Under review as a conference paper at ICLR 2025

COMMON PITFALLS OF MARGIN-BASED PREFERENCE
OPTIMIZATION IN LANGUAGE MODEL ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) has become the predom-
inant approach for aligning language models (LMs) to be more helpful and less
harmful. At its core, RLHF uses a margin-based loss for preference optimization,
which specifies the ideal LM behavior only in terms of the difference between
preferred and dispreferred responses. This under-specification of ideal behavior
for each response individually leads to two unintended consequences as the mar-
gin increases: (1) The probability of dispreferred (e.g., unsafe) responses may
increase, resulting in potential safety alignment failures. (2) When the probability
of dispreferred responses is reduced, this often coincides with a decrease in the
probability of preferred responses, even when these responses are ideal. In this
paper, we identify the fundamental issue: margin-based preference optimization
loss under-specifies ideal LM behaviors. We derive key conditions under which
the probabilities of both preferred and dispreferred responses increase or decrease
together. These conditions occur when the inner products between the gradients
of the log-probabilities of preferred and dispreferred responses are large. We the-
oretically analyze when such inner products are large and empirically validate our
findings. Our framework also reveals important differences in the training dynam-
ics of various preference optimization algorithms and suggests new directions for
developing better algorithms for language model alignment.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has become a primary approach for align-
ing Language Models (LMs) to improve their helpfulness and mitigate harmfulness (Stiennon et al.,
2020; Bai et al., [2022; Ouyang et al., |2022). This pipeline typically consists of two stages: su-
pervised fine-tuning (SFT), where demonstration data is used to directly teach the model desirable
behaviors, and the reinforcement learning (RL) stage, which uses preference data—comparisons be-
tween different responses to the same prompt—to highlight the contrast between chosen and rejected
responses, with the goal of helping the model learn distinctions between good and bad behaviors.

In its vanilla form, the RL stage first employs a contrastive loss—based on the margin between the
scores of the chosen and rejected responses—to train a reward model, followed by policy optimiza-
tion methods to fine-tune the LM. Leveraging the structure of the problem, a recent line of work has
combined these two steps by directly optimizing the language model using a margin-based prefer-
ence optimization loss of the following general form (Rafailov et al.| |2024; |Azar et al., 2024; Xu
et al.,[2024; Ethayarajh et al.,[2024; Hong et al.l 2024; |Pal et al.| 2024 [Park et al., 2024} |Yuan et al.|
2024} Meng et al., 2024; Zhao et al.,[2023} |[Wu et al., 2024)

U@, yw, 13 0) = m(hw (log mo (yw |2)) — hi(log mo (yi] 7)), (D

for a language model 7y (y|x) that specifies the probability of response y given prompts x, a dataset
consisting of pairs of chosen responses y,, and rejected responses y; for the same prompt x. These
preference optimization losses can be interpreted as varying the scalar functions m, h,,, h; (Section
and Table 2). At the core, they all rely on the margin between a transformation of the chosen
log-probability log 74 (., |) and a transformation of the rejected log-probability log mg (y;|2).

'The reward modeling loss in vanilla RLHF is also an example of this general form.
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The training dynamics of these margin-based preference optimization is quite intriguing—the log
probabilities of the chosen and rejected responses often show a synchronized increase and decrease
(Figure[T). It is worth noting that, by the end of the training, even though the margin increases (re-
sulting in the minimization of the margin-based preference optimization loss), the log probability of
both the chosen and rejected responses may increase (Figure[Ta)), or both may decrease (Figure [Tb).
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Figure 1: Training dynamics of the chosen and rejected log probabilities on the TL;DR dataset (Sti-
ennon et al.}2020). As the margin between the two increases, the chosen and rejected log probabil-
ities exhibit synchronized increases and decreases. In Figure [Ia] both the chosen and rejected log
probabilities increase in the end, whereas in Figure|lb| both decrease in the end.

This synchronized log-probability change exposes a fundamental issue with using margin-based
loss for preference optimization in language model alignment: it only specifies the ideal behavior
of the margin but not the ideal behavior of individual terms. This under-specification may have two
problematic consequences:

* First, when the primary goal is to reduce the probability of generating rejected responses (e.g.,
in safety-related alignment tasks where certain undesirable responses should not be generated),
merely increasing the margin (i.e., ensuring that the chosen response is preferred over the rejected
one) does not guarantee that the log-probability of the rejected response is actually decreasing
(Figure|Ta)).

* Second, even when the log-probability of the rejected response does decrease, the current margin-
based losses often imply a simultaneous reduction in the log-probability of the chosen response
(Figure[ID)). This becomes particularly concerning under some of the current fine-tuning practices
for LMs, where we want to retain or even increase the probability of generating the preferred
responses. In the original procedure of RLHF, both chosen and rejected samples are drawn from
models that require further training (Stiennon et al.| 2020). In such cases, the ideal behavior
of the model on the chosen samples is less clear—aside from being preferred over the rejected
ones. However, in more recent work, the chosen and rejected samples are often synthetic data
generated by strong language models and are used to distill these strong models into smaller ones
(Dubey et al., [2024; |Chiang et al.| [2023} Tunstall et al., 2024; Taori et al., [2023). In some other
cases, chosen samples may come from demonstration data collected during the SFT phase (Chen
et al.| 2024). In both scenarios, where the chosen responses are ideal, we want the probability
of the chosen response to increase—or at least not decrease—to ensure the model retains a high
probability of generating these ideal responses.

In this work, we dig into this phenomenon, identifying conditions under which the chosen and
rejected log-probability log 7oy |x),log e (yi|2z) exhibits synchronized increase and decrease.
Our first key finding is that this synchronized change happens when the gradient inner product
(Vglog mo(yw|z), Vo log mg(yi|x)) is “large” relative to their individual norms (Section [3.1)). The
precise definition of “large” varies for different algorithms (Section[3.2). The gradient inner product
conditions we derived enable us to characterize existing margin-based preference optimization meth-
ods, explain their differing training dynamics, and identify the appropriate conditions for using these
algorithms. Our theoretical findings are also validated through empirical observations (Section [3.3).

We further investigate when these gradient inner product conditions may fail. In synthetic settings,
we theoretically show that (1) as the chosen and rejected responses share more similar tokens, their
gradient inner product will increase, and (2) while the sentence-level gradient inner product may
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be large and positive, individual token-level inner products can be small and negative (Section &.)).
We validate these theoretical insights empirically, and our findings suggest the potential for more
fine-grained preference optimization methods that leverage token-level information (Section 4.2).

To summarize, our contributions are as follows:

* We identify a key issue with margin-based preference optimization for LM alignment: it under-
specifies the ideal behavior of the LM on chosen and rejected responses individually (Section [I));

* We provide a gradient inner product condition that captures when the synchronized movement of
chosen and rejected log probabilities occurs for various margin-based losses (Section [3));

* We explore when the gradient conditions may fail theoretically and experimentally (Section [);

» Using our framework, we categorize existing RLHF variants (Section and outline future di-
rections for language model alignment (Section [5).

2 BACKGROUND AND RELATED WORK

2.1 PROBLEM SETUP

We consider auto-regressive language models (3¢ |z, y<!) that specify the distribution of the next
token y atindex ¢ on a finite vocabulary set V, given the prefix tokens including the prompt x and the
partially generated responses y<!. In the context of LM alignment, there is a reference policy T,
usually obtained by large-scale pre-training and supervised fine-tuning, and serves as the sampling
policy and start point of further alignment algorithms.

2.2 PREFERENCE OPTIMIZATION

There have been plenty of works on the design of preference optimization losses. These loss designs
are motivated by various assumptions or considerations. Here we briefly categorize them:

Rafailov et al.[(2024) derive the DPO loss from the KL-constrained reward maximization problem:

Wax By ooy (-0 [1(43 )] = BBone [KL (70 (-[2) | Mrer ()] 2

They further derive the DPO loss for any triplet (z,y.,,y;) where the y,,,y; are the chosen and
rejected response, respectively:

T\ Yw [T To\Y1|x
Copo (T, Yuw, Yi; 03 Trer) := —log @ ﬁ[log ((y|)) — log ((Z/H)] )
Wref(yw |£L’) Wref(yl |1')
Motivated by non-transitive human preference and language model calibration respectively, Azar

et al.[(2024) and Zhao et al.|(2023) proposed the IPO and SlicHF loss with similar form that solely
depend on the margin log 7y (y,, |x) — log mg (yi| ).

Due to the length bias observed in practice, |Park et al.|(2024)) propose to add a length penalty term
in the BT preference model, but the gradient still relies on the margin log 7y (yy,|2) — log 7 (y;|x).
Meng et al.| (2024) and [Yuan et al.| (2024) consider the setting of average rewards and derive a loss

dependent on the length-normalized margin — log 7y (y,,|) — ﬁ log o (y1]).

[V

Unlike prior work, [Ethayarajh et al.| (2024)) and Wu et al.| (2024) do not consider the difference
between the likelihood, but deal with the chosen and rejected response separately. These works
typically assign a positive reward signal to the chosen response and a negative reward signal to the
loser, according to the logistic loss (Ethayarajh et al.}|2024) or the square loss (Wu et al., 2024).

Given that the decreasing log-probability of the chosen response is a well-observed phenomenon (Pal
et al., [2024), it is natural to add explicit regularization to the loss objective to force the increase of
the chosen response’s log-probability. In particular, (Pal et al., [2024)) proposed the DPOP loss that

behaves the same as DPO when the chosen response’s log-ratio log (%) is above 0, and add
explicit regularization when it is below 0 to push it up. Similarly, Xu et al.| (2024) and Zhao et al.

(2023)) also add explicit regularization to maximize the chosen response’s log-probability.

Among these works, the most relevant to ours is |Pal et al.| (2024])), which touches upon the similar
failure mode of DPO. The main difference is that they focus on how to mitigate the decrease of the
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chosen response’s probability and propose new loss designs. In contrast, we dig deeper to obtain
a broader view. We rigorously analyze the training dynamics and extract general success/failure
conditions for different losses: the gradient similarity.

3 WHEN WILL MARGIN-BASED PREFERENCE OPTIMIZATION BE
PROBLEMATIC?

The fundamental issue with margin-based preference optimization objectives is that they only spec-
ify the behavior of the difference between the terms depending on the log-probabilities of the cho-
sen and rejected samples, but does not specify the behavior of these two terms individually (Sec-
tion [I). In many cases where the chosen responses are ideal, we want to ensure that the chosen
log-probability does not decrease as the rejected log-probability decreases. In this section, we iden-
tify the condition under which this occurs. We start with the condition for DPO (Section and
then move to the general case (Section [3.2)).

3.1 GRADIENT INNER PRODUCT CONDITIONS FOR DPO

At a high level, the change in the log-probability of the chosen and rejected responses is influenced
by the inner product of their gradients. When this inner product becomes large relative to the squared
£5 norm of the chosen log-probability gradient, the log probability of the chosen will decrease. The
key factor here is the relative magnitude of the inner product compared to the gradient norms.

To see this, let us focus on the gradient of the DPO loss:
Volopo (0) = —B0 (Fg (z, 1) — 7o (2, yw)) [Volog o (yu | ¥) — Velogme (v | )], (3)

o (y|T)
Trref (y\r)

where the implicit reward 7 (z,y) = Slog
ducing notations:

is a scalar. We simplify the gradient by intro-

log 1y, (0) 1= log o (yuw|x), log m(0) :=log mg(yi|x), c(0) := o (P (x,y1) — P9 (x,yw)) > 0.

Considering a single sample (i, ¥y, y;), the DPO gradient (3) can be rewritten af]
VQEDPO = 7ﬂc(9) . (Vg log Tw — Vg log ﬂ'l). (4)

After one step of gradient descend with step size n > 0 for decreasing the loss /ppo, the changes
Alog m, in the log-probability of the chosen response log m,, and the changes A log 7; in the log-
probability of the rejected response log 7; can be approximated by the first-order Talyor expansion:

A IOg T =2 <v0 IOg Tws nvﬂgDPO> = 7750(‘9) ! (Hv log Tl ”2 - <V 1Og Tl s \% log 7rl>) )
Alogm ~ (Vglogm,nVelppo) = nBc(d) - ((Vlogmy, Viegm) — || Vlogm|?) . &)
If we measure the change in the margin logm, — logm, ie., A(logm, — logm), then the
Cauchy—Schwarz inequality ensures:
A(log 7y, — log m) = nBc(8) - (||Vlog my||? — 2(V log Ty, Viog ) 4 ||V log m||?) > 0, (6)

which fulfills the contrastive goal of the DPO loss: enlarging the difference between the chosen
log-probability log 7, and rejected log-probability log ;.

However, this does not ensure anything about the increment or decrement of chosen and rejected
log-probability log m,,, log 7; individually. There are three possible cases for the margin to increase:

* Case 1 (Ideal): log 7, will increase and log m; will decrease;
* Case 2: log m,, and log 7; are decreasing at the same time but log 7; decreases more;
» Case 3: log m,, and log 7; are increasing at the same time but log 7; increases more.

As our derivation in (B)) suggests, for DPO, we have the following conditions:
(Vlogmy, Viogm) < ||Vlogmy,||? <= Alogm, > 0,lognm, T
(Vlogmy, Viogm) < ||Viegml|? <= Alogm <0,logm | @)
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Case Alog my, Alogm log 7w, log m; Condition

1 Alogmy, > 0> Alogm log my T logm | (Vlog 7w, Viegm) < min(||V log my H2, ||V log m; Hz)
2 0> Alogmy, > Alogm  logmy Llogm | ||[Viegmy||? < (Viegmy, Viegm) < ||V logm|?

3 Alogmy, > Alogm >0 logmy, Tlogm + [[Viegm||? < (Viegmw, Viegm) < ||V log mw||?

Table 1: Three possible cases of the changes on chosen and rejected log-probabilities in DPO.

m(a) b (a) hi(a) A(a)
DPO (Rafailov et al.) log o(a — cref) Ba Ba —
R-DPO (Park et al.) logo(a — (¢t + a(lyw| — |y1])))  Ba Ba —
SimPO (Meng et al.) logo(a — 7) ﬁa %a —
IPO (Azar et al.) (a — (Cref + %))2 a a —
RRHF (Yuan et al.) min(0, a) ﬁa ﬁa Aa
SlicHF (Zhao et al.) min(0,a — §) a a Aa
CPO (Xu et al.) log o(a) Ba Ba Aa
DPOP (Pal et al.) log o(a — crer) Ba — Amax(0,logcp —a)  Pa —
KTO (Ethayarajhetal) a Awo(Ba — (log cup + zref)) No((logcly + zef) —a)  —
SPPO (Wu et al.) a (a—pB~1H2 (a+pB71)? —

Table 2: Instantiation of margin-based preference optimization objectives. The constants in these
objectives satisfy 3,7, d, Ay, Ay > 0.
To summarize, the conditions corresponding to the three cases are listed in Table T}

We will see that in the general case with other margin-based objectives, a similar condition can be
derived on the inner product (V log ,,, V log 7;), but the condition, in some settings, is more lenient
than the ({7) above, explaining why some methods may mitigate the problem with DPO (Section[3.2).

3.2 GRADIENT INNER PRODUCT CONDITIONS FOR GENERAL MARGIN-BASED PREFERENCE
OPTIMIZATION

Moving on to the more general case, as discuss in (T)), except that sometimes, we have regularizers
(0) = — (m(hw(log mw) — hi(logm)) + A(log 7)) , (8

where A(logmg(yw|z)) is a scalar regularizer depending on the chosen log-probability. We in-

stantiate this general form for popular preference optimization in Table 2] where we denote
% = 10g Tref (Y |7), oy = log et (1 ]@), Crer = ¢ — ;. Note that £ is a function of 6, thus
Tref(y|2) shall be viewed as constant.

Using this general form, we analyze the gradient similar to the DPO case and identify criteria for
increasing chosen log-probability and decreasing rejected ones. First, the gradient can be written as

Vol = d,Vglogm, — d;Vglogm,
where the constants that do not depend on 6 are
dy = m' (hy (log 7,,) — hy(log m)) R, (log 7,) + A'(log 7,,)
dy := m’ (hy(log my,) — hy(log m;))hy(log ;).

After one step of gradient descend with step size 1 > 0 for decreasing the loss ¢, the changes in the
log-probability can be approximated by the first-order Taylor expansion:

Alogm, & (Vglog my, nVel) = n (dy||Velog my||* — di(Velog my, Vo logm))
Alogm ~ (Vglogm,nVel) =1 (dw(Velogm,, Vologm) — di||Velogm|?) .
In our ideal setting, we want the margin to increase while increasing chosen log-probability and
decreasing rejected log-probability:

Alogm, > 0> Alogm, = A(logm, — logm) > 0.

2When the context is clear, we omit @ and just use log 7., log 7; and V.
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This implies the following general condition:

duw
(Vlog 7y, Vlogm) < d—HVIongH2 <= Alogm, > 0,logm, 1 9
!

d
(Vlog my, Viogm) < d—lHngmHQ <~ Alogm <0,logm | (10)

Note that for one condition to be more lenient (e.g., d,,/d; > 1 for winner), the other condition
becomes more strict (d;/d,, < 1 for loser). Accordingly, we can instantiate these conditions for
different algorithms using their m, h,,, h;, A. Here, we provide a brief discussion of some of the
algorithms and explain why under certain settings, these algorithms may work differently from DPO
using these conditions.

Ldw . dp
* DPO: %o = 4o — 7,

e SPPO: % = %,111% > where 371 is a large constant. Compared with DPO, SPPO
loss ensures that it is easier for log 7, to go up (9) and harder for log 7; to go down (T0). Since
Vo logm||3 > ||V logm,||3 in practice, The general condition for winner (T0) is more likely to
be satisfied.

* KTO: ‘Z—:" x ’E\—il“, the ratio is determined by two hyperparameters in KTO, fine-tuned according to
different tasks and datasets.

* Explicit Regularization to maximizing winner’s log-likelihood (e.g., CPO): We always have %‘l" >
1 since A’ > 0, i.e., it will increase d,, compared with DPO, and d; is the same as in DPO. It is
worth noting that this type of regularization always helps to make A logm,, large. Again, if we
have ||[Vglogm||3 > ||Vglogm,l|3 in practice, CPO or the NLL term can help the winner’s
conditions (9) to hold while remains true.

* SimPO: %’ = ||;”“. SimPO is partly motivated by the length bias: human (or LLM) labelers

prefer longer but not necessarily more helpful responses. We have two cases:

= |yw!| > |lu| = Cle < 1. A longer winner will have its probability increase less, and the

shorter loser will have its probability decrease more.

= |yw!| < |yl = (fTT > 1. A shorter winner will have its probability increase more, and the

longer loser will have its probability decrease less.
Compared to DPO, we can see that SimPO rewards a shorter winner more significantly and a
longer winner less so. For a dataset that is not heavily length-biased, SimPO might behave similar
to DPO in terms of the winner and loser’s log-likelihood. The same reasoning also applies to|Yuan
et al. (2024)) and |Azar et al.[(2024), which uses averaging in practice.

3.3 EMPIRICAL OBSERVATIONS

We conduct experiments on the TL;DR dataset (Stiennon et al., [2020) to showcase the phenom-
ena. Figure || depicts how different margin-based preference optimization algorithms affect the
log-likelihood of chosen and rejected responses.

For algorithms with explicit regularization on the winner’s log-likelihood, such as CPO, DPOP,
RRHF, and Slic-HF, we observe a consistent increase in the log-likelihood of the chosen (winner)
responses. This behavior is expected based on the formulation of these methods, where explicit reg-
ularization ensures that the winner’s log-likelihood is directly increased, aligning with the conditions
discussed in Section[3.2]

For DPO and R-DPO, both the chosen and rejected log-likelihoods tend to decrease simultaneously.
This behavior aligns with the analysis that shows how these methods, purely dependent on the
margin, might result in both terms decreasing, with the rejected log-likelihood decreasing more
significantly. This leads to an increase in the margin, which is the objective, but not necessarily an
increase in the chosen log-probability.

SimPO and IP@] in Figure |1| report the average log-likelihood of responses. The simultaneous
decrease in both the (average) chosen and rejected log-likelihoods is expected, because the loss only

*See Section for the derivation.
“In their original paper,|Azar et al.|(2024) proposed the IPO loss without average log-likelihood. The authors
later claimed using average log-likelihood with IPO yields improved performance.
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Figure 2: Training dynamics of the chosen and rejected log probabilities on the TL;DR dataset for
different algorithms trained on Mistral 7B. The corresponding plot for Llama3 8B is in Figure [3]
(Appendix [C3). All algorithms exhibit synchronized increases and decreases in the chosen and
rejected log probabilities. We note that for SimPO and IPO, the log probabilities are normalized by
the response length, while in the other plots, they are the original log probabilities. We also provide
the cosine similarity between V log m,, and V log m; for these cases (Figure[7} Appendix [C.5).

depends on the length-normalized margin, ﬁ log 79 (Yuw|z) — ﬁ log g (yi|x). Again, an increase
in the margin is guaranteed, but not necessarily an increase in the average chosen log-probability.

SPPO demonstrates a distinct trend where the log-likelihood of the chosen responses increases
slightly, while the log-likelihood of the rejected responses decreases. This matches the theoreti-
cal predictions from Section [3.2] where SPPO encourages a favorable increase in the chosen log-
likelihood and a decrease in the rejected log-likelihood.

Overall, these experimental results closely align with the gradient-based conditions outlined in Sec-
tion [3.2] demonstrating how explicit regularization, loss structures, and specific design choices in-
fluence the dynamics of preference optimization.

4 WHEN WILL THE GRADIENT INNER PRODUCT CONDITIONS BE
VIOLATED?

To ensure that the chosen log-probability increases while the rejected log-probability decreases, we

need the inner product (Vy log 7y, Vg log ;) to be relatively small compared to ||V log 7, ||? and

|V log m;||2, respectively (Section . Focus on DPO, in this section, we study when this condition
may be violated and what causes the violation.

We use toy synthetic settings to analyze this problem and build up our general intuition on the gradi-
ent inner product. In these synthetic settings, we observe that (1) the gradient inner product increases
as the chosen and rejected responses share more similar tokens; and (2) while the sentence-level gra-
dient inner product can be large, individual token-level inner products may be small (Section [4.T)).
We then empirically verify our intuition (Section[4.2)). All proofs are in Appendix [B]

4.1 THEORETICAL RESULTS
4.1.1 POSITIVE RESULT ON WHEN THE CONDITION HOLDS

We first provide a positive result when condition (7) holds and DPO has the ideal behavior that
pushes up the log-probability of chosen and pushes down the log-probability of rejected. We begin
with set-ups for the LM and preference data.

LM with learnable last linear layer. We analyze DPO for optimizing an LM with a learnable last
linear layer. We assume for prompt 2 and response y, at any index ¢ € [L], the LM outputs:

mo(y’ |z, y=") = s(h] O)[y'],
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where L = |y|, 0 € R4*V is the learnable parameter, h; € R4 is the hidden state for the i-th token
in response and s : RV — Ay, denotes the softmax functionE] The hidden states are assumed as
frozen during DPO.

Data setup 1. Under the prompt z, the chosen and rejected responses both have only one token, that
is, yu, v € V! and y,, 1] # wi[1]f]

The following theorem shows in this task, (V log 7,,, V1og m;) < 0 so that gradient descent steps
of DPO make sure log 7, increases and log m; decreases.

Theorem 1. Under the above data and model set-ups, assume after SFT stage, given prompt x
the model prediction on the first token in response is uniformly concentrated on M tokens in the
vocabulary V, then we have

M-1
M

1
(Vg my, Vlegm) = *MH’%HQ, IVlogmy||* = ||V log m||* = I1R]1?,

log my T and logm |,
with h being the hidden state of the token right after the prompt x.

Data setup 2. Under the prompt x, the chosen and rejected responses are of arbitrary same length
L and only differ at the last token: i.e., y,[1 : L — 1] = y[1 : L — 1], yo[L] # yi[L].

Results in Theorem [I] can be easily extended to the preference data in this setup, because up to the
L-th token where chosen and rejected differ, the hidden states are the same for the two responses:
Given y,,[1 : L — 1] = y[1 : L — 1], we have that h; = h; ., = h;; fori € [L].

Corollary 2. In the case where vy, and y; differ at the last token, assume after SFT the model
prediction on L-th token in response is uniformly concentrated on M tokens in vocabulary, we have

(Vlog Ty, Viogm) < ||Viogm,||> = [|[Viogm||?, logm, T and logm |,

with h; being the hidden state of the i-th token in both responses.

4.1.2 NEGATIVE RESULT ON WHEN THE CONDITION IS VIOLATED

From the previous results, we can see the gradient inner product condition is not violated and DPO
has the ideal behavior when the chosen and rejected responses differ only at the last token. However,
as observed in Section[3.3] often time DPO is triggered to not behave in the ideal way, which suggests
the underlying condition (7)) is violated. To gain theoretical insights on what causes the violation in
(7, we level up our previous data set-up.

Data setup 3. Chosen and rejected responses have an edit distance 1 and the difference appears in
the middle of a response, i.e., the chosen and rejected responses v, € V¥ and y; € V¥ satisty:
ywll :m =1 =yl :m—1], yu[m] # yi[m], yum+1: L] =ym+1: L for1 <m < L.

To analyze the optimization steps of DPO under this data setup, we first adopt a simpler setting for
parameterizing the LM, where the LM has learnable logits.

LM with learnable logits. Let V' = |V| be the vocabulary size. We first consider the setting where
the LM output follows the structure: For index ¢ € [L],

WG("Iqufi) = Sw,i» Wg("I, yl<l) = Sl,is

where s,, 4, 5;; € Ay are the probability distributions of the chosen and rejected response at token
1, respectively. s, ; and s; ; are configured as variables to optimize in the model and to which we
take derivative of chosen and rejected log probability.

Because y,[1 : m — 1] = y[1 : m — 1], we have that s; = s,,; = s;,; for i € [m]. Since s,,; and
s1,; are predicted by a shared model, they are not independent and one may impose assumptions to
characterize the relationship between them. We denote for i € [m + 1 : L], j¥ to be the vocabulary
index of token appearing at y,,[] and y;[¢]. As in|Pal et al.|(2024), we assume that s, ;[j7] > s1.:[j]]
and i [j] < s1,4[j] for j # j;. Under this assumption, Theorem [3|shows that in this case the log-
probability of the chosen and rejected will likely both decrease after one DPO step.

SHere, A denote the probability simplex.
SFor a vector y, we use y[i] to denote its 4-th entry and use y[i1 : 42] to denote its entry from i1 to 4o.
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Theorem 3. When chosen and rejected responses have edit distance 1 and the differing token is
the m-th token in the responses s.t 1 < m < L, then after one DPO step, the per-token log-
probability change in chosen response y,, can be characterized with first-order Taylor expansion.
Fori € [1 : m — 1), the per-token log-probability before the difference stays unchanged.:

Alogm(y,, | #,y5") = 0. (11)

For i = m, the log-probability of chosen at the differing position will increase: suppose j* and k*
are the indices of y,,[m| and y;[m] in the vocabulary V,

Alogm(yy! | #,y5™) = 1+ (Swmli™] = Swm[k"]) 2 0. (12)
Fori € [m + 1: L], the log-probability of chosen at these positions will decrease:

Alogm(yl, | 2, yn") ~ (1= swalif ) (s1:l]] = swildf]) = D sw.ilil(s1ild] — swalj]) <0,
J#IF
(13)

*

since s1[55] — sw.ilif] < 0and s;;:[j] — swslj] > 0. Given the change in sentence-wise log-
probability of chosen is the summation of the per-token changes specified in (11)), and (13), as
the same suffix following the differing tokens gets longer, log m,, decreases more.

Remark 4. It is worth mentioning that Theorem [3| explicitly presents the amount of probability
changes, the same prediction on the change direction can also be derived with a per-token gradient
inner product condition similar to (7), see Appendix[B.2} The decrease of follows the same intu-
ition obtained in Theorem/[I|that if two contrast tokens are picked by chosen and rejected responses
under a similar context, then the chosen token probability will increase. An intuitive explanation of
what causes the decrease in could be: the gradient of chosen and rejected are highly correlated
as they pick the same token under a similar context. Mathematically, the assumption we adopted
actually implies the gradient inner product between chosen and rejected is lower bounded.

While Theorem [3] adopts the same assumptions made in [Pal et al.| (2024), we precisely character-
izes the per-token log-probability changes based on the first-order approximation, and explicitly
break down the sentence-wise probability change in chosen into 3 parts: before/at/after the differing
position. Therefore, the analysis in Theorem [3] captures the varying probability change directions
at different positions, uncovering the underlying dynamic behind the overall decreased probability
observed in experiments (Figure [3).

Combining our insights gained in Section {.1.1] and f.1.2] we find that the gradient inner prod-
uct increases as the chosen and rejected responses share more similar tokens. Additionally, the
sentence-wise gradient inner product and their change in log probability may not necessarily reflect
the individual token-wise gradient inner product and their probability changes Below we verify
our theoretical findings empirically.

4.2 EMPIRICAL OBSERVATIONS

We verity our intuition regarding when the gradient inner product condition may be held or violated
using a sentiment classification task trained on GPT-2, where the prompt z is a statement, e.g.,
“Happy mothers day mumm xo0x0.” The chosen response ¥,, specifies the correct sentiment, while
the rejected response y; gives the wrong one. We consider three styles of responses:

* Single token: y,,: positive. y;: negative.

* Short suffix: y,,: It has a positive sentiment. y;: It has a negative sentiment.

* Long suffix: y,,: It has a positive sentiment based on my judgement. y;: It has a negative senti-
ment based on my judgement.

Our theoretical results suggest that: (1) In the single token case, DPO would have a small gradient
inner product, thus allowing the chosen log-probability to increase while the rejected to decrease
(Theorem [I). (2) Between the short suffix and long suffix cases, we expect DPO to reduce the
chosen log probability more for the latter, as it contains more tokens following the differing token
between the chosen and rejected responses, leading to more chosen tokens with decreasing log

"To be specific, by token-wise gradient, we mean Voo (3*|z, y<*).
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Figure 3: Training dynamics of the chosen and rejected log probabilities for sentiment tasks.
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Vo log m; for DPO on three sentiment datasets. instance in the long suffix task.

Figure 4: Gradient correlation behaviors on the sentence-level and token-level for sentiment tasks.

probability (Theorem [3). Additionally, our theoretical results suggest that for the differing token
(e.g., “positive” vs. “negative”), the token-wise gradient inner product would be negative, while for
identical tokens, the token-wise gradient inner product would be positive.

Empirically, we have the following observations, validating our theoretical intuition. First, the cho-
sen log probability increases only in the single token case, and the short suffix chosen log prob-
ability decreases less than that of the long suffix, aligning with our theoretical results. (Figure [3).
Second, the gradient cosine similarity increases as the suffix (i.e., the number of identical tokens in
the response) grows, with the single token case being the lowest (Figure da)). This aligns with our
gradient condition (7)), where the drop in chosen log probability depends on the magnitude of the
gradient inner product. Finally, we inspect the token-wise gradient inner product heatmap for the
long suffix case (Figure[db). We observe from the diagonal of the heatmap that the inner product be-
tween the gradients on the tokens “positive” and “negative” is below 0, whereas for identical tokens
in the two responses, the gradient cosine similarity is high. Our investigation into the token-level
gradient inner product raises new questions about the role of token-level information in preference
optimization and how we can leverage this fine-grained information to develop new algorithms.

5 IMPLICATIONS

In this paper, we touch upon a common pitfall of margin-based preference optimization methods
in language alignment: it underspecifies the ideal behavior of the LM on the chosen and rejected
responses individually. Our gradient inner product condition suggests that when the chosen and re-
jected gradients are similar, their log probabilities will exhibit synchronized increases and decreases.
Using this gradient condition, we can categorize existing RLHF variants into two types: (1) those
that modify the criterion for the size of the inner product, as seen in the works listed in Table [2]
which rely on the same gradient inner product but apply different size criteria; and (2) those that
change the inner product of interest directly. As discussed in Section ] while the sentence-level
gradient inner product may be large, the token-level inner product can be small. A line of research,
such as advantage-based methods(Mudgal et al., 2023 |Setlur et al.l [2024), focuses on leveraging
token-level information to improve RLHF and falls under the second category.

Finally, at a high level, our work highlights the need to reconsider the current margin-based prefer-
ence optimization paradigm in language model alignment. While this approach may enable language
models to effectively learn contrasts between good and bad responses, it may not be well-suited for
settings where the focus is on the behavior of either the rejected or chosen samples—such as in
safety-critical alignment tasks or when distilling from a strong model.

10
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A ADDITIONAL DISCUSSION ON THE GRADIENT INNER PRODUCT
CONDITION IN SECTION 3]

A.1 DERIVATION FOR SPPO
Denote a = Vylog m(w) and b = Vylogn(l). For DPO, we see that the direction of winner and
loser is decided by (a,a — b) and (b,a — b).

Similarly, for any pairwise loss ¢(log 7 (w) —log 7 (1)), the above statement still holds. Now we take
a look at non-pairwise loss £sppo = (log (w) — B371)2 + (log (1) + B~1)2. We have

%ﬁ = —Volsero = —(log m(w) — 1) Vg logm(w) — (logm(l) + B~ 1) Vg logm(l).
Then
%logﬂ(i) = <V9 log 7(7), Zf>

= —(log m(w) — B~")(Velog (i), Vg log m(w)) — (logw(l) + B~")(Vglogm(i), Vglogm(l)).
We have
L rogn(w) ~ ~(ogr(w) ~ 4 {a,a) — (logm(1) + 5~)(a,b)

which means if we want log 7(w) to increase, we need

(a,b) _ B! —logm(w)

(a,a) Bl +logn(l)
Note that the inequality above implicitly assume that 3~ + log 7r(I) > 0. This is true in practice as
we set 37! to be extremely large. Similarly, if we want log 7(1) to decrease, we need
(ab) _ B! tlogn() _
(b,b) = Bl —logm(w) ’

We have o > 1. It seems SPPO can make sure that log 7(w) goes up more easily but also make
log () goes up more easily, compared to DPO.

B DERIVATION FOR THE GRADIENT INNER PRODUCTS IN SECTION [4]

B.1 LM WITH LEARNABLE LAST LINEAR LAYER: SINGLE TOKEN CASE
We prove Theoremﬂ]below. WLOG, assume T,, =1; = L,
(Vlogmy, Viegm) =(Vologm(ys | z,y5"), Velogm(yl" | z,y7"))

6 € R¥*V hp € R? is the hidden state for the L-th token, s(-) is the softmax function.

Velog(y, | 2,y5") = Vo (log s(hj,0)[y.,)) (14)
Vologn(yl' | 2,y ") = Vg (log s(hL,0)[y/]) (15)
Compute the gradient with chain rule,

Volognl = [=s()hp,---, (1 — s(iw))hp, -, —s(i)hy, -, —s(V)hg] (16)
Volognf = [—s()hy, -+, —=8(iw)hp, -, (1 —s(i))hr, -, —s(V)hz], (17)

iw, 4, are the index of token yZ and y in vocabulary, respectively. For any index i, s(i,,) denote
LLM’s output logit for the i-th token in vocabulary.

13
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Suppose at the initialization of 0, s(1) = - - = s(i,)) = - - - = 5(i;) = s(v) = 55 for M entries and
the rest V' — M entries have s(j) = 0. We note that the exact indices j of which s(j) = 1/M does
not matter as it would be the same index for both the chosen and rejected gradients.

1 1 1 1
Vigmy = [~37he,- -+, (1 — M) hiyees=gphn, s = 55hi] (18)
N——
b —th i—th
1 1 1 1
Viegn| = [=7he, -, =370 (1 — M) hiyees = q7hil (19)
w—th i—th
M-2 1 M-1 1
(Viogmy, Viegni') = — = hell* =2+ o7 - == llhel® = =7l 20)

(Vlegms

w?

Vlog it > is negative. While in comparison, the norm of V log 7% and V log 7l is large:

M -1 1)° M -1
IV tog b2 = [ tognf 12 = 22t pnag? o+ (1= 1) hat? = 2

Therefore, based on our condition:

1
(Vlegmy, Viegm) = —M||hL||2a
M -1

IVlogmy||* = [|[Vlog m|* = i

bz,

logm, T and logm; | .

B.2 LM WITH LEARNABLE LOGITS SETTING

We prove Theorem [3| below. We will set up some new notations first. First, we work with the case
where T, = T; = L is sentence length, V is the vocab size, y,,[1 : m — 1] = y[l : m — 1],
yw[m] # wilm], and yy,[m + 1 : L] = y;[m + 1 : L]. Note that for all ¢ € [L], the token y[i] € [V]
is an index.

Each row of the following matrix is 7g(-|z,y<?) € Ay where i is the row index. (Here, there is a
slight abuse of notation: A is the probability simplex.) s : RY — Ay is the softmax function.

S(aw[la:]) 5(§l[17 ])
. | s@ufm, ) | s@m |
[0, 1]L \% =) We(xvyw) = S(@w) = S(éw[m_~_ 1, ]) s 7T9(£C,yl) = S(HI) = S(?l[fln—l— 1, D =
S@ull,]) ] @) ]

Each row s(6[i,:]) € Ay. The first m rows are the same for 6, and 6, because the tokens up to row
m are the same between y,, and y;. The index at row ¢ corresponding to the selected token will be
denoted as j;, a generic vocab index is j. Note that, j; = j;,, = j; fori # m, and j;,, # j;, for
1=m.

Next, the corresponding gradient matrices V log 5(8,,), V log s(;) can be specified by:
0 0

REXY 5 Vylog s@ulis jia]) = |Va,plogs@uliii])| . Vologs@) = | Vg log s@ili, )

0 0

14
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where

) R | ) e [slid] £
vG[i,:] 1Og5(9[7’a]z ]) €R", and fOI'] € [V]? V9[1‘,:] logs(e[lujz D[]] - {1 _ 5[27]] lfj _ j;k
where s[i, j] = s(0[i,:])[j], log s(8[i, j;]) is j}-th entry of log s(6]i,:]), and V log s(0]i, j])[j] is
the j-th entry of the gradient of log s(A[i, j]).

The sentence-wise gradient is

Viog s(0,(1, j5]) — Viog s(6.[1, 57])

legS(ew[m7j* ])—Vlogs(@w[m,j* D
RLXV SVl e m,w 7 m,l
=V 10g 5(0ulm + 1,5 ]) — Vieg s@im + 1, j,.])

Vlog s(0u (L, ji]) — Viog s(0i[L, j;])
0 -

Viog s(0uw[m, jiw]) — Viog s(0u[m, i, 1)
Viog s(0w[m + 1,j5,1]) — Viog s(@pm + 1, 5, 14])

Viogs(0y[L,j1]) — Vg s(0; [L,75])

Now, let’s first derive the token-wise condition for the selected token (learning rate n = 1):
Chosen response: if i = m, we have

L
Alog s(Guli, i) = Y (Vg s(@ulm, iy, ), VLI, ) = (Viog s(Bulm, jy, ), VLM, )

/=1

=(Vlog s(0uw[m, jim,w)), V1og s(0wlm, j, 1) — V1og s(0uw[m, jp, 1))

= 3 sulm | (- sulm gl )P
' F i w

- Yo selm G| swlm W)= swlm g, W)+ swlm, g (1= swlm, g, )
F' T w3 FI
=L+ (swlm, jml = swlms jm,w]) 2 0, 21

where the last inequality is true because s € [0, 1]. Here, basically, this margin loss will just encour-
age increase the chosen logP (and reduce the rejected one) for the selected token.

Chosen response: if i # m, we have

L

Alog s(Bu[i, 57 ,)) ~ Z<v log 5(0, i, 37]), VLI, 2]) = (Vlog s(0ui, j7]), VLI, ])
=(Vlog s(8,[i,5;]), Vlog s(8,[i, ;1) — Vlog s(@li, j;]))
=(1 = suli, 371 (s1li, 371 = swli 571) = Y swlis 3'1(s1li, 5] = swliy 4'1) (22)

J'#I;

Here, basically, the loss can only pick one direction to change both chosen and rejected entry.

Connection to derivation in Pal et al.|(2024). The assumption in|Pal et al.[(2024) mainly ensures
the sign of (22). Basically, smaug’s assumption ensures that for i € [m + 1, L], s,,[i, j7] > si[i, j7]
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and sy, [1, j] < s1[i, j] for j # ji.

silt, 1] — sty 1] >0
Vlog s(0,[i,j7]) — Vleg s(8i]i, j;]) = | sili, 7] — swli,ji] | = [<0
sili’, V] = swli’, V] >0

For (22)), we have

(1= s i, 551 (sl 37] = swli 571 = Y swlis 3')(sili, 5] = swli, §7) < 0.
J'#I7
This ensures the chosen token will have reduced logP.
Condition on chosen tokens increasing and rejected token decreasing at m, and on chosen and
rejected tokens decreasing after m + 1:

(21) > 0 always holds,
Vi€ [m+1,L], swli,ji] = sild, j;], Vi # 57 swli, ] < sili,j] = @2) <0

C EXPERIMENT DETAILS

C.1 HARDWARE AND SOFTWARE SETUP

Our experiments were implemented using TRL version 0.11.0. The training was performed on a
hardware setup consisting of two NVIDIA H100 GPUs, providing substantial computational power
for the training process.

C.2 TL;DR TASK SETUP

For the TL;DR summarization task, we utilized the CarperAl/openai_summarize_comparisons
dataset. We employed two LLMs for this task:

¢ mistralai/Mistral-7B-Instruct-v0.3 (referred to as Mistral 7B)
¢ meta-llama/Meta-Llama-3-8B-Instruct (referred to as Llama-3 8B)

We did not perform any supervised fine-tuning step prior to the RLHF training for these models.

To optimize the training process, we applied Low-Rank Adaptation (LoRA) with a rank of 64 to
both models. The learning rate was set at 5 x 10~° for all RLHF training.

C.3 RLHF ALGORITHM CONFIGURATIONS
We implemented several RLHF algorithms, each with its own specific configurations:

¢ Direct Preference Optimization (DPO): 5 = 0.1
¢ Chosen NLL term (used in CPO, RRHF, and SLiC-HF): A = 1

e SLiC-HF: 6 =1
e SimPO: v = 0.5
* R-DPO: o =0.2

* DPOP: A =50

C.4 SENTIMENT ANALYSIS TASK SETUP
For the sentiment analysis task, we used a specially curated sentiment dataset. Unlike the TL;DR

task, we performed supervised fine-tuning on the GPT-2 model before proceeding with the RLHF
training. The learning rate for this RLHF training was also set to 5 x 1076,
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C.5 ADDITIONAL EMPIRICAL RESULTS

CPO DPO DPOP

IPO R-DPO RRHF
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0 2,000 4,000 0 2,000 4,000 0 2,000 4,000
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Figure 5: Training dynamics of the chosen and rejected log probabilities on the TL;DR dataset for
different preference optimization algorithms trained on Llama-3 8B. All algorithms exhibit synchro-
nized increases and decreases in the chosen and rejected log probabilities. Note: For SimPO and
IPO, the log probabilities are normalized, while in the other plots, they are the original log probabil-
ities.
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Figure 6: Training dynamics of the chosen and rejected log probabilities on the TL;DR dataset for
different preference optimization algorithms trained on Mistral 7B. All algorithms exhibit synchro-
nized increases and decreases in the chosen and rejected log probabilities. Note: For SimPO and
IPO, the log probabilities are normalized, while in the other plots, they are the original log probabil-
ities.

17



Under review as a conference paper at ICLR 2025

cpPo DPO DPOP
0.50
\ \“_____—
R-DPO RRHF
5 pﬂ%_ Model
'ré 0.50 — Mistral 7B
S — Llama-3 8B
o
SPPO SimPO SlicHF
0.50 f
2,000 4,000 6,000 2,000 4,000 6,000 2,000 4,000 6,000
Step

Figure 7: Cosine similarity between Vg log 7, and Vg logm; on the TL;DR dataset for different
preference optimization algorithms trained on Llama-3 8B and Mistral 7B.
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