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Abstract

Effective decision making involves flexibly relating past experiences and relevant
contextual information to a novel situation. In deep reinforcement learning (RL),
the dominant paradigm is for an agent to amortise information that helps decision-
making into its network weights via gradient descent on training losses. Here,
we pursue an alternative approach in which agents can utilise large-scale context-
sensitive database lookups to support their parametric computations. This allows
agents to directly learn in an end-to-end manner to utilise relevant information
to inform their outputs. In addition, new information can be attended to by the
agent, without retraining, by simply augmenting the retrieval dataset. We study
this approach for offline RL in 9x9 Go, a challenging game for which the vast
combinatorial state space privileges generalisation over direct matching to past
experiences. We leverage fast, approximate nearest neighbor techniques in order to
retrieve relevant data from a set of tens of millions of expert demonstration states.
Attending to this information provides a significant boost to prediction accuracy
and game-play performance over simply using these demonstrations as training
trajectories, providing a compelling demonstration of the value of large-scale
retrieval in offline RL agents.

1 Introduction

How can reinforcement learning (RL) agents leverage relevant information to inform their decisions?
Deep RL agents have typically been represented as a monolithic parametric function, trained to
gradually amortise useful information from experience by gradient descent. This has been effec-
tive [25,138]], but is a slow means of integrating experience, with no straightforward way for an agent
to incorporate new information without many additional gradient updates. In addition, this requires
increasingly massive models (see e.g. [31]) as environments become more complex — scaling is driven
by the dual role of the parametric function, which must support both computation and memorisation.
Finally, this approach has a further drawback of particular relevance in RL — the only way in which
previously encountered information (that is not contained in working memory) can aid decision
making in a novel situation is indirectly through weight changes mediated by network losses. There
is no end-to-end means for an agent to attend to information outside of working memory to directly
inform its actions. While there has been a significant amount of work focused on increasing the infor-
mation available from previous experiences within an episode (e.g., recurrent networks, slot-based
memory [19, 28]]), more extensive direct use of more general forms of experience or data has been
limited, although some recent works have begun to explore utilising inter-episodic information from
the same agent [6, (10, 29} [34] [41]]. We seek to drastically expand the scale of information that is
accessible to an agent, allowing it to attend to tens of millions of pieces of information, while learning
in an end-to-end manner how to use this information for decision making. We view this as a first step
towards a vision in which an agent can flexibly draw on diverse and large-scale information sources,
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including its own (inter-episodic) experiences along with experiences from humans and other agents.
In addition, given that retrieved information need not match the agent’s observation format, retrieval
could enable agents to integrate information sources that have not typically been utilised such as
videos [2], text, and third-person demonstrations.

We investigate a semi-parametric agent architecture for large-scale retrieval, in which fast and efficient
approximate nearest neighbor matching is used to dynamically retrieve relevant information from a
dataset of experience. We evaluate this approach in an offline RL setting for an environment with a
combinatorial state space — the game of 9x9 Go with = 1038 possible games, where generalisation
from past data to novel situations is challenging. We equip our agent with a large-scale dataset of
~50M Go board-state observations, finding that a retrieval-based approach utilising this data is able
to consistently and significantly outperform a strong non-retrieval baseline.

Several key advantages of this retrieval approach are worth highlighting: Instead of having to amortise
all relevant information into its network weights, a retrieval-augmented network can utilise more of its
capacity for computation. In addition, this semi-parametric form allows us to update the information
available to the agent at evaluation time without having to retrain it. Strikingly, we find that this
enables improvements to agent performance without further training when games played against the
evaluation opponent are added to its knowledge base.

2 Methods
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sion making. The agent observation oy is used to
generate a query to retrieve relevant information
from a large-scale dataset D,.. This information
is used to inform network outputs g;. The agent
is trained end-to-end to use this information to
inform its decisions.

To effectively improve model predictions using
auxiliary information, we need 1) a scalable way
to select and retrieve relevant data and 2) a ro-
bust way of leveraging that data in our model.
As with many successful attention mechanisms,
we establish relevance for 1) through an inner
product in an appropriate key-query space and
select the top IV relevant results. Choosing the relevant key-query space is critical, since perform-
ing nearest-neighbor on the raw observations will only deliver desirable results for the simplest of
domains. For example, in the game of Go, a single stone difference on the board can dramatically
change the outcome and reading of the board, while seemingly different board positions might still
share high-level characteristics (e.g. influence, partial local sequences, and life-and-death of groups).

At the scale we want to operate, learning the key & query embeddings end-to-end in order to optimize
the final model predictions is challenging. Instead, as in the language modelling work by Borgeaud
et al. [7], we learn an embedding function through a surrogate procedure and use the resulting frozen
function to describe domain-relevant similarity. Moreover, scale also constrains the nearest-neighbors
lookup to be approximate, since getting the true nearest-neighbors is too time-consuming at inference
time and good approximations can be obtained.



To address 2) and make the best use of the relevant data, we provide the data associated with
the nearest-neighbor as additional input features to the parametric part of our model, so that the
network can learn to interpret it. We provide some light inductive biases in the architecture to
ensure permutation invariance in the neighbors and robustness to outliers and distribution shifts
(see Secs.[2.1.3] & [2.3). Letting the network interpret the nearest-neighbor data is essential in large
and complex environments, such as Go, because the typically imperfect match between the current
situation and retrieved neighbors will require different aspects of this retrieved data to be ignored
or emphasized in a highly context specific manner. This is in contrast to episodic RL approaches
like [16, |29] which prescribe how to use the retrieved data. Subsequent sections describe the model,
retrieval process, and the full algorithm in more detail.

2.1 Retrieval-augmented agents

We consider a setting in which we wish to train a neural network model my on a set of environment
trajectories 7 € D (for example, the dataset D™ of trajectories produced by a policy 7). For each
timestep t of 7, the model takes an observation oﬂ and must produce predictions ¢ of targets y;.

In our retrieval paradigm, in addition to having access to oy, the model also has access to an auxiliary
dataset of knowledge or experience D,.. The auxiliary set D, could be the same as D, but it can
also contain more information, or in the most general case, information from a completely different
distribution and in a different format. If there is overlap between D, and D, it is important for
robustness to ensure that the model cannot retrieve the same trajectory as it is being trained on
(otherwise the network will tend to overly trust information retrieved from D,.). Common information
sources in RL are trajectories from other agents or experts (offline RL) or the agent’s own previous
experiences (episodic memory, replay buffer). Note that, in contrast to offline RL, we do not assume
that we should directly use this auxiliary data as trajectories to train onE]

We wish to use D, to inform the model predictions ;, such that §j; = mg(o, D,.). This is challenging,
as D, is typically far too large to directly be consumed as a model input. One solution, shown in
Fig. (1] is to adopt a retrieval-based model, wherein the parametric and differentiable portion of
the model my is provided with an informative subset of data {z},z7, ...,z } retrieved from D,,
conditioned on o;:

Ge = me(os, xp, a2, ..., xl). (1)

This approach requires a number of design choices relating to the retrieval mechanism, which we
explore further below.

2.1.1 Scalable nearest-neighbor retrieval using SCaNN

Inspired by previous work in language modelling, we chose to leverage the SCaNN architecture [11]]
for fast approximate nearest-neighbor retrieval. This requires each entry o; in the dataset D, to be
associated with a key vector k; € R?, and a given observation o; to be mapped to a query vector
¢: € RY. During retrieval, the squared Euclidean distances between ¢; and the dataset keys k; are
used to determine which neighbors to retrieve — reminiscent of neural attention mechanisms. This
retrieval process is very efficient and can be scaled to datasets with billions of items.

We will typically want to retrieve further associated meta-data, or context, for each neighbor. For
example, if a neighbor is part of a trajectory, we would like to retrieve information about action
choices and their consequences. The neighbor observation o;, together with its meta-data, forms the
auxiliary input x! to the model.

The nearest-neighbor retrieval process is non-differentiable, which means that the query and key
mappings cannot be trained end-to-end directly. Instead, in this first study, we pre-train a non-retrieval
prediction network mg, on our experience dataset D (details in Sec.|A.4). We then use this network to
generate an embedding corresponding to a given observation o; by retrieving the network activations
from a specified layer of mg,. We use principal component analysis to compress these activations to a
d dimensional vector representing this observation state. The embedding and projection step together
form our key (& query@ network k; = g4(0;).

2For simplicity of notation, we omit the dependence on past observations for partially-observable domains.
3For example, D, needs not contain actions, rewards, or the full context used to select actions [9].
“In this study, retrieval dataset entries and o; have the same format, but this need not be the case in general.
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Figure 2: Details of the architecture used for a retrieval-augmented Go playing agent. A pre-trained
network is used to generate a query ¢; corresponding to the current Go game state o;. This query
is used for fast approximate nearest-neighbor retrieval using SCaNN. Retrieved neighbors z}* are
processed using an invariant architecture, and used to inform an action-conditional recurrent forward
model that outputs game outcome predictions ©* and distributions over next actions 7.

We preprocess all of the observations in D,. using g, to produce corresponding keys. The resulting
dataset of keys and observations is then used by ScaNN to retrieve neighbors given a query vector. For
offline RL training with a fixed training dataset, we can also preprocess the nearest neighbor lookups
for all training dataset observations, i.e., ¢; = g¢(o) Vo; € D. However, to act during evaluation, we
must do this nearest-neighbor lookup online for each new observation. In future experiments, we
intend to incorporate end-to-end learning of the query vector [12] to improve agent performance. A
future online RL pipeline will also require us to dynamically retrieve neighbors during training.

2.1.2 Policy optimization with retrieval

The objective in our offline RL setting is to leverage the available data in order to optimize a policy
7 for acting. Our proposed semi-parametric model (Eqn. [I)) is compatible with several methods
for policy optimization in this offline setting. Indeed, it can represent the actor g (0s, D,.) and/or
the critic Qg (o¢, a, D;.) in an offline actor-critic method [21]], or the Q-value in a value iteration
approach [32]]. Here we focus on a model-based approach, inspired by MuZero [36], where the
learned model is employed in a search procedure based on Monte-Carlo Tree Search (MCTS) [].
This is motivated by the efficacy of MuZero in the offline RL setting 37, 24]].

Model-based search with retrieval Following MuZero, our prediction model my is conditioned
on the current observation o; but also on a sequence of future actions d; = a1, at42,- .-, Gt4+K-
The model mg is therefore redefined as §; = mg (o, @, xf, 22, ..., zY). The architecture for this
retrieval prediction model is illustrated in Fig.[2] The model my can be decomposed into an encoding
step s¢ = fo(os, 2}, 2%, ..., 21), which incorporates the observation and neighbor information,

followed by iterative action-conditioned inference sf“ = hg(s¥, as4x) to produce embeddings



sk corresponding to subsequent time steps (where s = s;). The model output ¢; is composed

of K + 1 value and policy distributions for the current and next K time-steps: {ﬁf, frf} k=0... K.
These outputs are obtained from their respective embeddings s¥. The target for value predictions
is the game outcome and the targets for the policy predictions are the actions taken by the expert
at,Q¢11, .- -, G4 - The sample loss £(6, §¢, y¢) is obtained by summing the K + 1 individual loss
terms for value and policy predictions (see detail in App. [A.2). The training procedure for this
retrieval prediction model is summarized in Alg[I]

Algorithm 1 Training semi-parametric action-conditional model

Input: Training dataset D and retrieval dataset D,.
1: Initialize parameter vectors 6, ¢.
Train key/query network g4 using D.
Pre-compute k; = g4(o0;) for all o; € D,..
for each gradient step do
Sample mini-batches from D of (o, y:).
For each element o, of the batch, compute ¢; = g¢(ot).
Fetch N neighbor keys with (approx.) smallest distance ||q; — k;||3 for all k; € D,..
Gather meta-data associated with these keys as z}, ... z7.
9:  Compute model output §; = mg(0s, @, z;, ..., 7" )
10:  Compute and sum losses L(60, §t, yt)-
11:  Update 6 based on Vg L.
12: end for
13: output 4, ¢

In order to act using the trained model, online search is used to generate an improved policy
ms = Search(mg, D,). We use MCTS with a pUCT rule for internal action selection [33 [40]],
carrying out ngjnys simulations per time step. Model-based search is implemented as follows: after
retrieving the observation’s neighbors, the encoded state s; is computed. Search is carried out from
s¢ by varying the input action sequence @ for each simulation and collecting the model outputs to
update search statistics. Details of this process can be found in [36]]. At the end of the search, the
resulting policy 75 (alo;) can be sampled to select the next action.

Due to the semi-parametric nature of the model supporting the search, introducing changes to D,. will
have an immediate effect on the acting policy 7, even if the model parameters 6 remain fixed. As we
explore in Sec.[3.4] this provide a mechanism for fast adaption to new information or experiences.

2.1.3 Using neighbor information

Several choices are possible for the network fy that processes the observation and neighbors. Since
this is not the main focus of this work, we chose a straightforward approach. We first compute
an embedding of of the observation o;. We then compute an embedding for each neighbor ¢! =
po(0f, xt), using the same network py for all neighbors. These streams are combined in a permutation
invariant way through a sum, and then concatenated with of to produce the final embedding s, :

Nt
50— folonr, o an) = [of,ziﬁ;,el]. @)

2.2 Evaluating retrieval in the domain of Go

In order to test the utility of retrieval in RL, we wish to evaluate whether agents can effectively
generalise between related but distinct experiences, as opposed to simply retrieving the outcome
of a previous instance of an identical situation. This motivates our choice of Go as a domain. We
focus on 9x9 Go, instead of full-scale 19x19 Go, as the less demanding computational costs of 9x9
experiments enable a more thorough analysis. Even for 9x9 Go, the state space of 103® possible
games is vastly larger than the number of positions that we could hope to query.

We collected a dataset of ~3.5M expert 9x9 Go self-play games from an AlphaZero-style agent [40]].
We randomly subsampled 15% of the positions from these games, leaving us with ~50M board

>In cases where non-terminal rewards exist, we also output reward estimates for each model transition.



state observations. These, along with metadata on the game outcome, final game board, and future
actions (all encoded as input planes), form our retrieval dataset D,. We chose to subsample as
we hypothesised that this would reduce the chance of retrieving multiple neighbors from the same
trajectory, and therefore boost the retrieved neighbor diversity. However, we did not perform ablations
on this choice. A future solution would be to use a filtering mechanism to reject neighbors from
the same trajectory. In this initial work, training and retrieval datasets are the same — at least during
training. During training, we split D,. in two halves such that each game’s observations are only in
one of the datasets. We retrieve neighbors for an observation o; from the half it is not contained in.
This is simply to avoid retrieving the same position as the query. Other ways to obtain the same effect
could be devised.

2.3 Regularisation

We wish to make our network robust to poor quality neighbors, in order to ensure that the network can
perform well in settings for which there is lower overlap with the retrieval dataset than encountered
in training. We therefore explore several techniques to improve network robustness to irrelevant
neighbors. We randomly zero-out a subset of retrieved neighbors during training ("neighbor dropout"),
and/or more adversarially, randomly replace a subset of retrieved neighbors with the neighbors of a
different observation ("neighbor randomisation"). Inspired by [[10], we also explore using a loss to
regularise the embedding produced by the neighbor retrieval towards the embedding produced with
the observation alone ("neighbor regularisation"). Further details are given in Sec.[A.5]

We carried out ablations of these techniques (Appendix Fig.[7), which show that neighbor randomi-
sation is important in some contexts for maintaining performance, but that the others do not seem
to have a significant effect in our final configuration. The results reported in this study utilise all of
these augmentations, as during the development process they had been found to slightly benefit per-
formance. Interestingly, as we explore in later sections, MCTS with enough simulations compensates
for the harmful effect of low-quality neighbors, and can perform effectively without these training
augmentations.

3 Results

3.1 Qualitative examination of retrieved neighbors
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Figure 3: Visualisation of N =4 approximate nearest-neighbors retrieved using a learned Go-specific
distance function for 3 query positions (one per row). Red stone indicates the next action(s) — light
red stones indicate white moves, dark red stones indicate black moves. The color of the board border
indicates whether the current player to play (for each board) won the game.



Changing a single stone in a Go board can dramatically affect the game, and the number of Go
positions is enormous. We first wanted to assess whether, despite the combinatorial aspect of
the domain, meaningful nearest-neighbors could be retrieved from the dataset using our learned
keys/queries. Examples of retrieved positions in Go are shown in Fig. [3] where we observed relevant
matches in terms of both local and global structure. In some cases, especially in the early game, the
retrieved position is an exact match even though the rest of the game (and therefore the associated
nearest-neighbor meta-data) differs. Row 1 in Fig.[3]is an example of this — in this case, the retrieved
data effectively provides sample rollouts from the query position akin to those derived from MCTS.
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Figure 4: a) Test-set top-1 policy prior #° accuracy (top) and value 9° mean-squared error (MSE)

(bottom) over the course of training, for the (non-retrieval) baseline and retrieval models with
N = 2,10. Results are averaged over 3 seeds (error typically too small to see). Note that the sharp
transitions are due to the learning rate schedule. b) Final performance after training plotted as a
function of number of neighbors N retrieved — a different network is trained for each number of
neighbors. c) Final performance as a function of model size relative to the size used elsewhere in
this study, for networks with N = 10 retrieved neighbors and the non-retrieval baseline. d) Final
performance as a function of the evaluation retrieval dataset size, for networks with N = 10 retrieved
neighbors. The equivalent baseline performance is shown as a dashed line for reference. Note that
the networks are trained with dataset fraction = 0.5 and simply evaluated at other dataset fractions.

3.2 Impact of retrieval on supervised training

We next evaluated the extent to which the model can learn to exploit retrieved information for
better model predictions and better decision-making. First, we evaluated the impact of retrieval on
supervised learning losses. As a baseline comparison, we trained the same network architectures
but setting x; = 0 for all ¢ — this has the effect of maintaining the number of parameters, flops,
and useful capacity in the network, while removing access to the retrieval data. We evaluated losses
for retrieval networks trained with different N (Fig.[@p) and model sizes (Fig. Bk, see Sec. [AT]for
details). Across conditions, we consistently observed a significant boost in test-set accuracy for all
metrics and over the course of training. This improvement to predictions is further observed across
game trajectories, and is not limited, for example, to opening play positions.

One advantage of the semi-parametric approach we outlined is that we can modify the retrieval
dataset and potentially see immediate effects on the prediction, without changing the parameters 6.
We first verified this by evaluating our model when allowed access to varying fractions of the full
dataset D, (Fig. [@d). We observed clear gains in prediction accuracy from increasing the size of
the retrieval set (only half is used at train time). A further important observation is that large-scale
datasets are clearly important - the evaluation metrics drop below the baseline level for a dataset D,
that is 1% the size of the full dataset.



3.3 Evaluation against a reference opponent

While the results observed on the offline dataset suggest a strong positive effect from learning to
leverage the retrieval data, this is in the context of a fixed test data distribution that matches the
retrieval data distribution. When deployed, games played against different opponents will likely
diverge from that distribution. We evaluated the performance of our search policy 75 (nsims = 200)
by playing against a fixed reference opponent — the Pachi program [5]], which can perform beyond
strong amateur level of play in 9x9 Go given sufficient simulation budget (we evaluate against 400k
simulations). We observed a significant boost to performance for retrieval-based networks over the
equivalent baseline network of the same capacity (Fig.[5). Interestingly, as shown in Appendix Fig.[8]
playing using only the base policy prior #° shows a much smaller boost over the baseline network.
As we explore further below, the quality of retrieved neighbors available during play is much lower
thoan for training - we hypothesise that the search policy is more robust to this distributional shift than
™.
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Figure 5: Win rate against a fixed reference opponent (Pachi) when playing using the MCTS policy 7
for (a) retrieval networks using varying numbers of retrieved neighbors and for a baseline non-retrieval
network. (b) Win rate as a function of model size relative to the size used elsewhere in this study.
Retrieval leads to a clear performance boost compared to non-retrieval baselines of the same capacity.

3.4 Augmenting the retrieval dataset
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Figure 6: (a) Distribution of similarity distances from an encoded observation to its retrieved nearest
neighbors. Retrieving from the original retrieval dataset using positions from the test dataset (orange)
gives neighbors with a markedly different distance distribution to positions queried during play
against a Pachi opponent (blue). Augmenting the retrieval dataset with ~600k recorded agent-Pachi
game states improves the similarity distribution (green). (b) For play with the MCTS policy 7, this
augmentation also leads to a consistent win-rate boost (green) over using the train retrieval dataset
alone (blue).

We observed a significant distribution shift between game positions observed in play against the Pachi
opponent versus positions in the retrieval dataset (Fig.[6p), as measured by the empirical distance
distribution of game observations to their approximate nearest neighbors. Changing or augmenting
the retrieval dataset D, modifies this distributional shift. A particularly interesting modification in this
setting is to augment the dataset with play recorded between our agents and the Pachi opponent. As
can be seen in Fig. [6h, augmenting the dataset with a set of ~600k agent-Pachi game states increases



the similarity between positions observed in play and their retrieved neighbors. Strikingly, we found
that integrating these games into our retrieval dataset leads to improvements in performance without
further training for subsequent play against the Pachi opponent (play with the MCTS policy 7 is
shown in Fig. , play with the policy prior 7 is shown in Appendix Fig. E]) This highlights the
potential of a semi-parametric model to rapidly integrate recent experience without further training.

As a related intervention, we instead inputted randomly retrieved neighbors into the model at
evaluation time (see Appendix Fig.[6). This significantly impaired performance for play using the
policy prior 7°, but somewhat unexpectedly, for play with the MCTS policy 7, performance did not
fully regress to the level of the baseline network. This suggests that our retrieval network is able to
amortise some information from neighbors during training, leading to better performance even when
no relevant neighbors are available.

4 Related work

The idea of supporting decision making by directly attending to a cache of related events has
been visited many times in different contexts, under the names of case-based reasoning [30], non-
parametric RL [16, 4} 1, 27]], or episodic memory [20} 23]]. The aim of some methods is to better
support the working memory of an agent during a given episode [26| 42] or a series of successive
related episodes [33]]. Other methods, including ours, aim to leverage a broader class of relevant
experience or persistent knowledge (including across episodes, and from other agents) to better
support reasoning and planning. One differentiating factor in our work to these past approaches is that
we do not prescribe how to process the information from the available data (e.g. through specifying
the agent’s action-value directly in terms of previously generated value estimates [6, |13} 15, 29]], or a
model from observed transitions [39]]) but rather learn end-to-end how the data can support better
predictions within the parametric model. A recent approach by Goyal et al. [[10] has considered an
attention mechanism to select where and what to use from available trajectories, but over a small
retrieval batch of data rather than the full available experience data. Another class of method to
leverage a transition dataset is to replay the data at training time in order to perform more gradient
steps per experience, this is a widespread technique in modern RL algorithms [21} 22} 25| 36] but it
does not benefit the agent at test time, requires additional learning steps to adapt to new data, and
does not allow end-to-end learning of how to relate past experience to new situations.

5 Discussion

Our approach and empirical results highlight how reinforcement learning agents can benefit from
direct access to a large collection of raw interaction data at inference time, through a retrieval
mechanism, in addition to their already effective parametric representation. We showed this was the
case even 1) when the domain is large enough to require generalisation in how to interpret past data,
2) when there is significant distribution shift when acting, and 3) at a scale where only approximate
nearest-neighbors can be retrieved. We believe this already demonstrates the potential of this approach
for many possible scenarios and applications.

We show that retrieval can be effectively combined with model-based search. We find that the
benefits from retrieval and search are synergistic, with increasing numbers of retrieved neighbors and
increasing simulations both leading to performance increases in almost all contexts we investigated.
Furthermore, empirical evidence suggests that search significantly improves agent robustness to
distributional shift as compared to playing with the policy prior. In Appendix Fig.[I0] we compare
the boost in performance as a function of parametric-model compute cost for increasing MCTS simu-
lations versus increasing the number of retrieved neighbors processed by the model. This provides a
tentative indication that retrieval is also a compute efficient means of improving performance.

A key future direction is to investigate the online learning scenario in which recent experience of the
agent is rapidly made available for retrieval, hence progressively growing the retrieval dataset over
the course of training. While there are additional challenges associated with the online paradigm
(e.g., it may be desirable to update the queries and/or keys during training [[12])), the fast adaptation
effect we highlighted in this work may have even more impact there.

There are many potentially relevant sources of information beyond an agent’s own experience, or
that of other humans or agents. For example, it has been shown that YouTube videos are useful



for learning to play the Atari game Montezuma’s revenge [2]]. Training an embedding network on
sufficiently diverse data may enable retrieval of information from a wide range of contexts [43],
including third-person demonstrations, videos and perhaps even books.
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A Appendix

The appendix details the architecture and training mechanisms for our results, it also lists additional
ablations and results.

A.1 Architecture

Observations consist of 9x9 feature planes representing the current state of the board (indicating
stones for the last two moves, and the player color). The networks we train are convolutional,
composed of residual blocks, and maintain the 9x9 topology throughout — except for the final output
layers.

As illustrated in Figure the main inference network s; = fy(os, o7, 22, ..., x7) is composed of an
encoding of the observation o; using mepc = 2 residual 3 x 3 convolutional blocks with 256 channels
(each block consists of two convolutional layers with a skip connection) [[14], preceded by a first
convolution layer with 256 filters and followed by a convolution layer that goes back to 128 channels.

Each neighbor information 2% is concatenated separately with the encoded observation o¢ to be
processed by another residual network pyg (blue layers in Fig. [I)), but with m,, =3 blocks and 256
channels. The neighbor information, in addition to the feature planes corresponding to the retrieved
position, also include 1-hot 9x9 input planes for the 10 next actions, a tiled input plane for the game
outcome, and the feature planes corresponding to the final game board. The parameters for each
neighbor processing stream are shared. The output from each of the neighbors e; are then summed
(and normalized) and concatenated back with the encoded observation along the channel dimension,
see Eq. E} The concatenated tensor is processed by 1Mot =6 addmonal residual blocks with the same
hyperparameters to produce the main output embedding s; = s (top pink layers in Fig. [l

Each internal transmon in the recurrent action-conditional model (in purple Fig.[I) takes the previous
embedding st , concatenates a one-hot representation of the action a;yx, and outputs the next
embedding s; k+1 These internal models are composed of My, = 3 residual blocks preceded by a
convolution layer to bring the activations back to 256 layers. All internal transitions, and output
networks for £ > 1, share parameters. Non-linear transformations after each layer are rectified
linear units (ReLU), preceded by a layer norm layer applied spatially within the residual blocks.
The model outputs are obtained at each step k from the embedding s¥ with a value and policy
head. The value head first applies a single 1 x 1 convolution filter, followed by a ReLU, a flattening
operation, and an MLP with a single hidden layer of 256 units to a final scalar output passed through
a tanh non-linearity to obtain 9. The policy head follows the same pattern, but applies two initial
convolution filters, and the final output has dimension 82 = 9 x 9 + 1 (all possible actions including
pass in 9x9 Go) and corresponds to the logits for 7F.

Together, this describes the parametric network my. The search policy m, = Search(mg, D,.)
employs the trained network to plan and act. The main embedding s; = fy(o;, xf,z7,...,x}), and
the retrieval process to obtain the neighbors, is computed once per search. Multiple rollouts can be
computed from s; with different input action sequences for a given root observation. The details of
the MCTS search mechanism using the trained model follows [36] closely, we refer the reader to that
paper for details.

For experiments that vary the model size, model size of 1 is as described above. For model sizes
n = 2 & 4, we multiply Mmoot Mirans Menc, and my, by a factor of 2, with the number of channels at
all layers doubled for n = 4. The model size labeled 0.5 corresponds to Moot = 3, Mtran = 2, Mene = 1,
and my, =2.

A.2 Losses and optimization

The total loss, for a single datapoint, is:

L£0,y,y") Zwk (7F, avs1en) + 1°(0F, 9)) + al|6]]?, (3)

with wy, = % for £k > 0 and 1 otherwise (K = 5 in our experiments), g the empirical return (the
—1, 1 relative game outcome for Go), and o = 1le-4 controls the weight decay. The individual loss
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terms are [V (v, g) = % (v — g)? for the value outputs (MSE when averaged over the batch elements),
and [P(7,a) = —log(m(a)) for the policy outputs. In addition, an optional regularisation loss is
described below in Sec.

We use the Adam optimizer [18] with a learning rate schedule, training for 600k steps with a batch
size of 1024. The learning rate is the initial learning rate divided by {2, 8, 64, 256} after respectively
{180k, 360k, 480k, 570k} steps, with the initial learning rate of le-3. Training was performed on
TPU [[17] using JAXline and Mctx within the DeepMind JAX Ecosystem [3]].

A.3 Go game configuration

The komi throughout the experiments is 5.5. The Pachi program is configured with 16 threads, a
max_tree_size of 2000, a resign_threshold of 0.1, no pondering, and the Chinese ruleset. The
search policy 7, when testing is defined as the action with the maximum visit counts. To ensure
diversity in the evaluation games against Pachi, we seed each game by letting Pachi play the first 6
moves in the opening. After an evaluation game goes past the opening moves and 50 subsequent
moves, we stop the game if the value function is above 0.995, or below 1-0.995, to avoid playing
long end-games when the game is already clearly settled.

A4 Embedding network

To train the embedding g4 to map observations o, to keys and queries, we first train a MuZero model
mg(ot, dy) following the same method as in We train this on the same data D that we train
the retrieval network on, but without any retrieval input or neighbor processing network. We also
use 8 residual blocks for the main encoding stage to compute s, = f5(0;), and 3 residual blocks per
internal model transition.

At the end of training, we choose the output of one of the f, network layers as a (pre)-embedding
Go(0). To reduce the dimensionality of g4, we project it using PCA into the first d = 512 principal
components to obtain g, (0) = (gy(0) — 1)V € R%, where V contains the first d eigenvectors of the
covariance matrix of the pre-embedding vectors, estimated with a subset of the data after removing
their mean p.

In our experiments, we used the output of the 6th residual block of f, as g,(0). We have not
extensively searched for the best such embedding due to the expense of testing each — further
investigation of this design choice will be the subject of future research.

A.5 Regularisation ablations

Here we provide more detail on techniques we investigated to improve network robustness to low
quality retrieved neighbors (as introduced in Sec. [2.3).

Neighbor dropout

We randomly zero-out a subset of retrieved neighbors during training. For NV retrieved neighbors, the
number of neighbors to zero out M is uniformly randomly chosen from [0, N]. We then randomly
choose M out of N neighbors, and mask out their contribution to the final invariant neighbor

embedding (Sec.[2.1.3).

Neighbor randomisation

We randomly replace a subset of retrieved neighbors with the neighbors of a different observation
within the mini-batch. This is implemented by randomly choosing M neighbors as described for
dropout above, and then replacing each by a randomly chosen member of the mini-batch (which may
with a small chance be the correct neighbor).

Neighbor regularisation

Inspired by [10], we also explore using a loss to regularise the embedding produced by the neighbor
retrieval towards the embedding produced with the observation alone. In this case, we apply a
convolutional layer to the embedding produced from the game state observation, and use this to
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predict the output of the neighbor processing tower. We apply a mean-squared-error loss to encourage
the base embedding to be predictive of the neighbor output, and similarly apply an equivalent loss to
the neighbor output.
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Figure 7: Ablations of different regularisation techniques explored in this study, as measured by
evaluating the win rate against the Pachi reference opponent. Win rates are shown for (a) the MCTS
policy 7, and (b) the policy prior #°. The most critical regularisation is neighbor randomisation.
Without this randomisation, the retrieval network prior 7% performs significantly worse than the
baseline non-retrieval network. The other regularisation methods do not have a significant effect on

performance.

A.6 Additional results
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Figure 8: Equivalent figure to Fig. |5, but for playing with the policy prior 7°, as opposed to with
the MCTS policy 7. Win rate against a fixed reference opponent (Pachi) for (a) retrieval networks
using varying numbers of retrieved neighbors and a baseline non-retrieval network. (b) Win rate as a
function of model size relative to the size used elsewhere in this study.
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Figure 9: (a) Extended version of Fig. [6b: Changes to win rate for the MCTS policy 7 against
the Pachi opponent without further training by adjusting the retrieval dataset. Augmenting the
dataset with agent-Pachi games (green) leads to a consistent boost in performance over using the
train retrieval dataset by itself (blue), and over retrieving from only agent-Pachi games (red). Using
randomly chosen neighbors (dashed, yellow) hurts performance, but does not regress to the level
of the non-retrieval network of the same capacity (purple). (b) Playing with the policy prior 7°, as
opposed to with the MCTS policy 7. In this setting, the retrieval network performs at only a slightly
higher level than the baseline, suggesting that prior play is less robust to the distributional shift from
training to playing against Pachi than for MCTS. Nonetheless, as for MCTS, augmenting the dataset
with games recorded against Pachi leads to a boost in performance. Using randomly chosen neighbors
brings performance below the baseline, showing that our networks are not fully robust to invalid
neighbors.
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Figure 10: Change in win rate as a function of additional parametric-model computational cost
for processing increasing numbers of retrieved neighbors versus increasing the number of MCTS
simulations. The comparison is made relative to a baseline non-retrieval network using 50 MCTS
simulations. In our configuration, each MCTS simulation uses the same amount of compute as
processing one neighbor. Note that this comparison does not account for the computational cost of
querying for and retrieving nearest neighbors.
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