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ABSTRACT

With the advancement of diffusion models (DMs) and the substantially increased
computational requirements, quantization emerges as a practical solution to obtain
compact and efficient low-bit DMs. However, the highly discrete representation
leads to severe accuracy degradation, hindering the quantization of diffusion models
to ultra-low bit-widths. This paper proposes a novel weight binarization approach
for DMs, namely BinaryDM, pushing binarized DMs to be accurate and efficient
by improving the representation and optimization. From the representation perspec-
tive, we present an Evolvable-Basis Binarizer (EBB) to enable a smooth evolution
of DMs from full-precision to accurately binarized. EBB enhances information
representation in the initial stage through the flexible combination of multiple
binary bases and applies regularization to evolve into efficient single-basis bina-
rization. The evolution only occurs in the head and tail of the DM architecture
to retain the stability of training. From the optimization perspective, a Low-rank
Representation Mimicking (LRM) is applied to assist the optimization of binarized
DMs. The LRM mimics the representations of full-precision DMs in low-rank
space, alleviating the direction ambiguity of the optimization process caused by
fine-grained alignment. Comprehensive experiments demonstrate that BinaryDM
achieves significant accuracy and efficiency gains compared to SOTA quantization
methods of DMs under ultra-low bit-widths. With 1-bit weight and 4-bit activation
(W1A4), BinaryDM achieves as low as 7.74 FID and saves the performance from
collapse (baseline FID 10.87). As the first binarization method for diffusion models,
W1A4 BinaryDM achieves impressive 15.2× OPs and 29.2× model size savings,
showcasing its substantial potential for edge deployment.

1 INTRODUCTION

Diffusion models (DMs) (Ho et al., 2020; Song & Ermon, 2019) have shown excellent capabilities in
generation tasks in various fields, such as image (Ho et al., 2020; Song & Ermon, 2019; Song et al.,
2020b), vision (Mei & Patel, 2023; Ho et al., 2022), and speech (Mittal et al., 2021; Popov et al.,
2021; Jeong et al., 2021). DMs have become one of the most popular generative model paradigms
with significant quality and diversity advantages. DMs generate data through the iterative noise
estimates, while up to 1000 iterative steps slow the inference process and rely on expensive hardware
resources. Although some proposed methods can effectively reduce the number of iterations to dozens
of times (Song et al., 2020a; San-Roman et al., 2021; Nichol & Dhariwal, 2021; Bao et al., 2022),
the complex neural network of DMs also results in a large number of floating point calculations and
memory usage in each step, which hinders the efficient deployment and inference on edge. Therefore,
the compression of DMs has been widely studied as a practical technology to accelerate the iterative
process and reduce the inference cost, including quantization (Li et al., 2023b; Shang et al., 2023),
distillation (Salimans & Ho, 2022; Luo, 2023; Meng et al., 2023), pruning (Fang et al., 2023), etc.

Low-bit quantization emerges as a practical approach to compress deep learning models by reducing
the bit-width of parameters (Yang et al., 2019; Gholami et al., 2022), and also has satisfactory
generality to various network architectures. Thus, with quantization, diffusion models can enjoy the
compression and acceleration brought by fixed-point parameters and computation in inference (Li
et al., 2023b;a; Shang et al., 2023; Huang et al., 2024b). The 1-bit quantization, namely binarization,
allows the binarized model to enjoy compact 1-bit parameters and efficient computation (Liu et al.,
2020; Xu et al., 2021b;a). With the most aggressive bit-width, 1-bit weights can lead to up to 32×
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Figure 1: Overview of BinaryDM, consisting of Evolvable-Basis Binarizer to enhance information
representation and Low-rank Representation Mimicking to improve optimization direction.

size reduction and replace expensive floating-point multiplications with addition constructions during
inference, thus saving resources significantly (Rastegari et al., 2016; Frantar et al., 2023).

However, binarized DMs suffer significant performance degradation compared to their full-precision
counterparts. The performance decline primarily arises from two aspects: First, weight binarization
severely restricts the feature extraction capability of diffusion models, causing significant damage
to information in critical representations of generative models. Though several weight binarization
methods strive to mitigate binarization errors and enrich representations by floating-point scaling
factors (Rastegari et al., 2016; Liu et al., 2020; Qin et al., 2023), the number of candidate values for
each weight still drops from 232 to 21. The limited information-represent capacity of binarized filters
leads to severe loss when compressing from full-precision initialization to 1-bit binarization. This
fact causes catastrophic consequences for DMs that highly require representation capacity. Second,
introducing discrete binarization functions in diffusion models poses a significant hurdle to stable con-
vergence. Existing quantization-aware training methods for DMs usually employ direct output-based
supervision (Li et al., 2023b; He et al., 2023). Binarization introduces significant errors in forward
parameters and backward gradients, leading to disruptions in the optimization direction (Courbariaux
et al., 2016; Gong et al., 2019). Learning the fine-grained details embedded in the synthetic features
can contribute to the overall optimization process of binarized DMs. Unfortunately, the disruptive
influence of extreme discretization becomes pronounced in this context, rendering the convergence
vulnerable to disturbances and, in some cases, seemingly unattainable.

In this paper, we propose BinaryDM to push the weights of diffusion models toward binarization. The
proposed method pushes the weights of diffusion models toward accurate and efficient binarization,
considering the representation and computation properties. BinaryDM applies quantization-aware
training to binarized DMs accurately for efficient inference, which takes the representation and
computation properties of diffusion models into account and is composed of two novel techniques:
From the representation perspective, we present an Evolvable-Basis Binarizer (EBB) to recover the
representations generated by the binarized DM. EBB first applies dual sets of binary bases with
learnable scalars to significantly enhance the feature extraction capability of the initial binarized
weights, then evolves the high-order bases to the single-basis form guided by regularization loss. It
is selectively applied only to key parameter locations of the DM architecture to reduce unnecessary
evolution processes, easing the training burden and making the evolution smoother. From the
optimization perspective, a Low-rank Representation Mimicking (LRM) is incorporated to enhance
the binarization-aware optimization of diffusion models. LRM projects binarized and full-precision
representations to low-rank, enabling the optimization of binarized DM to focus on the principal
direction and mitigate direction ambiguity caused by the representation complexity of generation.

Comprehensive experiments show that our proposed BinaryDM has significant accuracy and efficiency
gains compared to DMs binarized by existing SOTA binarization and low-bit quantization methods.
Our BinaryDM can consistently outperform the baseline on DDIM and LDM with binary weight,
especially with ultra-low bit-width activation. For example, on CIFAR-10 32×32 DDIM, the precision
metric of BinaryDM even exceeds the baseline by 9.46% (baseline 5.92 vs. BinaryDM 6.48) with
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1-bit weight and 4-bit activation (W1A4), saving the binarized DM from collapse. BinaryDM even
outperforms the higher bit-width SOTA quantization methods of DM. For LDM-8 on LSUN-Churches
256×256, W1A4 BinaryDM exceeds W4A4 EfficientDM in the FID metric by 4.43. As the first
binarization method for DMs, BinaryDM yields impressive 15.2× and 29.2× savings on OPs and
model size, demonstrating the vast advantages and potential for deploying the DM on edge.

2 RELATED WORK

Diffusion models (DMs) demonstrate outstanding performance across a diverse range of tasks (Ho
et al., 2020; Song & Ermon, 2019; Song et al., 2020b; Niu et al., 2020; Mittal et al., 2021; Popov et al.,
2021; Jeong et al., 2021). However, their slow generation process presents a significant challenge
to widespread implementation. Substantial research has focused on reducing the number of time
steps to expedite the generation process (Watson et al., 2021; Chen et al., 2020; Song & Ermon, 2019;
Song et al., 2020b). Despite the reduction in time steps, the noise estimation network of DMs still
demand expensive computation and memory for each step.

Quantization and binarization are explored widely as popular compression techniques (Nagel
et al., 2020; Li et al., 2020; Wei et al., 2022; Lin et al., 2021). These methods involve quantizing the
full-precision parameters to lower bit-width (e.g., 1-8 bit). By converting floating-point weights and
activations into quantized values, the model size can be significantly reduced. This size reduction
decreases computational complexity and substantially improves inference speed, memory usage,
and energy consumption savings (Shang et al., 2023; Li et al., 2023a). One notable technique,
quantization-aware training (Gholami et al., 2022; Qin et al., 2020; Yang et al., 2019), involves
compressing DMs within a training/fine-tuning pipeline to update parameters (Li et al., 2023b; He
et al., 2023). Despite these advancements, achieving 1-bit quantization for the weights of DMs
remains a formidable challenge. This underscores the need for further research to unlock the potential
benefits of 1-bit binarization in DMs. Appendix A presents more details about related works.

3 BINARYDM

3.1 PRELIMINARIES

In the forward process of diffusion models, Gaussian noise is added to data x0 ∼ q(x) in T times via
a schedule βt controlling noise strength, the process can be expressed as

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (1)

where xt ∈ {x1, · · · ,xT } denote the noisy samples at t-th step. The reverse process aims to generate
samples by removing noise, approximating the unavailable conditional distribution q (xt−1 | xt)
with learned distributions pθ (xt−1 | xt), which can be expressed as

pθ (xt−1 | xt) = N
(
xt−1; µ̃θ (xt, t) , β̃tI

)
. (2)

The mean µ̃θ (xt, t) and variance β̃t could be derived using the reparameterization (Ho et al., 2020):

µ̃θ (xt, t) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ (xt, t)

)
, β̃t =

1− ᾱt−1

1− ᾱt
· βt, (3)

where αt = 1 − βt, ᾱt =
∏t

i=1 αi, and ϵθ denotes a function approximation with the learnable
parameter θ, which predicts ϵ from xt. The U-Net with spatial transformer layers is applied as
the architecture of the noise estimation network in common practices. For the training of DMs, a
simplified variant of the variational lower bound is usually applied as the loss function to achieve
high sample quality, which can be expressed as

Lsimple = Et,x0,ϵt

[∥∥ϵt − ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵt, t

)∥∥2] . (4)

The binarization and quantization compress and accelerate the noise estimation model by discretizing
weights and activations to low bit-width. In the baseline of the binarized diffusion model, the
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Figure 2: Comparison of binarized weights(channel-wise) for a convolutional layer. EBB possesses a
broader representation range at the early stage and then gradually transitions to a single-basis state,
while the quantitative information entropy H further illustrates its enhanced representation capacity.

weight w ∈ θ is binarized to 1-bit by wbi = σ sign(w) (Rastegari et al., 2016; Courbariaux et al.,
2016), where sign function confine w to +1 or -1 with 0 thresholds, wbi ∈ θbi denotes the binarized
weight, and θbi denotes the binarized noise estimation network. σ is the floating-point scalar, which
is initialized as ∥w∥

n (n denotes the number of weight elements) and learnable during training
process following (Rastegari et al., 2016; Liu et al., 2020). The activation is quantized by the LSQ
quantizer (Esser et al., 2019). With the 32× compressed weight, the computation of noise estimation
can also be replaced with integer additions, achieving significant compression and acceleration.

3.2 EVOLVABLE-BASIS BINARIZER

In the current baseline, weights are quantized to 1-bit values to economize on storage and computation
during inference, and activations can be quantized to integers. However, the extensive discretization
of weights to binary in DMs results in a notable deterioration of the generated representations. The
bit-width of each weight element is limited to the original 1

32 , significantly restricting the information-
carrying capacity of DMs. Previous works present a straightforward approach that enhances binarized
parameters via higher-order residual bases (Li et al., 2017; Huang et al., 2024a; Chen et al., 2024a)
have achieved significant success in terms of accuracy, but the introduced additional bases result
in substantial additional hardware overhead, making them unsuitable for practical deployment
on existing hardware architectures. While these methods do not achieve full binarization, they
significantly help the model approach full-precision performance.

These findings led us to consider the significance of higher-order residual binarization for DMs, as
it notably enhances the information space and improves representational capacity. To utilize the
representation capability of high-order bases while avoiding redundant costs during inference, we
sought to use residual binarized structures as transitional structures and evolve during training. This
would allow fully binarized DMs to start from a more favorable initial state, resulting in a smoother
optimization process and better final outcomes.

We propose the Evolvable-Basis Binarizer (EBB) to address the adaptation challenges binarized
DMs face during the early optimization stages due to structural limitations. EBB is implemented in
two stages during training. The first stage uses higher-order residual multi-basis with regularization
penalties, then transitions into the second stage with simple single-basis binary weights.

Learnable Multi-Basis. In the forward propagation of the first stage, EBB is defined as

wbi
EBB = σI sign (w) + σII sign (w − σ1 sign (w)) , (5)

where the σI and σII are learnable scalars which are initialized as σ0
I = ∥w∥

n and σ0
II =

∥w−σ1 sign(w)∥
n ,

respectively, ∥ · ∥ denotes the ℓ2-normalization. The inference of layer binarized by EBB involves the
computation of multiple bases. For instance, the convolution in binarized DM is

o = a×wbi
EBB = σI (a⊗ sign (w)) + σII (a⊗ sign (w − σ1 sign (w))) , (6)

where a denotes the activation, and × and ⊗ denote the convolution consisting of multiplication and
addition instructions (Rastegari et al., 2016; Hubara et al., 2016), respectively.
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In the backward propagation of EBB, the gradient of the learnable scalars is calculated as follows:

∂wbi
EBB

∂σI
=

{
sign (w) (1− σII sign (w)) , if σI sign (w) ∈ (w − 1,w + 1) ,

sign (w) , otherwise,
(7)

∂wbi
EBB

∂σII
= sign (w − σ1 sign (w)) , (8)

where the Straight Through Estimator (STE) is applied to approximate the sign function during
backward. With the binary basis with different learnable scalars, the representation capability of
quantized weights can be significantly enhanced. The residual initialization makes the optimization
of binarized DM start from an error-minimizing state. As presented in Figure 2, at the initialization
at iteration-0, EBB exhibits significantly higher information entropy and a richer representational
space. With EBB, the representation of weights is considerably more diversified than the binarized
DM baseline, providing a more favorable initialization state for optimization.

Transition Strategy. We adopt a two-stage training process with a regularization strategy, allowing
the DM to transition from an initial multi-basis structure to full binarization. In the first stage,
regularization loss is applied to the higher-order learnable scaling factors, encouraging them to
approach zero:

LEBB = τ
1

N

N∑
i=1

σi
II, (9)

where N denotes the number of basic layers (e.g., convolutional, linear) in the noise estimation
network of DMs, and τ are hyperparameter coefficients used to balance the loss terms, typically set
to 9e-2.

In the second stage, all higher-order terms are removed, and the forward propagation is simplified to:

wbi = σI sign (w) . (10)

Through regularization penalties, EBB can smoothly evolve from an initially more information-rich
residual state to a single-basis state suitable for inference. As shown by the evolution process in
Figure 2, the dequantized weights of EBB gradually converge to a bimodal distribution consistent
with full binarization as iterations progress. However, EBB consistently retains more information
throughout the process, making the overall optimization of the binary DM easier.

Location Selection. In our BinaryDM, the proposed EBB is partially applied to crucial and parameter-
sparse locations of the diffusion models while retaining concise vanilla binarization at other locations
to reduce unnecessary evolution processes and the associated training overhead. Specifically, we
apply EBB where the feature scale is greater or equal to 1

2 input scale, i.e., the first and last six layers
with only the 15% of whole parameters in the noise estimation network of BinaryDM. In contrast,
other layers keep consistent with the binarized DM baseline with vanilla binarizers. On the one hand,
applying EBB to these key parameter locations within DM architectures significantly enhances the
information processing capacity of binarized DMs in the early stages of optimization, leading to a
better overall learning process. On the other hand, using a vanilla binarizer for intermediate layers,
which contain the most parameters but are less sensitive to quantization loss, reduces the instability
caused by switching between stages for unimportant components and lowers the training overhead.

3.3 LOW-RANK REPRESENTATION MIMICKING

In the quantization-aware training of DMs, the discretization of parameter space caused by weight
binarization and activation quantization function and the inaccurate gradient approximation involved
in the derivation process bring difficulties to the stable convergence of binarized DM. Since having
almost the same architecture, the original full-precision DM can be regarded as an oracle of the
binarized one. Therefore, an intuitive approach is to assist the training of binarized DMs by mimicking
the representation of full-precision replicas. During training, aligning outputs and intermediate
representations of binarized DMs with full-precision counterparts can provide additional supervision,
accelerating the convergence of quantized DMs significantly.

However, there are issues directly aligning the intermediate representations of binarized and full-
precision DMs during optimization. Firstly, fine-grained alignment of high-dimensional representa-
tion leads to a blurry optimization direction for DMs, especially when mimicking the intermediate
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Figure 3: The impact of different distillation loss functions on the output features of each block in
both full-precision DM and binary DM, measured by the L2 distance. Our proposed LRM enables
the binarized DM to have the best information-mimicking capability.

features is introduced. Secondly, compared to the full-precision DM, the intermediate features in the
binarized one are derived from a discrete latent space since the discretization of parameters makes it
difficult to mimic the full-precision DM directly.

Therefore, we propose Low-rank Representation Mimicking (LRM) to efficiently optimize the
BinaryDM by mimicking full-precision representations in a low-rank space. We group the full-
precision DM θFP based on the timestep embedding modules composed of residual convolution and
transformer blocks. The intermediate representation can be denoted as ε̂FP

θi
(xt, t) ∈ Rh×w×c. We

use principal component analysis (PCA) to project representations to low-rank space. The covariance
matrix for representations of the full-precision DM is

Ci =
1

(h× w)
2 ε̂

FP
θi (xt, t) ε̂

FP
θi

T (xt, t) , (11)

where θi represents the composition of the top i modules. The eigenvector matrix Ei ∈ Rc×c is

Ei
TCiEi = Λi, (12)

where Λi is the diagonal matrix of eigenvalues of Ci, arranged in descending order. We take the
matrix composed of the first ⌈ c

K ⌋ column eigenvectors of Ei as the transformation matrix, denoted

as E⌈ c
K ⌋

i , where ⌈·⌋ denotes the round function and K denotes to the reduction times of dimension.
We use E

⌈ c
K ⌋

i to project the intermediate representation of both full-precision and binarized:

RFP
i (xt, t) = ε̂FP

θi (xt, t)E
⌈ c
K ⌋

i , Rbi
i (xt, t) = ε̂bi

θbi
i
(xt, t)E

⌈ c
K ⌋

i , (13)

where ε̂bi
θi
(xt, t) denotes the intermediate representation of the i-th layer in the DM with binarized

parameters θbi, and RFP
i (xt, t) and Rbi

i (xt, t) denote the low-rank representations of full-precision
and binarized DMs, respectively, with the same shape h× w × ⌈ c

K ⌋. The K empirically defaults as
4 and is detailed ablated in Appendix B.2.

We then leverage the obtained low-rank representation to drive the binarized DM to learn the full-
precision counterpart. We construct a mean squared error (MSE) loss between the i-th module of
low-rank representations between full-precision and binarized DMs:

LLRMi =
∥∥RFP

i −Rbi
i

∥∥ . (14)

The total loss function is composed of Eq.4, Eq.9 and Eq.14:

Ltotal = Lsimple + LEBB + λ
1

M

M∑
i=1

LLRMi, (15)

where M denotes the number of timestep embedding modules in the noise estimation network of
DMs, and λ is a hyperparameter coefficient to balance the loss terms, typically set to 1e-4.

Since the computation cost of obtaining the transformation matrix E
⌈ c
K ⌋

i in LRM is significantly
expensive, we compute the matrix by the first batch of input and keep it fixed during the training

6
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BinaryDMBaseline

Figure 4: Visualization of samples generated by the binarized DM baseline and W1A4 BinaryDM.

Table 1: Comparison for unconditional generation on CIFAR-10 32× 32 by DDIM with 100 steps

Method #Bits IS↑ FID↓ sFID↓ Prec.↑
FP 32/32 8.90 5.54 4.64 67.92

LSQ 2/32 8.17 18.56 8.30 59.22
Baseline 1/32 7.84 22.59 6.83 60.23
BinaryDM 1/32 8.28 11.92 5.42 61.84

LSQ 2/8 7.64 29.66 30.63 58.76
Baseline 1/8 7.94 20.25 9.38 59.42
BinaryDM 1/8 8.47 11.21 5.49 62.65

LSQ 2/4 4.04 137.75 43.68 40.74
Baseline 1/4 5.92 100.17 51.06 36.46
BinaryDM 1/4 6.48 87.77 51.73 37.25

process. The fixed mapping between representations is also beneficial to the optimization of binarized
DMs from a stability perspective, as updates to the transformation matrix could significantly alter
the direction of binary optimization, which would be disastrous for DMs with high demands for
representational capacity and optimization stability.

LRM enables binarized DMs to mimic the representation of full-precision counterparts, improving
the optimization process by introducing additional supervision. As shown in Fig 3, LRM effectively
brings the local block closer to the full-precision block. Furthermore, by applying low-rank projec-
tions based on the principal components from full-precision representations before representation
mimicking, the binarized DM can be optimized along clear and stable directions, accelerating the
convergence of the model. Furthermore, binarized and full-precision DMs have entirely consistent
architectures, making representation mimicking between them natural.

4 EXPERIMENT

We conduct experiments on various datasets, including CIFAR-10 32× 32 (Krizhevsky et al., 2009),
LSUN-Bedrooms 256× 256 (Yu et al., 2015), LSUN-Churches 256× 256 (Yu et al., 2015), FFHQ
256× 256 (Karras et al., 2019) and ImageNet 256× 256 (Deng et al., 2009), for both unconditional
and conditional image generation tasks over DDIM and LDM. The evaluation metrics used in our
study encompass Inception Score (IS), Fréchet Inception Distance (FID) (Heusel et al., 2017), Sliding
Fréchet Inception Distance (sFID) (Salimans et al., 2016), and Precision-and-Recall. We implement
and evaluate the DMs binarized by our BinaryDM and the baseline presented in Section 3.1, where
LSQ (Esser et al., 2019) is employed uniformly as activations quantizers. Several SOTA quantization
methods for DMs with 2∼8 bits weights are also considered (He et al., 2023; Li et al., 2023a;b; So
et al., 2024). Detailed settings are presented in Appendix B.1.

4.1 MAIN RESULTS

Unconditional Generation. We first conduct experiments on the CIFAR-10 dataset. As shown in
Table 1, the binarized DM baseline suffers a severe breakdown in this low-resolution scenario, while
our method significantly recovers the performance. Under the W1A4 bit-width, BinaryDM surpasses

7
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Table 2: Results for LDM on multiple datasets in unconditional generation by DDIM with 100 steps.

Model Dataset Method #Bits Size(MB) FID↓ sFID↓ Precision↑ Recall↑

LDM-4 LSUN-Bedrooms
256× 256

FP 32/32 1045.4 3.09 7.08 65.82 45.36
LSQ 2/32 69.8 7.49 12.79 64.02 37.60
Baseline 1/32 35.8 8.43 13.11 65.45 29.88
BinaryDM 1/32 35.8 6.99 12.15 67.51 36.80
Q-Diffusion 2/8 69.8 62.01 33.56 16.48 14.12
LSQ 2/8 69.8 6.48 11.66 62.55 38.92
Baseline 1/8 35.8 9.37 12.10 64.36 30.76
BinaryDM 1/8 35.8 6.51 11.67 65.80 35.28
Q-Diffusion 4/4 134.9 427.46 277.22 0.00 0.00
EfficientDM 4/4 134.9 10.60 - - -
LSQ 2/4 69.8 12.95 12.79 55.97 34.30
Baseline 1/4 35.8 10.87 15.46 64.05 26.50
TDQ 1/4 35.8 11.28 12.80 55.14 27.32
ReActNet 1/4 35.8 10.23 13.02 61.43 29.68
Q-DM 1/4 35.8 9.99 11.96 57.62 29.30
INSTA-BNN 1/4 35.8 9.42 12.39 60.05 31.08
BI-DiffSR 1/4 35.8 8.58 11.81 62.61 30.86
BinaryDM 1/4 35.8 7.74 10.80 64.71 32.98

LDM-8 LSUN-Churches
256× 256

FP 32/32 1125.2 4.82 17.66 75.18 46.80
LSQ 2/32 74.1 8.16 19.87 74.98 35.76
Baseline 1/32 38.1 9.91 17.94 74.89 26.88
BinaryDM 1/32 38.1 8.14 17.44 75.51 34.56
Q-Diffusion 2/8 74.1 201.23 238.70 2.39 8.60
LSQ 2/8 74.1 8.11 19.25 77.04 34.98
Baseline 1/8 38.1 10.94 16.95 74.30 25.66
BinaryDM 1/8 38.1 8.63 15.13 77.74 33.48
EfficientDM 4/4 144.2 14.34 - - -
Q-Diffusion 4/4 144.2 198.35 184.43 5.48 0.12
LSQ 2/4 74.1 10.00 19.08 74.93 25.80
Baseline 1/4 38.1 12.98 21.55 70.78 25.30
BinaryDM 1/4 38.1 9.91 18.04 73.72 29.96

LDM-4
FFHQ

256× 256

FP 32/32 1045.4 6.64 14.16 76.88 50.82
Q-Diffusion 4/32 134.9 11.60 10.30 - -
Baseline 1/32 35.8 10.49 11.56 72.64 39.62
BinaryDM 1/32 35.8 8.70 9.68 73.92 42.22
Q-Diffusion 8/8 265.0 10.87 10.01 - -
Q-Diffusion 4/8 134.9 11.45 9.06 - -
Baseline 1/8 35.8 10.79 10.77 73.20 41.70
BinaryDM 1/8 35.8 9.58 10.74 74.48 41.75
Baseline 1/4 35.8 15.07 12.48 74.34 35.12
BinaryDM 1/4 35.8 12.34 11.18 74.83 38.09

the binarized baseline by 9.46% in IS metrics on the CIFAR-10 and outperforms the LSQ under
W2A4, where the latter involves several times of computation and storage.

Our LDM experiments encompass the evaluation of LDM-4 on LSUN-Bedrooms and FFHQ datasets,
along with the assessment of LDM-8 on the LSUN-Churches dataset. The experiments utilized the
DDIM sampler with 100 steps, and the detailed outcomes are presented in Table 2. We showcase
results across various activation bit widths in the context of weight binarization, comparing them
with the outcomes of some quantization methods at higher bit settings. The conventional binary
baseline method exhibits subpar performance in the LDM context and experiences a further decline
in the W1A4 experimental setup, particularly noticeable in the LSUN-Bedrooms dataset. In contrast,
BinaryDM significantly enhances the generation quality, especially for LDM-4, exhibiting consistent
performance across different activation bit settings. Notably, when compressing from W1A32 to
W1A4 on the LSUN-Bedrooms dataset, the FID increased by a mere 0.75 for BinaryDM, showcasing
its robustness. From the evaluation results of LDM-4 on FFHQ datasets, it can be observed that
BinaryDM outperforms all other methods under various settings in terms of sFID, even surpassing
W8A8 Q-Diffusion with a bit-width of W1A8. Moreover, BinaryDM demonstrates more significant
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Table 3: Results on ImageNet 256× 256 in conditional generation by DDIM with 20 steps.

Sampler Method #Bits IS↑ FID↓ sFID↓ Prec.↑

DDIM

FP 32/32 235.84 12.96 25.99 92.63
Baseline 1/32 197.85 11.50 23.44 84.83
BinaryDM 1/32 215.55 10.86 21.10 88.43
Baseline 1/8 203.90 11.35 25.49 85.78
BinaryDM 1/8 211.43 11.23 24.12 88.09
Baseline 1/4 187.70 11.51 20.77 84.13
BinaryDM 1/4 208.42 10.78 20.40 87.61

PLMS

FP 32/32 247.38 13.54 18.85 94.22
Baseline 1/32 211.69 11.23 21.32 86.16
BinaryDM 1/32 226.86 11.00 19.01 91.17
Baseline 1/8 205.58 12.78 21.57 84.07
BinaryDM 1/8 225.18 11.33 19.18 90.35
Baseline 1/4 193.11 11.08 23.21 81.40
BinaryDM 1/4 218.06 10.36 18.85 88.74

DPM-Solver

FP 32/32 242.27 13.10 19.82 93.53
Baseline 1/32 203.98 11.22 23.49 83.52
BinaryDM 1/32 214.91 11.07 20.61 87.71
Baseline 1/8 188.21 12.83 25.01 80.14
BinaryDM 1/8 216.27 11.68 20.52 88.36
Baseline 1/4 178.47 11.67 26.72 77.27
BinaryDM 1/4 206.80 10.83 20.68 85.34

advantages at lower activation bit-widths, achieving accurate generation with an FID of 12.34 under
4-bit activation. BinaryDM even approaches the generation quality of the full-precision model, with
specifically generated image examples provided in Appendix B.3.

Conditional Generation. For conditional generation, the performance of our BinaryDM is evaluated
on the ImageNet dataset with a resolution of 256×256, focusing on LDM-4. We employ three distinct
samplers to generate images: DDIM, PLMS, and DPM-Solver. The results in Table 3 underscore the
remarkable effectiveness of our BinaryDM on DDIM, surpassing the baseline consistently across
almost all evaluation metrics and even outperforming the full-precision diffusion model in several
cases. The binarized DM baseline performs relatively stable in configurations W1A32 and W1A8 but
significantly declines under W1A4, with the IS decreasing to 187.70 when using the DDIM sampler.
In contrast, our BinaryDM maintains an IS of 208.42 in W1A4. Specifically, when utilizing the
DPM-Solver sampler, the IS plummets to 178.47, and the sFID experiences a sharp increase to 26.72.
In stark contrast, our binarized DM maintains consistently high performance, achieving a 206.80 IS
and a 20.68 FID and outperforming the baseline in most scenarios.

4.2 ABLATION STUDY

We perform comprehensive ablation studies for LDM-4 on the LSUN-Bedrooms dataset to evaluate
the effectiveness of our proposed EBB and LRM, and the results are presented in Table 7.

The performance has shown significant recovery when first applying our EBB to binarized diffusion
models, with the FID decreasing from 8.43 to 7.39. This confirms that the degradation in parameter
representational capacity due to binarization is a primary performance bottleneck in the binarized DM
baseline. Solving this representation degradation is a prerequisite for improving model performance.
From a structural perspective, EBB provides binarized diffusion models with an initial state with a
higher information capacity, alleviating the degradation of representational ability in the early stages
and guiding QAT toward a more easily optimizable direction.

With the application of LRM on this basis, the generative capability of the resulting binarized
diffusion models is further enhanced, with the FID decreasing to 6.99. This indicates that the
low-rank mimicking scheme, designed from a feature-matching perspective, effectively utilizes the
representational information of the full-precision model, achieving supervision and alignment of
intermediate features and better guiding the optimization of the binarized diffusion models.

Further substantiating this view, the detailed ablation experiments in Appendix B.2 delve into an
in-depth discussion of the specifics concerning EBB and LRM. Combining these two techniques in
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Table 4: Ablation results on LSUN-Bedrooms 256× 256.

Method #Bits FID↓ sFID↓ Prec.↑ Recall↑
FP 32/32 3.09 7.08 65.82 45.36

Vanilla 1/32 8.43 13.11 65.45 29.88
+EBB 1/32 7.39 12.34 65.98 35.84
+LRM 1/32 6.99 12.15 67.51 36.80

BinaryDM can significantly enhance performance, emphasizing that a better optimization process
can improve the quality of generation when ensuring accurate representation.

4.3 EFFICIENCY ANALYSIS

For inference, we demonstrate the size and OPs of BinaryDM under different activation bit-widths.
The results in Table 5 indicate that our DM can achieve up to 29.2× space savings while obtaining
up to 15.2× acceleration during inference, fully harnessing the advantages of binary computation.
BinaryDM achieves optimal inference efficiency while surpassing the performance of advanced
methods with higher bit widths. The W1A1 BinaryDM achieves a lower FID compared to the W4A4
EfficientDM, while its model size and OPs are only 26.5% and 25.9% of the latter, respectively.

For training, while the training process for our binarized DM typically incurs higher overhead
compared to post-training quantization methods, practical observations reveal that our approach
offers productivity advantages across various models and datasets. As shown in Table 6, despite
having a training time shorter than the calibration time required by Q-Diffusion, our method attains
significantly superior generation quality, particularly at lower bits.

Table 5: Inference efficiency of our proposed BinaryDM of LDM-4 on LSUN-Bedrooms 256× 256.

Model Method #Bits Size(MB) OPs(×109) FID↓

LDM-4

Full-Precision 4/4 1045.4 96.0 3.09
Q-Diffusion 4/4 134.9 24.3 427.46
EfficientDM 4/4 134.9 24.3 10.60
LSQ 2/4 69.8 12.3 12.95
BinaryDM 1/4 35.8 6.3 7.74

Table 6: Training time-cost of BinaryDM compared to the advanced PTQ method.

Dataset Method #Bits Size(MB) Time(h) FID↓

LSUN-Bedrooms Q-Diffusion 4/4 134.9 13.7 427.46
BinaryDM 1/4 35.8 11.3 13.93

LSUN-Churches Q-Diffusion 4/4 144.2 10.9 198.35
BinaryDM 1/4 38.1 9.0 15.11

5 CONCLUSION

In this paper, we propose BinaryDM, a novel accurate quantization-aware training approach to push
the weights of diffusion models towards the limit of binary. Firstly, we present an Evolvable-Basis
Binarizer (EBB) to enable the QAT of binarized DMs to start from a more favorable initial state,
leading to a smoother optimization process and better final results. Secondly, a Low-rank Repre-
sentation Mimicking (LRM) is applied to enhance the binarization-aware optimization of the DM,
alleviating the optimization direction ambiguity caused by fine-grained alignment. Comprehensive
experiments demonstrate that BinaryDM achieves significant accuracy and efficiency gains compared
to SOTA quantization methods of DMs under ultra-low bit-widths. As the first binarization method
for diffusion models, W1A4 BinaryDM achieves impressive 15.2× OPs and 29.2× storage savings,
showcasing substantial advantages and potential for deploying DMs on edge.
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A DETAILS OF BINARYDM

Diffusion Models have showcased remarkable performance across a diverse array of tasks (Ho
et al., 2020; Song & Ermon, 2019; Song et al., 2020b; Niu et al., 2020; Mittal et al., 2021; Popov
et al., 2021; Jeong et al., 2021). These tasks involve a forward Markov chain process, wherein
generated noisy samples are incrementally added through Gaussian noise. Subsequently, a reverse
denoising process refines these samples, producing high-fidelity images. However, the diffusion
model’s slow generation process poses a significant challenge to widespread implementation. To
address this issue, substantial research has concentrated on reducing the time steps required for
diffusion model generation. Techniques such as trajectory search can be formulated as dynamic
programming problems (Watson et al., 2021), and grid search has demonstrated the ability to discover
effective trajectories within a mere six-time steps (Chen et al., 2020). Moreover, the introduction
of non-Markov diffusion processes has been instrumental in expediting sampling during the reverse
process (Song & Ermon, 2019; Song et al., 2020b), with the application of numerical methods to
solve associated equations resulting in a notable reduction in the number of iterations to just a few
dozen. Efforts to address these challenges have led to exploring faster step size schedules for VP
diffusions, demonstrating the ability to maintain relatively good quality and diversity metrics (San-
Roman et al., 2021). Additionally, analytical approximations have been derived to simplify the
generation process (Bao et al., 2022). These developments mark strides towards enhancing the
efficiency and practicality of diffusion models in various applications. Despite these advancements,
the denoising models still involve a considerable number of parameters, demanding substantial
computation and memory resources for each denoising step. This computational expense hinders the
practical implementation of the inference process on standard hardware.

Quantization and Binarization are popular compression approaches (Nagel et al., 2020; Li et al.,
2020; Wei et al., 2022; Lin et al., 2021), which quantize the full-precision parameters of the neural
network to lower bit-width (e.g., 1-8 bit). By converting floating-point weight and activation into
quantized ones, the model size of the neural network can be decreased, and the computational
complexity can also be reduced, leading to significant inference speedup, memory usage saving, and
lower energy consumption. Model quantization methods for diffusion models are generally divided
into two categories based on their pipeline and resource access during training or fine-tuning: post-
training quantization (Shang et al., 2023; Li et al., 2023a; Huang et al., 2024b) and quantization-aware
training (Li et al., 2023b; He et al., 2023). As a training-free method, post-training quantization
is considered a more practical solution to obtain quantized models at low cost by searching for
the best scaling factor candidates and optimizing the calibration strategy. However, the diffusion
models quantized by post-training methods dramatically degrade generation quality (Shang et al.,
2023; Li et al., 2023a). Thus, quantization-aware training emerges for pushing quantized neural
networks to higher accuracy (So et al., 2024; Li et al., 2023b; He et al., 2023). Benefiting from the
training/fine-tuning process with sufficient data and training resources, the low-bit diffusion model
obtained by quantization-aware training methods usually achieves higher accuracy than post-training
ones. However, binarization for the weight of diffusion models is still far from available since it
suffers serious accuracy degeneration challenges in existing methods.

B EXPERIMENTS AND VISUALIZATION

B.1 EXPERIMENT SETTINGS

Experimental Hardware. All our experiments were conducted on a server with Intel Xeon Gold
6336Y 2.40@GHz CPU and NVIDIA A100 40GB GPU.

Models and Dataset. We perform comprehensive experiments encompassing unconditional image
generation and conditional image generation tasks on two diffusion models: pixel-space diffusion
model DDIM and latent-space diffusion model LDM. Specifically, we conduct experiments on DDIM
using the CIFAR-10 dataset with a resolution of 32 × 32. For LDM, our investigations spanned
multiple datasets, including LSUN-Bedrooms, LSUN-Churches, and FFHQ, all with a resolution of
256× 256. Furthermore, we employ LDM for conditional image generation on the ImageNet dataset
with a resolution of 256 × 256. This diverse set of experiments, conducted on different models,
datasets, and tasks, allows us to comprehensively validate our proposed method’s effectiveness.
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Proposed Quantization Baselines. We use per-channel quantizers for weights and per-layer quan-
tizers, as is a common practice. To the best of our knowledge, the weights of the diffusion model
have not yet been binarized, and we found in our initial attempts that the basic BNN without scaling
factors would collapse directly at the beginning of training. Hence, we utilize the fundamental
binary quantizer, as outlined in Section 3.1, as the baseline for weight quantization. LSQ serves as
the foundational method for activations quantization. Under the uniform premise that the weights
are binarized, we use a variety of quantization bit-widths for activations to cover as many realistic
situations as possible. It’s crucial to emphasize that we only quantize the diffusion model without
quantizing the VAE part of the LDM. Additionally, we quantized the layers closest to the input and
output to 8-bit, adhering to a common practice in this context.

Compared Advanced Strategies. In addition to the Baseline strategy we constructed, we also
compared BinaryDM against advanced general binarization strategies and quantization strategies
for diffusion models. The advanced general quantization strategies include the low-bit approach
LSQ (Esser et al., 2019), as well as binarization strategies such as ReActNet (Liu et al., 2020) and
INSTA-BNN (Lee et al., 2023). Quantization strategies for diffusion models include the PTQ strategy
Q-Diffusion (Li et al., 2023a) and QAT strategies such as EfficientDM (He et al., 2023), Q-DM (Li
et al., 2024), TDQ (So et al., 2024), and BI-DiffSR (Chen et al., 2024b). These comparisons with
advanced methods highlight the effectiveness of BinaryDM.

Pipeline and hyperparameters. Our quantization-aware training (QAT) is based on the pre-trained
diffusion model, and the quantizer parameters and latent weights are trained simultaneously. The
overall training process is relatively consistent with the original training process of DDIM or LDM.
Relative to the training hyperparameters of the full precision model, we adjust the learning rate,
reducing it to one-tenth to one-hundredth of the corresponding rate in the original full precision
training script, especially on certain datasets, such as CIFAR-10 and ImageNet. For DDIM training,
we set the batch size to 64, while for LDM training, the batch size is configured as 4. Typically,
models are trained for around 200K iterations.

Evaluation. To assess the generation quality of the diffusion model, we utilize several evaluation
metrics, including Inception Score (IS), Fréchet Inception Distance (FID), Sliding Fréchet Inception
Distance (sFID), and Precision-and-Recall. We randomly generate 50,000 samples from the model
in each evaluation and compute the metrics using reference batches. The reference batches used
to evaluate FID and sFID contain all the corresponding datasets, while only 10,000 images were
extracted when Precision and Recall were calculated. These metrics are all evaluated using ADM’s
TensorFlow evaluation suite.

Efficiency. We utilize Time and OPs as metrics for evaluating training efficiency and theoretical
inference efficiency, respectively. For OPs, taking the convolutional unit as an example, the BOPs
definition for binary convolution operations is as follows (Yang et al., 2024; Wang et al., 2021):

BOPs ≈ whmnk2babw. (16)

It is composed of bw bits for weights, ba bits for activation, n input channels, m output channels, a
k × k convolutional kernel, and output dimensions of width w and height h for each channel. As
there might also be full-precision modules in the model, the total OPs of the model are summed up
according to the following method (Bethge et al., 2020):

OPs =
(

1
64BOPs+ FLOPs

)
. (17)

B.2 ADDITIONAL RESULTS

Further Ablation Study on W1A4. The ablation experiments in our main text were conducted
on W1A32, as the highlight of BinaryDM lies in achieving weight binarization for DM, with
the activation quantization method always using a naive scheme without any additional complex
techniques. Here, we also supplement the ablation results on the more efficient W1A4 model. As
shown in the table below, when EBB was added alone, the generative performance of the binary DM
improved significantly, with the FID decreasing from 10.87 to 8.53. After adding LRM, the FID
further decreased to 7.74, clearly illustrating the effectiveness of their synergistic effect.

Effects of EBB. We conducted comprehensive experiments on various aspects of EBB’s specific
details to validate its effectiveness further.
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Table 7: Ablation results on LSUN-Bedrooms 256× 256.

Method #Bits FID↓ sFID↓ Prec.↑ Recall↑
FP 32/32 3.09 7.08 65.82 45.36

Vanilla 1/4 10.87 15.46 64.05 26.50
+EBB 1/4 8.53 11.99 62.94 30.78
+LRM 1/4 7.74 10.80 64.71 32.98

As a supplement to the ablation study on the final generation performance (Table 7) in the main text,
we present in Table 8 the changes in training loss (Lsimple) at different iterations. The results indicate
that EBB consistently achieves lower training loss, demonstrating its benefits for convergence.

Table 8: Training loss (Lsimple) at different iterations on LSUN-Bedrooms, comparing the baseline
and the addition of EBB.

Method #Bits Iterations

1e1 1e2 1e3 1e4 1e5

Baseline 1/32 0.388 0.303 0.277 0.227 0.158
+EBB 1/32 0.352 0.264 0.242 0.206 0.151

The results in Table 9 and Table 10 demonstrate that applying EBB significantly improves the
generative quality of binarized diffusion models, highlighting the effectiveness of EBB. Furthermore,
not applying EBB to the Central Parts yields better optimization results. The results in Table 10
demonstrate that applying EBB significantly improves the generative quality of binarized diffusion
models, highlighting the effectiveness of EBB. Furthermore, not applying EBB to the Central Parts
yields better optimization results. This suggests that applying EBB only to the key parts reduces the
number of parameter updates when transitioning to the second stage, thus leading to a more stable
optimization process for binarized diffusion models. Specifically, applying EBB to regions with high
parameter counts but lower sensitivity to binarization can lead to suboptimal optimization stability,
resulting in worse performance compared to applying EBB selectively. Additionally, while Head and
Tail Parts (12) achieves lower training loss in the first 1000 iterations compared to Head and Tail
Parts (6), its weaker transition to full weight binarization results in higher loss at 100K iterations.
This suggests that applying EBB only to the key parts reduces the number of parameter updates when
transitioning to the second stage, thus leading to a more stable optimization process for binarized
diffusion models.

Table 9: The impact of EBB application scopes on LSUN-Bedrooms (1/2), where Head and Tail
Parts refers to how many of the first and last Timestep Embed Blocks and Central Parts refers to the
middle Blocks.

Head and Tail Parts Central Parts #Bits Iterations

1e1 1e2 1e3 1e4 1e5

0 0 1/32 0.335 0.291 0.268 0.202 0.141
3 0 1/32 0.335 0.263 0.230 0.184 0.138
6 0 1/32 0.332 0.238 0.199 0.178 0.130
0 0 1/32 0.331 0.223 0.201 0.183 0.133

12 1 1/32 0.331 0.225 0.197 0.188 0.136

We conducted extensive experiments to verify the impact of the regularization loss coefficient µ on
training, as shown in Table 11. Here, µ = 0 indicates that no regularization penalty is applied in
the first stage, and the second learnable scalar σII is directly removed at the beginning of the second
stage. The results demonstrate that the transition process using the regularization strategy leads to
better optimization outcomes for the binarized DM. Furthermore, EBB shows good robustness to µ,
with a moderately larger µ yielding better final generative performance.
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Table 10: The impact of EBB application scopes on LSUN-Bedrooms (2/2).

Head and Tail Parts Central Parts #Bits FID↓ sFID↓ Precision↑ Recall↑
0 0 1/32 8.02 12.81 64.83 33.12
3 0 1/32 7.20 12.27 65.62 34.98
6 0 1/32 6.99 12.15 67.51 36.80
0 0 1/32 7.10 12.22 65.41 36.42

12 1 1/32 7.10 12.29 66.41 34.54

Table 11: The impact of the regularization loss coefficient µ on LSUN-Bedrooms 256× 256.

µ #Bits FID↓ sFID↓ Prec.↑ Recall↑
0 1/32 8.01 13.16 64.34 30.06

9e-2 1/32 6.99 12.15 67.51 36.80
9e-3 1/32 7.26 12.26 65.10 34.44
9e-4 1/32 7.18 11.83 66.96 34.54

We conducted experiments on the timing of EBB’s transition to the second stage. In Table 12, an
iteration of 0 indicates that EBB is not applied. The results demonstrate the effectiveness of EBB
and the transition strategy with regularization penalties, with a slightly longer regularization phase
yielding marginally better final generative outcomes for binarized DMs.

Table 12: The impact of the iteration at which EBB transitions to the second stage on LSUN-
Bedrooms 256× 256.

Iterations #Bits FID↓ sFID↓ Prec.↑ Recall↑
0 1/32 8.22 13.02 61.45 32.88

10000 1/32 7.08 12.30 64.99 36.18
100000 1/32 6.99 12.15 67.51 36.80

Effects of LRM. As a supplement to the ablation study on the final generation performance (Table 7)
in the main text, we present in Table 13 the changes in training loss (Lsimple) at different iterations.
The results indicate that LRM consistently achieves lower training loss, demonstrating its benefits for
convergence.

Table 13: Training loss (Lsimple) at different iterations on LSUN-Bedrooms, comparing the no
distilation, MSE and the addition of LRM.

Method #Bits Iterations

1e1 1e2 1e3 1e4 1e5

Baseline 1/32 0.388 0.303 0.277 0.227 0.158
LMSE 1/32 0.388 0.303 0.277 0.227 0.158
LLRM 1/32 0.352 0.264 0.242 0.206 0.151

We evaluate the performance of our binarized diffusion model under various values of K (reduction
times of dimension) when incorporating LRM. Additionally, we compare these results with the
outcomes of applying MSE distillation directly to the output features of blocks without dimensionality
reduction. The experiments reveal the model’s generation capability improves effectively when an
appropriate degree of dimension reduction is employed, as illustrated in Table 14.

As an additional clarification on stability, we also conducted experiments where the dimensionality
reduction matrix E

⌈ c
K ⌋

i is updated every 100 iterations. As shown in the Table 15, while using LRM
consistently yields improvements (with FID decreasing from 7.39 to 7.11/6.99), the approach of
initializing the matrix once and retaining it throughout results in the highest accuracy. This further
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Table 14: In the application of LRM, the impact of different reduction times of dimension on the
experimental results on LSUN-Bedrooms 256× 256.

Ldistil K #Bits FID↓ sFID↓ Prec.↑ Recall↑
- - 1/32 7.39 12.34 65.98 35.84

LMSE - 1/32 7.36 12.76 62.05 33.64

LLRM

2 1/32 7.21 12.22 65.86 36.00
4 1/32 6.99 12.15 67.51 36.80
8 1/32 6.95 12.02 64.20 35.44

confirms our analysis that fixing the dimensionality reduction matrix and not updating it is more
beneficial for stable optimization.

Table 15: Results of different update frequency of LRM on LSUN-Bedrooms.

Update Frequency (/iter) #Bits FID↓ sFID↓
0 (w/o LRM) 1/32 7.39 12.34
100 1/32 7.11 12.23
∞ (BianryDM) 1/32 6.99 12.15

Further Efficiency Analysis. We pointed out in the main text that certain high-order-based structures
are computationally unfriendly. In fact, The models produced by our method save 1.96x in parameters
(Size) and 2.00x in computational operations (OPs) during inference, and we have also provided
hardware implementations. Specifically, methods based on higher-order residual bases require more
sets of binarized weights and corresponding scaling factors during inference compared to Baseline or
BinaryDM (Eq.10):

wbi = σI
(
wbi

I

)
+ σII

(
wbi

II

)
. (18)

This at least doubles the parameter count and OPs. Additionally, although multiple sets of bases
in higher-order methods are expected to be processed in parallel during inference, we found in our
research that, to date, there has not been any implementation of this, making them computationally
less efficient.

For actual hardware, we implemented convolution and linear layers unit by unit to estimate the overall
model, utilizing the general deployment library Larq[1] on a Qualcomm Snapdragon 855 Plus to test
the actual runtime efficiency of the aforementioned single convolution. Since the current deployment
libraries do not support direct computation for W1A4, we used a combined approach to achieve it via
W1A1. Specifically, for the W1A4 operator, since there is no existing 4-bit activation implementation,
we decompose the activation as follows:

k · a4bit = 4k · ba1bit1 + 2k · ba1bit2 + k · ba1bit3 +
1

2
k · ba1bit4 − 1

2
k, (19)

where

• k is the scaling factor of fp32 activation,

• a4bit ∈ {−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7},

• ba
1bit
i ∈ {−1, 1}, i ∈ {1, 2, 3, 4}.

As a result, the computation of 1-bit weights with int4 can be straightforwardly decomposed into the
computation of 1-bit weights with 4 1-bit activations and one bias term ( 12k), based on the W1A1
operator provided by Larq, with the addition of limited arithmetic operations. The runtime results for
a single inference are summarized in the Table 16. Due to limitations of the deployment library and
hardware, Baseline/BinaryDM achieved a 4.62x speedup, while High-Order only achieved an 3.11x
speedup. With further hardware support for binary operations, BinaryDM is expected to achieve
performance closer to the theoretical OPs calculations (15.2x), further widening the gap between its
implementation and that of high-order methods.
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Table 16: The actual runtime efficiency of a single convolution.

Method #Bits Size(MB) Theoretical OPs(×109) Runtime(µs/convolution)

FP 32/32 1045.4 96.0 176371.0
High-Order 1/4 70.2 12.6 56657.5
BinaryDM 1/4 35.8 6.3 38174.2

B.3 VISUALIZATION RESULTS

Visualization of the impact of LRM. As a complement to Figure 3, we present the distance in
output features between binary DM and full-precision DM on more blocks under different distillation
losses. As shown in Figure 5, our proposed PCA-based distillation strategy consistently possesses the
optimal guiding constraint capability.

No Distillation

TimestepBlock-01

-D
is

ta
nc

e

Training Iteration

TimestepBlock-02 TimestepBlock-03 TimestepBlock-04 TimestepBlock-05 TimestepBlock-06

MSE LRM

TimestepBlock-07 TimestepBlock-08 TimestepBlock-09 TimestepBlock-10 TimestepBlock-11 TimestepBlock-12

TimestepBlock-19 TimestepBlock-20 TimestepBlock-21 TimestepBlock-22 TimestepBlock-23 TimestepBlock-24

TimestepBlock-13 TimestepBlock-14 TimestepBlock-15 TimestepBlock-16 TimestepBlock-17 TimestepBlock-18

Figure 5: A comprehensive record of the impact of different distillation loss functions on the output
features of each block in both full-precision DM and binarized DM, measured using the L2 distance.

Additional Random Samples. We showcase random generation results on various datasets, with
unconditional generation on LSUN-Bedrooms, LSUN-Churches, and FFHQ datasets, and conditional
generation on ImageNet. Overall, BinaryDM exhibits the best generation performance across datasets
and maintains relatively stable performance as the activation bit-width decreases from 32 to 4 bits. In
contrast, the Baseline lacks detailed textures and experiences significant performance degradation as
the activation bit-width decreases.
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W1A32 Baseline W1A32 BinaryDM

W1A4 Baseline

W1A8 Baseline

W1A4 BinaryDM

W1A8 BinaryDM

Figure 6: Samples generated by BinaryDM and Baseline on LSUN-Bedrooms 256 x 256

W1A32 Baseline W1A32 BinaryDM

W1A4 Baseline

W1A8 Baseline

W1A4 BinaryDM

W1A8 BinaryDM

Figure 7: Samples generated by BinaryDM and Baseline on FFHQ 256 x 256

W1A32 Baseline W1A32 BinaryDM

W1A4 Baseline

W1A8 Baseline

W1A4 BinaryDM

W1A8 BinaryDM

Figure 8: Samples generated by BinaryDM and Baseline on LSUN-Churches 256 x 256
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Figure 9: Samples generated by BinaryDM and Baseline on ImageNet 256 x 256
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