 \le n \le \tau} \min_{s \in S} \pi^{\theta_n}(a^*(s)|s) \ge \frac{\epsilon}{2}$ by Lemma [E.3](#page-27-0) ⁸⁹⁸ we have

$$
\mathbb{E}\left[\left(J^* - J(\theta_{n+1})\right) \mathbf{1}_{\{n+1 \leq \tau\}}\right]
$$
\n
$$
\leq \mathbb{E}\left[\left(J^* - J(\theta_n)\right) \mathbf{1}_{\{n \leq \tau\}}\right] - \left(\eta - \frac{\beta \eta^2}{2}\right) \frac{c^2}{4(1-\gamma)^2} \left\|\frac{d_{\mu}^{\pi^*}}{\mu}\right\|_{\infty}^{-2} \mathbb{E}\left[\left(J^* - J(\theta_n)\right) \mathbf{1}_{\{n \leq \tau\}}\right]^2 + \frac{\beta \eta^2 C}{2K_n}.
$$

899 For $d_n := \mathbb{E} \left[(J^* - J(\theta_n)) \mathbf{1}_{\{n \leq \tau\}} \right]$ we obtain the recursive inequality

$$
d_{n+1} \leq d_n - \left(\eta - \frac{\beta \eta^2}{2}\right) \frac{c^2}{4(1-\gamma)^2} \left\| \frac{d_{\mu}^{\pi^*}}{\mu} \right\|_{\infty}^{-2} d_n^2 + \frac{\beta \eta^2 C}{2K_n}.
$$

We define $w := \left(\eta - \frac{\beta \eta^2}{2}\right) \frac{c^2}{4(1 - \frac{\beta \eta^2}{2})^2}$ $\frac{c^2}{4(1-\gamma)^2}$ $\frac{d_\mu^{\pi^*}}{\mu}\bigg\|$ −2 900 We define $w := \left(\eta - \frac{\beta \eta^2}{2}\right) \frac{c^2}{4(1-\gamma)^2} \left\|\frac{d_\mu^\pi}{\mu}\right\|_\infty^{-2}$ and $B = \frac{\beta \eta^2 C}{2} > 0$ such that $d_{n+1} \leq d_n(1 - wd_n) + \frac{B}{K_n}.$

901 Note that $w > 0$ by the assumption $\mu(s) > 0$ for all $s \in S$. Then by our choice of K_n and η it holds ⁹⁰² that

$$
K_n \ge \frac{9(1-\gamma)^4 c^2 C}{2048N^{\frac{3}{2}}} (1 - \frac{1}{2\sqrt{N}}) \left\| \frac{d_{\mu}^{\pi^*}}{\mu} \right\|_{\infty}^{-2} n^2
$$

=
$$
\frac{9c^2 C}{32(1-\gamma)^2 \beta^2 N^{\frac{3}{2}}} (1 - \frac{1}{2\sqrt{N}}) \left\| \frac{d_{\mu}^{\pi^*}}{\mu} \right\|_{\infty}^{-2} n^2 = \frac{9}{4} w B n^2.
$$

⁹⁰³ Furthermore, we have

$$
\frac{4}{3w} = \frac{16\sqrt{N}\beta(1-\gamma)^2}{3(1-\frac{1}{2\sqrt{N}})c^2} \Big\|\frac{d_{\mu}^{\pi^*}}{\mu}\Big\|_{\infty}^2.
$$

904 We obtain for $\beta = \frac{8}{(1-\gamma)^3}$ that

$$
d_1 \le \frac{1}{(1 - \gamma)} \le \beta (1 - \gamma)^2 \le \frac{4}{3w} \le \frac{4}{3w \cdot 1},
$$

because $c \leq 1$, \parallel $\frac{d_\mu^{\pi^*}}{\mu}\bigg\|$ 2 $\frac{1}{\infty} \geq 1$ and $\frac{1}{\sqrt{i}}$ $\frac{1}{N}(1-\frac{1}{2\sqrt{N}})$ 905 because $c \leq 1$, $\left\| \frac{a_{\mu}}{\mu} \right\|_{\infty} \geq 1$ and $\frac{1}{\sqrt{N}}(1 - \frac{1}{2\sqrt{N}}) < 1$ for all $N \geq 1$.

906 Suppose the induction assumption $d_n \leq \frac{4}{3wn}$ holds true. The induction conclusion follows exactly as ⁹⁰⁷ in the proof of Lemma 4.2: First, recall the recursive inequality

$$
d_{n+1} \le d_n - w d_n^2 + \frac{B}{K_n}.
$$

908 The function $f(x) = x - wx^2$ is monotonically increasing in $[0, \frac{1}{2w}]$, and by induction assumption 909 $d_n \leq \frac{1}{4wn} \leq \frac{1}{2w}$. Thus,

$$
d_{n+1} \leq d_n - wd_n^2 + \frac{B}{K_n}
$$

\n
$$
\leq \frac{4}{3wn} - \frac{16}{9wn^2} + \frac{B}{K_n}
$$

\n
$$
\leq \frac{4}{3wn} - \frac{16}{9wn^2} + \frac{4B}{9wBn^2}
$$

\n
$$
= \frac{4}{3wn} - \frac{12}{9wn^2}
$$

\n
$$
= \frac{4}{3w} \left(\frac{1}{n} - \frac{1}{n^2}\right)
$$

\n
$$
\leq \frac{4}{3wn},
$$

910 by the choice of $K_n \geq \frac{9}{4}wBn^2$. We deduce the claim

$$
d_n \le \frac{4}{3wn} = \frac{16\sqrt{N}\beta(1-\gamma)^2}{3(1-\frac{1}{2\sqrt{N}})c^2n} \left\|\frac{d_{\mu}^{\pi^*}}{\mu}\right\|_{\infty}^2 = \frac{128\sqrt{N}}{3(1-\frac{1}{2\sqrt{N}})(1-\gamma)c^2n} \left\|\frac{d_{\mu}^{\pi^*}}{\mu}\right\|_{\infty}^2.
$$

 \Box

911

Lemma E.5. Suppose $\mu(s) > 0$ for all $s \in S$. For any $N \ge 1$, if $\eta_h = \frac{(1-\gamma)^3}{\sqrt{Ns}}$ and $K \ge \frac{N^3 C(1-\gamma)^6}{c^2 \delta^2}$ 912 **Lemma E.5.** Suppose $\mu(s) > 0$ for all $s \in S$. For any $N \ge 1$, if $\eta_h = \frac{(1-\gamma)^2}{\sqrt{N}8}$ and $K \ge \frac{N^2 C (1-\gamma)^2}{c^2 \delta^2}$, 913 *then* $\mathbb{P}(\tau \leq N) \leq \delta$.

⁹¹⁴ *Proof.* The proof follows line by line from the proof of Lemma 4.3 for the finite-time MDP. \Box

915 **Theorem 6.1.** Let $(\bar{\theta}_n)_{n\geq 0}$ and $(\theta_n)_{n\geq 0}$ be the (stochastic) policy gradient updates from (11) for **a**₁₆ *arbitrary initial* $\bar{\theta}_0 = \theta_0 \in \Theta$ *. Suppose* $\mu(s) > 0$ *for all* $s \in S$ *and choose for any* $\delta, \epsilon > 0$ *,*

917 (i) the number of training steps
$$
N \ge \left(\frac{258}{3\epsilon\delta c^2(1-\gamma)^3}\right)^2
$$
,

918 (ii) step size
$$
\eta = \frac{(1-\gamma)^3}{8\sqrt{N}}
$$

919 *(iii) batch size*
$$
K = \max \left\{ \frac{9(1-\gamma)^4 c^2 C}{2048} (\sqrt{N} - \frac{1}{2}) \left\| \frac{d_{\mu}^{\pi^*}}{\mu} \right\|_{\infty}^{-2}, \frac{4(1-\gamma)^6 N^3 C}{c^2 \delta^2} \right\}.
$$

920 Then,
$$
\mathbb{P}((J^*-J(\theta_N))\geq \epsilon) \leq \delta
$$
, where $J^* = \sup_{\theta} J(\theta)$.

921 *Proof.* We separate the probability using the stopping time τ and obtain

$$
\mathbb{P}\Big((J^* - J(\theta_N)) \ge \epsilon\Big) \le \mathbb{P}\Big(\{\tau \ge N\} \cap \{(J^* - J(\theta_N)) \ge \epsilon\}\Big) \n+ \mathbb{P}\Big(\{\tau \le N\} \cap \{(J^* - J(\theta_N)) \ge \epsilon\}\Big) \n\le \frac{\mathbb{E}\Big[(J^* - J(\theta_N))\mathbf{1}_{\{\tau \ge N\}}\Big]}{\epsilon} + \mathbb{P}(\tau \le N) \n\le \frac{1}{\epsilon} \frac{128\sqrt{N}}{3(1-\gamma)(1-\frac{1}{2\sqrt{N}})c^2N} \Big\|\frac{d\pi^*}{\mu}\Big\|_{\infty}^2 + \frac{\delta}{2} \n\le \frac{\delta}{2} + \frac{\delta}{2} \n= \delta,
$$

922 where the second inequality holds due to Lemma [E.4](#page-27-1) and Lemma [E.5.](#page-28-0) The last inequality follows by our choice of N : our choice of N :

$$
\frac{128}{3\epsilon(1-\gamma)(1-\frac{1}{2\sqrt{N}})c^2\sqrt{N}} \left\|\frac{d^{\pi^*}_{\mu}}{\mu}\right\|_{\infty}^2 \le \frac{\delta}{2}
$$

if and only if $N \geq \left(\frac{256}{3\epsilon\delta c^2(1-\gamma)}\right)$ $\begin{array}{c} d_\mu^{\pi^*} \\ \mu \end{array}$ 2 $\left\| \frac{2}{2} + \frac{1}{2} \right\|^2$, which is satisfied if $N \geq \left(\frac{258}{3\epsilon \delta c^2 (1-\gamma)^3} \right)^2$ $\frac{d_\mu^{\pi^*}}{\mu}\bigg\|$ 4 924 if and only if $N \geq \left(\frac{256}{3\epsilon\delta c^2(1-\gamma)}\left\|\frac{u_{\mu}}{\mu}\right\|_{\infty} + \frac{1}{2}\right)^2$, which is satisfied if $N \geq \left(\frac{258}{3\epsilon\delta c^2(1-\gamma)^3}\right)^2 \left\|\frac{u_{\mu}}{\mu}\right\|_{\infty}$. ⁹²⁵ Note that we can use Lemma [E.4](#page-27-1) in the equation above with a constant batch size, because

$$
\begin{aligned} &\max\Big\{\frac{9(1-\gamma)^4c^2C}{2048N^{\frac{3}{2}}}(1-\frac{1}{2\sqrt{N}})\Big\|\frac{d_\mu^{\pi^*}}{\mu}\Big\|_\infty^{-2}n^2,\frac{(1-\gamma)^6N^3C}{c^2\frac{\delta}{2}^2}\Big\}\\ &\leq\max\Big\{\frac{9(1-\gamma)^4c^2C}{2048}(\sqrt{N}-\frac{1}{2})\Big\|\frac{d_\mu^{\pi^*}}{\mu}\Big\|_\infty^{-2},\frac{4(1-\gamma)^6N^3C}{c^2\delta^2}\Big\}, \end{aligned}
$$

926 for all $n \leq N$.

