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A RANDOM WALKS TO ORBITS 15 AND 18

We will start by defining hitting time as used in random walks over graphs (Burioni & Cassi, 2005).
Our notation is listed in Table 45.

The expected hitting time of a random walk starting from node v and reaching node w is

H(v, w) = E [min{t ∈ N \ {0} : Xt = w} | X0 = v] .

By definition, the first hitting time of a node on itself is typically defined as zero, i.e., H(v, v) = 0.

Theorem 1 (Remote Connection Candidates). Let H(v, w) denote the expected hitting time from
node v to node w in G. For any node v ∈ V , nodes in orbits 15 and 18 are the most effective
candidates for establishing paths to the most remote parts of G, due to their longer expected hitting
times H(v, w) compared to other nodes not in these orbits.

Proof: It is known that the hitting time H(v, w) is influenced by the structural configuration of
the graph and the position of the nodes within it. Kahn et al. have proved that for any regular graph
G = (V , E), the maximum hitting time H(v, w) is bounded by O(n2) (Kahn et al., 1989), where n
is the number of nodes. The expected time of the first hit from v to w is affected by the structural
properties of the graph. Consider a node w appearing in orbits 15, 18, or both. By the definition of
graphlets G9 and G10, we have i) deg(w) = 1 when connected to a single graphlet and ii) the first
hitting time of w is influenced by the configuration of nodes adjacent to w. As a result, H(v, w) is
greater than H(v, z) for all z ∈ N(w). Extending this, on the shortest path from v to w, H(v, w) is
the maximum hitting time among all paths from v to any node in V .

Target node v can be at the center or away from the center.

Center case. Due to their peripheral placement in graphlets, nodes in orbits 15 and 18 are further
away from central nodes or densely connected regions of the graph; their hitting times are expected
to approach the upper bound of n2 due to their increased distance from other nodes in G.

Periphery case. The target node v may not necessarily be at the center of the graph. However, by the
definition of orbits 15 and 18, there is at least one node in these orbits (perhaps the other end of the
same graphlet) that has the longest distance to the target node v. This further increases the hitting
time, as the random walk must navigate through central nodes and potentially longer paths to reach
these peripheral nodes. □

B GRAPH NEURAL NETWORK

Graph Neural Networks are pivotal in learning node embeddings by capturing node features and their
local network neighbourhoods. These embeddings encapsulate the essential characteristics of the
nodes into condensed representations by leveraging both the graph structure and feature information
from neighbouring nodes. Such embeddings have practical applications across various domains,
which are detailed further in related work section 3.

B.1 BACKBONE MODELS

In our evaluation of various models, we incorporated baseline models utilizing Graph Neural Networks
(GNNs). In this section, we will elucidate the rationale behind each baseline model utilized in our
study.

The Graph Convolutional Network (GCN): as introduced by Kipf & Welling (2016), provides
a foundational model for understanding and analyzing the vulnerabilities exposed by our proposed
attack model. GCN employs a message-passing technique that utilizes the features of neighbouring
nodes, making it susceptible to adversarial manipulations that can alter node connections and lead
to misclassifications. Here, we provide a detailed overview of the GCN architecture, particularly
focusing on the structure of its graph convolutional layer (i.e., hidden layer H(l+1)):

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

)
(3)
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In this formulation, Ã = A+ IN represents the adjacency matrix of the undirected graph augmented
with self-loops, and IN is the identity matrix. The matrix W(l) denotes the trainable weight matrix
for layer l, optimized during backpropagation. D̃ii =

∑
j Ãij defines the degree matrix, and σ

represents a non-linear activation function.

Setting H(0) = X (i.e., the initial node features), the GCN model with l layers computes node
classifications as follows:

Z = f(A,X) = softmax(AXΘ) = softmax(Âσ(ÂXW1)W2) (4)

Here, Â = D̃− 1
2 ÃD̃− 1

2 acts as the renormalized adjacency matrix, X is the feature matrix, and Θ
includes the set of parameters (e.g., W1, W2) to be learned. The matrix Z ∈ Rn×c represents the
probabilities of C = {ci} for each node v ∈ V , with each row indicating the likelihood of each class
label c for a node.

GCNs operate under both inductive and transductive settings. We focus on transductive classi-
fication, where all node connections and features are accessible during the training phase. For
such tasks, the softmax function normalizes the final output matrix Z, and the cross-entropy loss
L = −

∑
v∈Vtr

logZv,yv is calculated, comparing the predicted probabilities to the true labels,
where yv represents the true class of node v. Weight updates are performed using gradient descent
optimization algorithms, such as Adam (Kingma & Ba, 2014).

The Graph Isomorphism Network(GIN): is another type of GNN designed to respect graph
isomorphisms. It produces the same embedding for isomorphic graphs. Although the learning process
is similar to the GCN, it uses a different aggregation function. The following equation (Xu et al.,
2018) shows the calculation of the hidden layer H(l+1). where, ϵ(l) is a trainable parameter and
MLP(l) is a multi layer perception.

H(l+1) = σ
(
(1 + ϵ(l)) ·MLP(l)(H(l))

)
(5)

GraphSAGE: is a type of GNN which also gathers information from the neighboring nodes like
GCN but in a slightly difference way. The following equation (Hamilton et al., 2017) shows the
aggregation of node feature X using a sampling strategy, where, AGG is an aggregation function
such as mean or max pooling.

H(l+1)
v = AGG

(
{H(l)

u ,∀u ∈ N (v)}
)

(6)

B.2 BASELINE MODELS

In this subsection, we present a brief idea of the existing state-of-the-art adversarial techniques that
we have considered as comparable baseline methods.

Nettack (Zügner et al., 2018): is a targeted attack method to enforce misclassification on the target
nodes using edge and feature perturbations, which can handle both direct and influence attacks.

FGA attack (Chen et al., 2018): is a targeted attack method to enforce misclassification on the target
nodes using graph perturbations by generating adversarial graph networks based on the gradient
information of GCN.

SGAttack (Li et al., 2021): is a targeted attack method to enforce misclassification on the target
nodes using features or edges perturbations through a multi-stage attack framework, which needs
only a much smaller subgraph.

PRBCD attack (Geisler et al., 2021): is a sparsity-aware first-order optimization strategy that
effectively targets GNNs by optimizing parameters in a manner that scales quadratically with the
number of nodes.

Random attack: it randomly selects non-adjacent node pairs and introduces fake edges or removing
existing edges between them.
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B.3 DEFENSE METHODS

We provide a brief overview of existing state-of-the-art adversarial defense techniques that effectively
counteract adversarial attacks, these defense methods are considered to demonstrate the effectiveness
of the GOttack approach.

RobustGCN (Zhu et al., 2019): improves GCN robustness by representing nodes as Gaussian
distributions to absorb perturbations. Moreover, it uses a variance-based attention mechanism to
assign weights to node neighborhoods.

GCN-Jaccard (Wu et al., 2019): enhances GCN robustness by removing edges between nodes with
low Jaccard similarity.

GCN-SVD (Entezari et al., 2020): leverages low-rank approximations of graphs to mitigate the
effects of adversarial attacks by focusing on high-rank singular components that are more susceptible
to perturbations.

MedianGCN (Chen et al., 2021): enhances the robustness by replacing the traditional weighted
mean aggregation scheme with a median-based approach.

C FURTHER ANALYSIS OF GRAPHLETS AND ORBITS

In this section, we present an overview of graphlets and their topological properties, followed by
the orbit 1518, which is the topological node embedding. Finally, we discuss the hierarchy of orbits
based on relation algebra.

C.1 TOPOLOGICAL PROPERTIES OF GRAPHLETS AND ORBITS

Figure 6: Graphlets with two to five nodes with the automorphism orbits of each graphlet (Hočevar &
Demšar, 2014).

Graphlets are small, connected, non-isomorphic induced subgraphs that represent topological patterns
of interconnection between k nodes in a graph (Feng & Chen, 2020). Figure 6 illustrates all graphlets
with two to five nodes, including 9 different graphlets with 2 to 4 nodes and up to 30 graphlets,
ranging from G0 to G29, with 5 nodes. However, the structural properties of a network can be
represented by the frequency of graphlet appearances within the network. The orbits define the unique
characteristics of the nodes within a graphlet, express different connection modes between nodes, and
contain abundant high-order structural information (Feng & Chen, 2020). For instance, consider the
graphlet G11 from the set of five-node graphlets. It can be observed that G11 is a star graph where the
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Table 6: Comparison of orbit-based node selec-
tion in sequential FGA phases.

Dataset Orbits % of nodes % in 1st Attack % in 2nd Attack

Cora
1518 24.00% 60.00% 45.00%
1519 14.41% 10.00 % 20.00%
1819 11.59% 15.00 % 02.50%

Citeseer
1518 21.99% 20.00% 15.00%
1519 21.18% 32.50 % 20.00%
1819 11.56% 15.00 % 05.00%

Polblogs
1518 09.41% 37.50% 37.50%
1519 02.29% 00.00% 00.00%
1819 12.93% 62.50 % 00.00%

Table 7: Comparison of orbit-based node selec-
tion in sequential SGA phases.

Dataset Orbits % of nodes % in 1st Attack % in 2nd Attack

Cora
1518 24.00% 51.00% 47.00%
1519 14.41% 12.00 % 13.00%
1819 11.59% 6.00 % 07.00%

Citeseer
1518 21.99% 37.00% 32.00%
1519 21.18% 27.00 % 26.00%
1819 11.56% 19.00 % 23.00%

Polblogs
1518 09.41% 52.00% 46.00%
1519 02.29% 08.00% 08.00%
1819 12.93% 07.00 % 10.00%

node labeled with orbit 23 is the central node, while the remaining nodes, labeled with orbit 22, are
leaf nodes. The topological context of a node can be determined by counting the orbits of that node.

Orbit counting is computationally expensive because the number of orbits in a graph grows exponen-
tially with the size of the original graph. However, many advanced algorithms have been developed
to mitigate the complexity of computing graphlets and orbits (Kloks et al., 2000; Hocevar & Demsar,
2014; Melckenbeeck et al., 2018; Kowaluk et al., 2013). Consequently, numerous studies leverage the
topological insights provided by graphlet and orbit counting across various domains. For example,
Feng & Chen (2020) used orbits counting as high-order structural features of nodes to learn efficient
node representations, which were then utilized to enhance link prediction tasks.

C.2 ADDITIONAL ANALYSIS OF 1518 ORBIT NODES

Connecting the 1518 orbit node with the target node v ∈ VT ⊆ V has been demonstrated to
significantly impact the prediction accuracy of GNNs fθ on the node v. This impact is also reflected
in the effectiveness of various attack methods, such as FGA and SGA, which frequently select the
1518 node for graph manipulations (e.g., adding or removing edges with v). Table 6 shows that in the
Cora dataset, up to 60% and 45% of the nodes manipulated by FGA in the first and second attacks,
respectively. Likewise, the node labeled as 1518 is consistently the primary target of SGA in both
the first and second attack scenarios across all datasets (ref. Table 7). For instance, in the Citeseer
dataset, SGA manipulates nodes in the first and second attacks at rates of 37% and 32%, respectively.
Similarly, in the Polblogs dataset, these percentages are 52% and 46% for the first and second attacks.

C.3 ORBIT HIERARCHY

15 1618 1920 22 2432

46 9

1 3

0

Graphlets Orbits on

four nodes

three nodes

two nodes

five nodes

Figure 7: Orbit hierarchy.

Based on the analysis of the impact of GOttack
discussed in 5.1 and experimental results, we
have concluded that the 1518 orbit is crucial for
attacking the GNNs. This raises the question:
what happens if the 1518 orbit node does not
exist in the network? To address this, we have
developed an orbit hierarchy (or orbit transition),
as shown in Figure 7, based on relational algebra.
From this hierarchy, we can see that if the 15
and 18 orbit nodes are absent, the attack model
can instead select nodes from orbits 4 and 6,
respectively. Similarly, if nodes from orbits 4
and 6 are not present, nodes from orbit 1 can be
chosen.

To better understand how the orbit transition approach works, let us consider the following example.

Example 2. Consider a 5-node graphlet G10, where orbits 18, 19, 20 and 21 are present (see Figure 6).
If orbit 18 is removed from G10, then it becomes the 4-node graphlet G4. Suppose G10 = (V, E) with
V = {v1, v2, v3, v4, v5} and edges E , where node v ∈ V belongs to one of the orbits Orbv18, Orbv19,
Orbv20 and Orbv21. If the removal operation ρ removes orbit node Orbv118, resulting in G4 = (V ′, E ′),
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where V ′ = V − {v1}. Therefore, by using the projection operations (π) the transition of orbits can
be written as: πOrbv21

(G10) → Orbv7 and πOrbv19,Orbv20
(G10) → Orbv6 , indicating that orbit Orbv21

transitions to orbit Orbv7 , and orbit Orbv19 and Orbv20 now belong to orbit Orbv6 .

D EXPERIMENTAL RESULTS ON ALL DATASETS

In this section, we present the results of our experiments. In Table 8, we demonstrate the success
of our GOttack strategy across five different datasets, with the results averaged over these datasets.
Detailed results for each individual dataset are provided in the subsequent Tables 9 to 21. We present
the results of various attack strategies, including GOttack and its variants such as 1819, 1519, and
1922. The results are presented as the mean and standard deviation computed from five independent
runs.

Table 8: Summary of attack results averaged over five datasets.

Budget 1 2 3 4 5
Random 0.15 0.22 0.28 0.31 0.38
Nettack 0.43 0.51 0.56 0.61 0.61
GOttack 0.44 0.54 0.61 0.65 0.68

1819 orbit attack 0.35 0.42 0.46 0.47 0.50
1519 orbit attack 0.37 0.41 0.44 0.45 0.46
1922 orbit attack 0.35 0.40 0.41 0.44 0.45

FGA 0.37 0.47 0.52 0.53 0.56
SGAttack 0.47 0.57 0.58 0.62 0.64
PRBCD 0.43 0.54 0.59 0.64 0.67

D.1 NON-DEFENSE GNN BACKBONE

In this section, we demonstrate the effectiveness of the proposed attack model; we evaluate the
performance of GOttack alongside various adversarial attack techniques on different non-defence
GNN backbones as discussed further in Section B.1, namely GCN,GIN,GraphSAGE. Based on the
analysis of the results, as shown in from Table 9 to Table 21 ,we conclude that the proposed GOttack
achieves the best performance with GSAGE in 13 out of 20 tasks, while attaining the second-highest
performance with GCN.

D.1.1 ATTACK RESULTS ON GCN

We present the performance of various adversarial attack techniques on GCN. Tables 9 to 13 display
the misclassification rates for various datasets with 1 to 5 perturbed edges, respectively. The proposed
GOttack method achieved the second highest performance in 8 out of 25 tasks, while PRBCD attained
the highest performance in 10 tasks. Additionally, SGA ranked third in 5 tasks.

D.1.2 ATTACK RESULTS ON GRAPHSAGE

The results of adversarial techniques on GraphSAGE are presented in Tables 14 to 17. In summary,
the proposed GOttack outperforms all baseline adversarial techniques by achieving the highest
misclassification rate in 13 out of 20 tasks. In addition, SGA performs the second highest performance
in 5 out of 20 tasks. Likewise, both PRBCD and Nettack have the third highest performance, with
scores of 1 in their respective tasks.

D.1.3 ATTACK RESULTS ON GIN

In this subsection, we discuss the performance of proposed GOttack along with various adversarial
attack techniques on GIN, as shown in Tables 18 to 21. Results show that GOttack outperforms all
baseline adversarial techniques in 7 out of 20 tasks, while SGA, PRBCD and Nettack achieve the
performance in 6, 5 and 1 tasks, respectively.
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Table 9: Misclassification rate (↑) on Cora with
budget ∆ = 1 to 5: GOttack achieves perfor-
mance in 1 out of 5 tasks (GCN model).

Budget → 1 2 3 4 5

Random 0.02± 0.029 0.05± 0.000 0.15± 0.100 0.23± 0.104 0.27± 0.076
Nettack 0.34± 0.060 0.50± 0.068 0.58± 0.057 0.66± 0.029 0.70± 0.011
GOttack 0.41 ± 0.052 0.54± 0.049 0.62± 0.033 0.66± 0.042 0.71± 0.052

1819 orbit attack 0.32± 0.063 0.45± 0.073 0.540± 0.076 0.60± 0.051 0.65± 0.025
1519 orbit attack 0.37± 0.029 0.47± 0.080 0.57± 0.062 0.62± 0.074 0.64± 0.072
1922 orbit attack 0.34± 0.078 0.43± 0.074 0.50± 0.075 0.57± 0.080 0.58± 0.069

FGA 0.32± 0.057 0.44± 0.080 0.53± 0.033 0.58± 0.048 0.61± 0.042
SGA 0.41± 0.058 0.59 ± 0.050 0.63 ± 0.070 0.69 ± 0.020 0.69± 0.060

PRBCD 0.41 ± 0.060 0.61 ± 0.072 0.64 ± 0.038 0.73 ± 0.014 0.76 ± 0.025

Table 10: Misclassification rate (↑) on Citeseer
with budget ∆ = 1 to 5: GOttack achieves highest
performance in 4 out of 5 tasks (GCN model).

Budget → 1 2 3 4 5

Random 0.02± 0.014 0.06± 0.038 0.17± 0.075 0.25± 0.066 0.30± 0.109
Nettack 0.46± 0.045 0.61± 0.038 0.68± 0.027 0.74± 0.021 0.76± 0.014
GOttack 0.46 ± 0.034 0.63 ± 0.037 0.72 ± 0.054 0.76 ± 0.063 0.78 ± 0.042

1819 orbit attack 0.44± 0.058 0.56± 0.038 0.67± 0.045 0.71± 0.029 0.74± 0.033
1519 orbit attack 0.45± 0.050 0.63 ±0.031 0.68 ± 0.018 0.73± 0.037 0.76± 0.021
1922 orbit attack 0.40± 0.033 0.55± 0.041 0.67± 0.033 0.70± 0.033 0.72± 0.0401

FGA 0.31± 0.107 0.48± 0.040 0.62± 0.068 0.64± 0.045 0.68± 0.069
SGA 0.41± 0.060 0.60± 0.050 0.63± 0.068 0.69± 0.022 0.69± 0.057

PRBCD 0.46 ± 0.044 0.57 ± 0.014 0.68 ± 0.038 0.70 ± 0.00 0.73 ± 0.014

Table 11: Misclassification rate (↑) on Polblogs
with budget ∆ = 1 to 5: GOttack achieves perfor-
mance in 0 out of 5 tasks (GCN model).

Budget → 1 2 3 4 5

Random 0.12± 0.043 0.09± 0.052 0.15± 0.075 0.19± 0.104 0.20± 0.101
Nettack 0.38± 0.040 0.43± 0.058 0.46± 0.063 0.50± 0.082 0.51± 0.072
GOttack 0.41 ± 0.086 0.46± 0.08 0.51± 0.089 0.52± 0.089 0.55± 0.077

1819 orbit attack 0.26± 0.193 0.35± 0.100 0.36± 0.183 0.41± 0.152 0.46± 0.089
1519 orbit attack 0.30± 0.198 0.30± 0.203 0.30± 0.164 0.32± 0.179 0.30± 0.178
1922 orbit attack 0.22± 0.184 0.25± 0.149 0.25± 0.156 0.26± 0.080 0.26± 0.038

FGA 0.31± 0.098 0.40± 0.078 0.45± 0.097 0.45± 0.089 0.48± 0.087
SGA 0.37± 0.075 0.56 ± 0.051 0.56 ± 0.037 0.57 ± 0.068 0.65 ± 0.020

PRBCD 0.42 ± 0.072 0.48± 0.058 0.55± 0.043 0.55± 0.043 0.58± 0.052

Table 12: Misclassification rate (↑) on BlogCat-
alog with budget ∆ = 1 to 5: GOttack achieves
performance in 0 out of 5 tasks (GCN model).

Budget → 1 2 3 4 5

Random 0.12± 0.092 0.17± 0.071 0.20± 0.097 0.25± 0.085 0.30± 0.082
Nettack 0.20± 0.027 0.25± 0.085 0.37 ± 0.072 0.40 ± 0.077 0.45 ± 0.065
GOttack 0.22 ± 0.040 0.25 ± 0.050 0.35± 0.062 0.37± 0.083 0.45± 0.075

FGA 0.10± 0.047 0.20± 0.083 0.27± 0.050 0.35± 0.031 0.37± 0.018
SGA 0.24 ± 0.030 0.28 ± 0.05 0.32± 0.050 0.37± 0.040 0.41± 0.070

PRBCD 0.33 ± 0.052 0.39 ± 0.072 0.41 ± 0.115 0.45 ± 0.146 0.50 ± 0.153

Table 13: Misclassification rate (↑) on Pubmed
with budget ∆ = 1 to 5: GOttack achieves highest
performance in 3 out of 5 tasks (GCN model).

Budget → 1 2 3 4 5

Random 0.20± 0.050 0.21± 0.014 0.27± 0.109 0.24± 0.072 0.25± 0.029
Nettack 0.50± 0.045 0.62 ± 0.037 0.67 ± 0.052 0.72± 0.032 0.75± 0.025
GOttack 0.57 ± 0.012 0.60± 0.037 0.65± 0.020 0.72 ± 0.012 0.75 ± 0.017

FGA 0.32± 0.025 0.48± 0.037 0.51± 0.012 0.50± 0.075 0.57± 0.050
SGA 0.57 ± 0.040 0.65 ± 0.067 0.65± 0.053 0.69± 0.021 0.72± 0.031

PRBCD 0.52 ± 0.038 0.63 ± 0.025 0.64 ± 0.043 0.70 ± 0.058 0.72 ± 0.038

Table 14: Misclassification rate (↑) on Cora with
budget ∆ = 1 to 5: GOttack achieves highest per-
formance in 4 out of 5 tasks (GraphSAGE model).

Budget → 1 2 3 4 5

Random 0.19± 0.115 0.30± 0.128 0.39± 0.052 0.39± 0.076 0.47± 0.100
Nettack 0.58± 0.045 0.66± 0.042 0.70± 0.067 0.74± 0.054 0.77± 0.027
GOttack 0.59± 0.055 0.78 ± 0.054 0.86 ± 0.014 0.88 ± 0.029 0.92 ± 0.033

1819 orbit attack 0.5± 0.053 0.52± 0.080 0.56± 0.135 0.52± 0.083 0.53± 0.080
1519 orbit attack 0.52± 0.031 0.54± 0.014 0.58± 0.037 0.59± 0.076 0.54± 0.065
1922 orbit attack 0.52± 0.045 0.59± 0.049 0.55± 0.04 0.57± 0.085 0.59± 0.045

FGA 0.54± 0.089 0.57± 0.082 0.68± 0.072 0.70± 0.108 0.71± 0.029
SGA 0.61 ± 0.060 0.68± 0.060 0.67± 0.090 0.78± 0.040 0.73± 0.080

PRBCD 0.35 ± 0.025 0.54 ± 0.038 0.59 ± 0.095 0.76 ± 0.038 0.74 ± 0.113

Table 15: Misclassification rate (↑) on Citeseer
with budget ∆ = 1 to 5: GOttack achieves high-
est performance in 3 out of 5 tasks (GraphSAGE
model).

Budget → 1 2 3 4 5

Random 0.30± 0.014 0.43± 0.058 0.47± 0.025 0.46± 0.038 0.46± 0.063
Nettack 0.66 ± 0.091 0.68± 0.123 0.72± 0.069 0.77± 0.065 0.74± 0.082
GOttack 0.61± 0.093 0.83 ± 0.062 0.92 ± 0.029 0.95 ± 0.047 0.97 ± 0.041

1819 orbit attack 0.52± 0.029 0.56± 0.052 0.62± 0.043 0.600± 0.057 0.65± 0.047
1519 orbit attack 0.55± 0.085 0.55± 0.12 0.62± 0.107 0.59± 0.038 0.63± 0.057
1922 orbit attack 0.50± 0.060 0.62± 0.060 0.54± 0.060 0.64± 0.042 0.60± 0.083

FGA 0.60± 0.113 0.65± 0.079 0.74± 0.072 0.76± 0.052 0.76± 0.082
SGA 0.60± 0.060 0.68± 0.060 0.67± 0.090 0.78± 0.037 0.73± 0.080

PRBCD 0.35 ± 0.043 0.69 ± 0.014 0.89 ± 0.138 0.95 ± 0.075 0.99 ± 0.132

Table 16: Misclassification rate (↑) on Polblogs
with budget ∆ = 1 to 5: GOttack achieves perfor-
mance in 1 out of 5 tasks (GraphSAGE model).

Budget → 1 2 3 4 5

Random 0.15± 0.132 0.15± 0.139 0.16± 0.118 0.17± 0.109 0.18± 0.151
Nettack 0.29± 0.029 0.34± 0.078 0.36± 0.074 0.39± 0.068 0.38± 0.115
GOttack 0.29± 0.038 0.36± 0.054 0.44± 0.072 0.49± 0.084 0.54 ± 0.099

1819 orbit attack 0.21± 0.091 0.25± 0.077 0.29± 0.042 0.30± 0.113 0.30± 0.066
1519 orbit attack 0.23± 0.112 0.24± 0.102 0.24± 0.08 0.22± 0.053 0.24± 0.070
1922 orbit attack 0.20± 0.074 0.20± 0.074 0.21± 0.045 0.24± 0.08 0.25± 0.093

FGA 0.22± 0.081 0.28± 0.071 0.32± 0.084 0.33± 0.096 0.37± 0.110
SGA 0.35 ± 0.057 0.38 ± 0.065 0.51 ± 0.093 0.52 ± 0.079 0.52± 0.030

PRBCD 0.08± 0.014 0.10± 0.043 0.13± 0.014 0.13± 0.052 0.13± 0.029

Table 17: Misclassification rate (↑) on Pubmed
with budget ∆ = 1 to 5: GOttack achieves high-
est performance in 5 out of 5 tasks (GraphSAGE
model).

Budget → 1 2 3 4 5

Random 0.14± 0.029 0.20± 0.038 0.30± 0.090 0.30± 0.072 0.30± 0.095
Nettack 0.52 ± 0.090 0.60± 0.050 0.65± 0.07 0.77 ± 0.070 0.52± 0.060
GOttack 0.52 ± 0.080 0.67 ± 0.060 0.70 ± 0.08 0.77 ± 0.060 0.77 ± 0.050

FGA 0.42± 0.030 0.55± 0.050 0.60± 0.070 0.62± 0.060 0.70± 0.040
SGA 0.30± 0.000 0.47± 0.001 0.57± 0.000 0.55± 0.000 0.55± 0.000

PRBCD 0.38 ± 0.025 0.48 ± 0.095 0.54 ± 0.038 0.59 ± 0.052 0.59 ± 0.029

D.2 DEFENSE GNN BACKBONE

To demonstrate the effectiveness of the proposed attack model, we compare the performance of
GOttack with various adversarial attack techniques across different defense models, namely GCN-
Jaccard, MedianGCN, RobustGCN, and GCN-SVD. Based on the analysis of the results, as shown
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Table 18: Misclassification rate (↑) on Cora with
budget ∆ = 1 to 5: GOttack achieves perfor-
mance in 0 out of 5 tasks (GIN model).

Budget → 1 2 3 4 5

Random 0.17± 0.303 0.36± 0.292 0.57± 0.066 0.61± 0.014 0.65± 0.063
Nettack 0.46± 0.108 0.55± 0.116 0.62 ± 0.084 0.64 ± 0.091 0.66 ± 0.049
GOttack 0.37± 0.037 0.48± 0.076 0.54± 0.074 0.59± 0.101 0.64± 0.076

1819 orbit attack 0.34± 0.089 0.32± 0.055 0.38± 0.063 0.36± 0.084 0.40± 0.112
1519 orbit attack 0.36± 0.029 0.36± 0.048 0.36± 0.091 0.37± 0.041 0.40± 0.069
1922 orbit attack 0.35± 0.085 0.34± 0.091 0.36± 0.065 0.38± 0.121 0.38± 0.096

FGA 0.40± 0.095 0.46± 0.058 0.52± 0.027 0.57± 0.027 0.64± 0.033
SGA 0.57 ± 0.060 0.63 ± 0.060 0.61 ± 0.065 0.57± 0.090 0.61± 0.040

PRBCD 0.36 ± 0.104 0.47 ± 0.063 0.59 ± 0.095 0.67 ± 0.063 0.83 ± 0.113

Table 19: Misclassification rate (↑) on Citeseer
with budget ∆ = 1 to 5: GOttack achieves highest
performance in 4 out of 5 tasks (GIN model).

Budget → 1 2 3 4 5

Random 0.10± 0.038 0.24± 0.038 0.35± 0.043 0.42± 0.025 0.46± 0.063
Nettack 0.57 ± 0.049 0.60± 0.084 0.64± 0.033 0.70± 0.035 0.74± 0.065
GOttack 0.57 ± 0.040 0.60 ± 0.077 0.66 ± 0.099 0.74 ± 0.104 0.76 ± 0.074

1819 orbit attack 0.42± 0.136 0.45± 0.064 0.47± 0.094 0.43± 0.080 0.50± 0.033
1519 orbit attack 0.39± 0.140 0.44± 0.119 0.43± 0.063 0.48± 0.055 0.44± 0.089
1922 orbit attack 0.45± 0.066 0.47± 0.091 0.39± 0.101 0.42± 0.014 0.46± 0.114

FGA 0.44± 0.102 0.57± 0.104 0.56± 0.084 0.64± 0.108 0.64± 0.054
SGA 0.57± 0.060 0.62 ± 0.061 0.61± 0.067 0.56± 0.090 0.60± 0.040

PRBCD 0.43 ± 0.025 0.52 ± 0.072 0.53 ± 0.025 0.55 ± 0.050 0.65 ± 0.050

Table 20: Misclassification rate (↑) on Polblogs
with budget ∆ = 1 to 5: GOttack achieves perfor-
mance in 0 out of 5 tasks (GIN model).

Budget → 1 2 3 4 5

Random 0.17± 0.043 0.20± 0.066 0.20± 0.115 0.22± 0.113 0.24± 0.080
Nettack 0.13± 0.029 0.20± 0.048 0.29± 0.055 0.32± 0.048 0.38± 0.061
GOttack 0.15± 0.086 0.23± 0.048 0.28± 0.011 0.32± 0.042 0.34± 0.029

1819 orbit attack 0.15± 0.048 0.16± 0.022 0.15± 0.037 0.14± 0.049 0.16± 0.065
1519 orbit attack 0.12± 0.053 0.16± 0.068 0.18± 0.056 0.16± 0.052 0.18± 0.045
1922 orbit attack 0.15± 0.031 0.12± 0.066 0.19± 0.052 0.17± 0.048 0.18± 0.040

FGA 0.14± 0.029 0.14± 0.048 0.15± 0.031 0.17± 0.037 0.20± 0.040
SGA 0.35 ± 0.080 0.35 ± 0.070 0.37 ± 0.120 0.40 ± 0.076 0.50 ± 0.097

PRBCD 0.33± 0.063 0.38 ± 0.076 0.41 ±0.029 0.43 ± 0.029 0.47 ± 0.100

Table 21: Misclassification rate (↑) on Pubmed
with budget ∆ = 1 to 5: GOttack achieves highest
performance in 3 out of 5 tasks (GIN model).

Budget → 1 2 3 4 5

Random 0.20± 0.052 0.22± 0.090 0.30± 0.058 0.31± 0.080 0.32± 0.066
Nettack 0.47± 0.020 0.60± 0.080 0.60± 0.070 0.57± 0.070 0.52± 0.060
GOttack 0.55 ± 0.050 0.60± 0.040 0.67 ± 0.060 0.67 ± 0.080 0.67 ± 0.070

FGA 0.52± 0.001 0.67 ± 0.060 0.62± 0.030 0.52± 0.010 0.52± 0.020
SGA 0.47± 0.018 0.60± 0.011 0.66± 0.022 0.67± 0.021 0.68 ± 0.014

PRBCD 0.43 ± 0.066 0.55 ± 0.090 0.53 ± 0.014 0.56 ± 0.014 0.59 ± 0.080

Table 22: Misclassification rate (↑) on Cora with
budget ∆ = 1 to 5: GOttack achieves perfor-
mance in 2 out of 5 tasks (GCN-Jaccard model).

Budget → 1 2 3 4 5

FGA 0.24± 0.011 0.41± 0.047 0.47± 0.065 0.55± 0.020 0.56± 0.062
SGA 0.33± 0.025 0.50 ± 0.038 0.54± 0.050 0.59± 0.013 0.65 ± 0.025

Nettack 0.38± 0.011 0.50± 0.073 0.54± 0.023 0.62 ± 0.000 0.61 ± 0.112
GOttack 0.39 ± 0.011 0.46± 0.062 0.61 ± 0.031 0.62 ±0.023 0.57± 0.054

Table 23: Misclassification rate (↑) on Citeseer
with budget ∆ = 1 to 5: GOttack achieves highest
performance in 1 out of 5 tasks (GCN-Jaccard
model).

Budget → 1 2 3 4 5

FGA 0.35± 0.035 0.42± 0.073 0.46± 0.031 0.52± 0.065 0.57± 0.112
SGA 0.36± 0.013 0.60 ± 0.050 0.63 ± 0.025 0.68 ± 0.000 0.70 ±0.025

Nettack 0.42 ± 0.020 0.52± 0.035 0.59 ± 0.047 0.60± 0.040 0.72± 0.040
GOttack 0.42± 0.092 0.52 ± 0.020 0.57± 0.020 0.62 ± 0.011 0.72 ± 0.020

Table 24: Misclassification rate (↑) on Polblogs
with budget ∆ = 1 to 5: GOttack achieves perfor-
mance in 1 out of 5 tasks (GCN-Jaccard model).

Budget → 1 2 3 4 5

FGA 0.50± 0.077 0.42± 0.061 0.56 ± 0.042 0.59 ± 0.031 0.55 ± 0.054
SGA 0.43± 0.050 0.43± 0.000 0.56± 0.088 0.43± 0.025 0.59 ± 0.088

Nettack 0.46± 0.031 0.47 ± 0.073 0.44± 0.031 0.47± 0.02 0.52± 0.071
GOttack 0.53 ± 0.065 0.43± 0.065 0.49± 0.071 0.46± 0.058 0.54± 0.077

Table 25: Misclassification rate (↑) on BlogCat-
alog with budget ∆ = 1 to 5: GOttack achieves
performance in 0 out of 5 tasks (GCN-Jaccard
model).

Budget → 1 2 3 4 5

FGA 0.12± 0.050 0.19± 0.011 0.25± 0.000 0.325± 0.035 0.34± 0.042
SGA 0.25 ± 0.025 0.28± 0.000 0.33± 0.000 0.35± 0.050 0.40± 0.025

Nettack 0.19± 0.030 0.30 ± 0.031 0.41 ± 0.058 0.46 ± 0.071 0.47 ± 0.04
GOttack 0.20 ± 0.020 0.30 ± 0.054 0.36± 0.071 0.43± 0.077 0.42± 0.042

in Tables 22 to 37, we can conclude that the proposed GOttack is more robust against MedianGCN,
achieving the highest performance in 11 out of 20 tasks, whereas it attained the least performance in
3 out of 20 tasks.

D.2.1 ATTACK RESULTS ON GCN-JACCARD

In this subsection, we discuss the performance of proposed GOttack along with various adversarial
attack techniques on GCN-Jaccard, as shown in Tables 22 to 25. The proposed GOttack method
achieved the second highest performance in 4 out of 20 tasks, while Nettack and SGA attained the
highest performance in 7 tasks.

D.2.2 ATTACK RESULTS ON MEDIANGCN

We discuss the performance of the proposed GOttack along with various adversarial attack techniques
on the MedianGCN defense model, as shown in Tables 26 to 29. The proposed SGA method achieved
the highest performance in 17 out of 20 tasks, while GOttack achieved the second highest performance
in 2 tasks.
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Table 26: Misclassification rate (↑) on Cora with
budget ∆ = 1 to 5: GOttack achieves perfor-
mance in 1 out of 5 tasks (MedianGCN model).

Budget → 1 2 3 4 5

FGA 0.25± 0.060 0.32± 0.040 0.49± 0.033 0.54± 0.065 0.55± 0.036
SGA 0.32± 0.050 0.52 ± 0.075 0.60 ± 0.057 0.65 ± 0.06 0.75 ± 0.031

Nettack 0.32 ± 0.052 0.45 ± 0.044 0.59± 0.058 0.61± 0.033 0.66± 0.033
GOttack 0.32 ± 0.036 0.45 ± 0.048 0.58± 0.053 0.63 ± 0.033 0.68 ± 0.029

Table 27: Misclassification rate (↑) on Citeseer
with budget ∆ = 1 to 5: GOttack achieves highest
performance in 0 out of 5 tasks (MedianGCN
model).

Budget → 1 2 3 4 5

FGA 0.18± 0.018 0.37± 0.048 0.46± 0.037 0.56± 0.079 0.62± 0.052
SGA 0.36 ± 0.013 0.50 ± 0.000 0.60 ± 0.000 0.66 ± 0.063 0.73 ± 0.000

Nettack 0.27 ± 0.050 0.46 ± 0.051 0.55 ± 0.050 0.65 ± 0.024 0.71 ± 0.048
GOttack 0.28 ± 0.029 0.43 ± 0.048 0.57 ± 0.048 0.65 ± 0.022 0.72 ± 0.053

Table 28: Misclassification rate (↑) on Polblogs
with budget ∆ = 1 to 5: GOttack achieves perfor-
mance in 1 out of 5 tasks (MedianGCN model).

Budget → 1 2 3 4 5

FGA 0.32± 0.065 0.46 ± 0.117 0.49 ± 0.044 0.50 ± 0.044 0.53 ± 0.029
SGA 0.43 ±0.050 0.50 ± 0.075 0.55 ± 0.025 0.51 ± 0.038 0.60 ± 0.025

Nettack 0.33 ± 0.029 0.40 ± 0.060 0.51 ± 0.081 0.47± 0.092 0.47± 0.082
GOttack 0.34 ± 0.079 0.37± 0.057 0.45± 0.06 0.53 ± 0.078 0.51 ± 0.060

Table 29: Misclassification rate (↑) on BlogCat-
alog with budget ∆ = 1 to 5: GOttack achieves
performance in 0 out of 5 tasks (MedianGCN
model).

Budget → 1 2 3 4 5

FGA 0.25 ± 0.025 0.19± 0.062 0.17± 0.025 0.25± 0.00 0.26 ± 0.037
SGA 0.20± 0.018 0.25 ± 0.048 0.32 ± 0.085 0.32 ± 0.082 0.35 ± 0.062

Nettack 0.17± 0.025 0.24 ± 0.037 0.26 ± 0.037 0.26 ± 0.037 0.31 ± 0.037
GOttack 0.19 ± 0.037 0.21 ± 0.037 0.31 ± 0.125 0.25 ± 0.049 0.34 ± 0.037

Table 30: Misclassification rate (↑) on Cora with
budget ∆ = 1 to 5: GOttack achieves perfor-
mance in 1 out of 5 tasks (RobustGCN model).

Budget → 1 2 3 4 5

FGA 0.34± 0.060 0.46± 0.068 0.63± 0.048 0.62± 0.048 0.65± 0.044
SGA 0.44 ± 0.013 0.55± 0.025 0.60± 0.025 0.69± 0.088 0.71± 0.013

Nettack 0.48 ± 0.080 0.61 ± 0.046 0.72 ± 0.029 0.70 ± 0.033 0.73 ± 0.025
GOttack 0.43 ± 0.048 0.60 ± 0.036 0.70 ± 0.027 0.69 ± 0.033 0.73 ± 0.025

Table 31: Misclassification rate (↑) on Citeseer
with budget ∆ = 1 to 5: GOttack achieves high-
est performance in 2 out of 5 tasks (RobustGCN
model).

Budget → 1 2 3 4 5

FGA 0.35± 0.113 0.49± 0.095 0.60± 0.029 0.59± 0.048 0.62± 0.057
SGA 0.53 ± 0.000 0.59± 0.013 0.66± 0.013 0.71± 0.013 0.75 ± 0.000

Nettack 0.46± 0.040 0.61 ± 0.071 0.72 ± 0.018 0.72± 0.038 0.75± 0.047
GOttack 0.48 ± 0.070 0.59± 0.046 0.72± 0.043 0.73 ± 0.020 0.76 ± 0.046

Table 32: Misclassification rate (↑) on Polblogs
with budget ∆ = 1 to 5: GOttack achieves perfor-
mance in 0 out of 5 tasks (RobustGCN model).

Budget → 1 2 3 4 5

FGA 0.31± 0.110 0.32± 0.062 0.41± 0.037 0.50± 0.027 0.48± 0.040
SGA 0.46 ± 0.038 0.43 ± 0.025 0.54 ± 0.038 0.61 ± 0.013 0.64 ± 0.063

Nettack 0.38 ± 0.055 0.40 ± 0.048 0.45 ± 0.027 0.52± 0.027 0.51± 0.043
GOttack 0.40± 0.022 0.40 ± 0.062 0.46± 0.046 0.51± 0.060 0.50 ± 0.039

Table 33: Misclassification rate (↑) on BlogCat-
alog with budget ∆ = 1 to 5: GOttack achieves
performance in 0 out of 5 tasks (RobustGCN
model).

Budget → 1 2 3 4 5

FGA 0.32± 0.027 0.26± 0.046 0.26± 0.033 0.31± 0.019 0.31± 0.088
SGA 0.25± 0.025 0.33 ± 0.025 0.36 ± 0.013 0.36 ±0.013 0.45 ± 0.050

Nettack 0.35 ± 0.044 0.32± 0.027 0.34± 0.029 0.37 ± 0.048 0.40± 0.044
GOttack 0.35 ± 0.050 0.31 ± 0.048 0.30 ± 0.306 0.35 ± 0.059 0.35 ± 0.043

D.2.3 ATTACK RESULTS ON ROBUSTGCN

We discuss the performance of the proposed GOttack along with various adversarial attack techniques
on RobustGCN, as shown in Tables 30 to 33. The proposed GOttack method achieved the second
highest performance in 2 out of 20 tasks, while the competitor attack methods, SGA and Nettack,
had the highest performance in 9 tasks.

D.2.4 ATTACK RESULTS ON GCN-SVD

In this subsection, we discuss the performance of proposed GOttack along with various adversarial
attack techniques on GCN-SVD, as shown in Tables 34 to 37. The proposed GOttack method
achieved the highest performance in 2 out of 20 tasks, whereas Nettack and SGA attained the highest
performance in 10 and 8 tasks, respectively.

E ADDITIONAL PROOF OF GOTTACK’S IMPACT

Node’s features. Another interesting property of the proposed attacks can be seen in Table 38 and
Table 43, in which we observe the change in the target node characteristics after adding or removing
an edge between different orbit types. More precisely, we consider degree centrality, closeness
centrality, betweenness centrality, and clustering coefficient as node feature metrics. The results show
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Table 34: Misclassification rate (↑) on Cora with
budget ∆ = 1 to 5: GOttack achieves perfor-
mance in 1 out of 5 tasks (GCN-SVD model).

Budget → 1 2 3 4 5

FGA 0.27 ± 0.010 0.23± 0.070 0.30± 0.070 0.30 ± 0.040 0.27 ± 0.048
SGA 0.28 ± 0.033 0.38 ± 0.038 0.39 ± 0.000 0.39 ± 0.050 0.40 ± 0.100

Nettack 0.24± 0.011 0.29± 0.050 0.31± 0.050 0.33± 0.059 0.32± 0.031
GOttack 0.28 ± 0.020 0.25 ± 0.060 0.30 ± 0.035 0.27± 0.050 0.26± 0.031

Table 35: Misclassification rate (↑) on Citeseer
with budget ∆ = 1 to 5: GOttack achieves high-
est performance in 0 out of 5 tasks (GCN-SVD
model).

Budget → 1 2 3 4 5

FGA 0.22± 0.054 0.27± 0.540 0.24± 0.031 0.22± 0.047 0.25 ± 0.035
SGA 0.24± 0.013 0.25± 0.025 0.26± 0.038 0.28± 0.100 0.38 ± 0.020

Nettack 0.28 ± 0.040 0.30 ± 0.020 0.35 ± 0.035 0.33 ± 0.023 0.33± 0.047
GOttack 0.25 ± 0.030 0.27 ± 0.040 0.27 ± 0.062 0.31 ± 0.065 0.37 ± 0.061

Table 36: Misclassification rate (↑) on Polblogs
with budget ∆ = 1 to 5: GOttack achieves perfor-
mance in 0 out of 5 tasks (GCN-SVD model).

Budget → 1 2 3 4 5

FGA 0.10 ± 0.010 0.16 ± 0.311 0.16 ± 0.031 0.20 ± 0.054 0.25 ± 0.065
SGA 0.16 ±0.013 0.16± 0.038 0.15± 0.025 0.15± 0.025 0.20± 0.025

Nettack 0.12± 0.040 0.18 ± 0.031 0.22 ± 0.020 0.24 ± 0.042 0.30 ± 0.093
GOttack 0.10± 0.020 0.12± 0.020 0.12± 0.031 0.16± 0.011 0.16± 0.011

Table 37: Misclassification rate (↑) on BlogCat-
alog with budget ∆ = 1 to 5: GOttack achieves
performance in 1 out of 5 tasks (GCN-SVD
model).

Budget → 1 2 3 4 5

FGA 0.17± 0.031 0.18± 0.062 0.23± 0.031 0.19± 0.011 0.30± 0.054
SGA 0.15± 0.050 0.24 ± 0.013 0.25± 0.025 0.31 ± 0.063 0.35± 0.000

Nettack 0.19 ± 0.023 0.23± 0.051 0.28 ± 0.023 0.20 ±0.023 0.37 ± 0.023
GOttack 0.20 ± 0.002 0.22 ± 0.020 0.28 ± 0.062 0.20 ± 0.024 0.35 ± 0.020

that adding/removing an edge between the target node and the connecting node with frequent orbit
type causes a significant shift node feature, especially betweenness centrality of the target nodes.

Table 38: Changes in the node attribute of the target node, averaged over all target nodes (CORA
dataset). A positive value indicates an increase after the attack compared to before.

Attack Orbit Type Degree Centrality Closeness Centrality Betweenness Centrality Clustering Coefficient

GOttack (1518) +15.18 +6.50 +20.32 -3.46
1922 +15.19 +17.01 +25.54 +1.35
1519 +15.21 +4.58 +23.60 -3.43
1819 +15.22 +9.34 +23.61 -3.42

Shortest path scores. In this experiment, we aim to observe the change in shortest path scores before
and after attacks, calculating the minimum traveling cost from the source node to the destination
node. Table 39 presents the results for different orbit types and node labels in the Cora dataset. Here,
the notation LS denotes the score when connecting edges between nodes with the same label, while
LD denotes the score when connecting edges between nodes with different labels. It is worth noting
that connecting edges between different labels results in higher or equal changes in shortest path
scores compared to connections between nodes with the same label. The results also indicate that
connecting nodes with different or the same labels belonging to the 1518 orbit types results in higher
changes compared to other orbit types.

Nodes’ label in two hops neighbors changes. As we know, GNN classification depends not only on
the node itself but also on its neighbors. Given two nodes in the network, if they belong to the same
class, their embeddings will exhibit high similarity. Considering this, we investigate the number of
nodes that share the same label (LS) as the target node (v) and the number of nodes with different
labels (LD) before and after applying the attack.

Table 40: Edge betweenness of newly added edges
between 1518 nodes and target nodes.

Newly added edge to Edge betweeness

Misclassified nodes 0.44 ± 0.18
Correctly classified nodes 0.22± 0.14

It is noteworthy that when we apply an attack
on two convolution layers of GNN variants, the
embeddings of nodes in the two-hop neighbor-
hood significantly contribute to updating the
embedding of the target node. Table 41 shows
the changes in the two-hop neighbors of target
nodes for Cora dataset. From the results, we can
observe that the target node is connected to LD
nodes, which belong to 1518 orbit types. The
neighbor change is significant, with an average
increase of +3.36 for the GOttack method. Furthermore, the results of the same experiment with the
same settings conducted on Citeseer dataset are shown in the Appendix, Table 44.
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Table 39: Shortest path length changes of the target node to the candidate node, with seven rows each
representing a different label node group. These are mean values calculated over target test nodes. LS
denotes same label with the target node, LD denotes different label with the target node. A negative
value indicates a decrease after the attack compared to before.

1518 1922 1519 1819

LS LD LS LD LS LD LS LD

Label-0 -0.06 -0.08 -0.04 -0.01 -0.00 -0.00 -0.01 -0.00
Label-1 -0.01 -0.01 -0.07 -0.03 -0.01 -0.01 -0.00 -0.00
Label-2 -0.02 -0.02 -0.03 -0.02 -0.05 -0.03 -0.03 -0.02
Label-3 -0.05 -0.08 -0.05 -0.04 -0.06 -0.04 -0.07 -0.04
Label-4 -0.00 -0.01 -0.01 -0.01 -0.04 -0.02 -0.00 -0.01
Label-5 -0.00 0.0 -0.02 -0.00 -0.05 -0.03 -0.02 -0.01
Label-6 -0.03 -0.02 -0.02 -0.01 -0.03 -0.01 -0.01 -0.01

Table 41: Changes in the nodes’ labels within two-hop neighbors (CORA dataset) of the target node,
with seven rows each representing a different label node group. LS denotes same label with the target
node, LD denotes different label with the target node. These are mean values calculated over target
test nodes. A positive value indicates an increase after the attack compared to before.

1518 1922 1519 1819

LS LD LS LD LS LD LS LD

Label-0 +1.25 +3.70 +0.63 +4.75 +1.28 +3.88 +1.60 +3.50
Label-1 +1.27 +3.58 +0.50 +4.00 +0.58 +3.73 +0.48 +4.05
Label-2 +1.30 +2.65 +2.36 +3.53 +0.78 +3.15 +0.55 +3.75
Label-3 +1.00 +3.50 +0.43 +4.53 +1.28 +3.58 +1.08 +3.88
Label-4 +0.52 +3.20 +0.68 +3.80 +0.50 +3.50 +0.65 +3.60
Label-5 +0.12 +3.55 0.28 +4.10 +0.33 +3.75 +0.45 +3.95
Label-6 +0.97 +3.40 +1.88 +3.80 +1.63 +3.43 +1.48 +3.83

Important edge. After adding a new edge to the target node, the embedding of the target nodes
is updated with information aggregated through the new edge. The more important the edge in the
two-hop neighbor of the target node, the more noise is added to the target node that eventually causes
miss-classification.

The importance of edge can be assessed based on edge betweenness centrality, we conducted 1518
GOttack on GCN, using the Cora dataset once to get the list of the target node and corresponding
connecting nodes chosen by our algorithm. We separate them into two classes, one is the list of target
nodes that are miss-classified and the other is the list of correct-classified. Table 40 shows that the
average edge betweenness of edges added to miss-classified nodes is 0.44, which is twice compared
to the average edge betweenness of edges added to correct-classified nodes, 0.22. It proves that our
attack harms node classification accuracy by discovering and adding important edges, which connect
the target node to a faraway region in the graph and bring the noise to the target nodes’ embedding.

Table 42: Time Experiment Results in Seconds (↓).

GOttack Nettack FGA SGAttack PRBCD Random
Cora 48.27± 7.55 59.57± 11.31 55.63± 16.96 32.24 ± 5.27 242.37± 6.03 0.030± 0.000

Citeseer 42.02± 5.14 46.12± 15.96 42.43± 2.31 41.02 ± 4.45 210.55± 7.58 0.034± 0.001
Polblogs 139.68 ±62.21 175.23± 56.14 165.37± 17.12 164.07± 13.77 210.87± 5.23 0.020± 0.000

BlogCatalog 512.04± 9.56 916.91± 129.17 223.02 ± 15.53 335.91± 4.66 259.38± 3.58 0.038± 0.014
Pubmed 246.96± 62.57 243.78± 2.14 533.55± 108.19 68.23 ± 7.58 240.23± 4.65 0.040± 0.017

E.1 SUBGRAPH-BASED EXPLANATIONS

GNNs integrate node features information and graph structure by recursively passing messages
along the edges of the graph to update the embedding and make predictions, therefore, this complex
integration leads to the models that are challenging to explain in terms of their predictions.
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Table 43: Changes in the node attribute of the target node, averaged over all target nodes (POLBLOGS
dataset). A positive value indicates an increase after the attack compared to before.

Orbit type LSame-2 hop LDiff-2hop Degree Centrality(10−3) Closeness Centrality(10−2) Betweenness Centrality(10−3) Cluster

GOttack (1518) 8.30± 1.06 1.58± 0.30 0.82± 0.00 0.35± 0.14 0.11± 0.02 −0.04± 0.03
1922 8.89± 1.14 1.51± 0.20 0.82± 0.00 0.43± 0.17 0.12± 0.03 −0.04± 0.04
1519 9.25± 0.83 0.97± 0.46 0.82± 0.00 0.43± 0.17 0.12± 0.03 −0.04± 0.04
1819 9.64± 1.18 4.29± 0.63 0.95± 0.00 0.47± 0.20 0.12± 0.05 −0.05± 0.04

Table 44: Changes in the nodes’ labels within two-hop neighbors (CITESEER dataset) of the target
node, with six rows each representing a different label node group. LS denotes same label with the
target node, LD denotes different label with the target node. These are mean values calculated over
target test nodes. A positive value indicates an increase after the attack compared to before.

1518 1922 1519 1819

LS LD LS LD LS LD LS LD

Label-0 +0.45 +3.78 +0.95 +4.50 +0.15 +3.43 +0.05 +4.15
Label-1 +0.58 +3.58 +2.50 +3.35 +0.33 +3.30 +1.53 +3.08
Label-2 +2.00 +3.03 +1.48 +4.18 +2.80 +2.28 +0.63 +3.80
Label-3 +0.15 +3.73 +0.38 +4.18 +0.48 +3.23 +0.65 +3.50
Label-4 +2.55 +2.95 +1.70 +3.30 +1.13 +3.28 +1.78 +2.88
Label-5 +1.28 +3.12 0.48 +4.18 +1.65 +3.38 +0.65 +3.93

In this subsection, we leverage two different renowned explainers (subgraph-based) to see the changes
that the GOttack method poses to graphs that lead to misclassification.

GNNExplainer. Battaglia et al. (2018), Zhou et al. (2020) and Zhang et al. (2022) summarizes the
update of GNN model in three core computations. (i) For every pair of node (vi, vj), the message is
computed from the representations hl−1

i , hl−1
j of each node in the previous layer and their relation

rij , given by ml
ij = MSG(hl−1

i ,hl−1
j , rij). (ii) Secondly, an aggregated message Mi is computed

for each node vi by aggregating messages from all vi’s neighborhood. (iii) Finally, the representation,
also known as embedding, hl

i of node vi at layer l is calculated from the embedding of the node
vi in the previous layer and aggregated message Mi. This demonstrates that the neighbour of all
node vi contributes to formulating the final embedding of vi. Ying et al. defined the subgraph of all
neighbours of the node vi as a computation graph, denoted as Gc (Ying et al., 2019).

Figure 8: Matrix of co-occurrence percentages for node
orbits: visualizing intersections between the first and second
orbit.

In particular, v’s computation graph
tells the GNN how to generate v’s em-
bedding z. The computation graph of
node v is crucial, as it fully determines
all the information GNN uses to gen-
erate prediction ŷv at node v. Among
nodes and edges in Gc, we are inter-
ested in Gs ⊆ Gc that are important
for the GNN’s prediction on node v, in
which removing of either a node or an
edge in Gs strongly decrease the prob-
ability of prediction ŷv. By solving
the optimization of the conditional en-
tropy H(Y |G = Gs ,X = Xs), GN-
NExplainer returns an explanation for
the prediction ŷv as (Gs,XF

s ), where
Gs is a small subgraph of the compu-
tation graph, XF

s is the associated fea-
ture of Gs, and XF

s is a small subset of
node features that are most important
for explaining ŷv (Ying et al., 2019).

Figure 5 is the subgraph of the com-
putation graph most influential for the
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(a) Computation graph before attack
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(b) Computation graph after attack

Figure 9: The computation graph for the targeted node 1978 from the CORA datasets, as identified
by PGExplainer (Luo et al., 2020) . The edge (1978, 387) is added during the successful attack. Edge
importances change considerably after the attack and negative class gains importance due to the
newly added nodes.
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(a) Computation graph before attack

142 631 970 1053 1330 1554 1661 2346
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(b) Computation graph after attack

Figure 10: The computation graph for the targeted node 1784 from the CORA datasets, as identified
by GNNExplainer (Luo et al., 2020). The edge (1784, 709) is added during the successful attack.
Edge importances change considerably after the attack and negative class gains importance due to the
newly added nodes.

GNN’s prediction on node 1978, denoted as ŷ1978. Before the attack, the prediction ŷ1978 made by
GNN on node 1978 is strongly affected by edges connecting to 1306, 1241 and 2381 having the same
label and 6 edges connecting to different label nodes. After the attack by adding an edge between
the target node and 1518 node 387, there are two out of three edges connecting the node having the
same label to 1978 is no longer having a strong impact on ŷ1978, while there is an increase in the
number of edges connecting different label nodes to 9. As a result, GNN is fooled into making a
misprediction on 1978 after applying GOttack. In addition, we leverage GNNExplainer to explain
another successful attack of GOttack on node 1784, described by Figure 10. Similarly, the newly
added edge is considered as an important edge and there are significant changes in the importance of
the remaining edge in the computational subgraph caused by the newly added edge (1784, 709).

PGExplainer. PGExplainer (Luo et al., 2020) is a model-agnostic method designed to provide
explanations for predictions made by GNNs. It is used to identify a subgraph and subset of node
features crucial for a specific prediction. Let us consider a trained GNN model fθ(G), where
G = (V, E ,X ) is input graph. It aims to explain the prediction ŷv for a target node v ∈ V . It
learns an edge mask Me ∈ [0, 1]|E| and a feature mask Mx ∈ [0, 1]|X |. The masks are optimized to
maximize the mutual information between the GNN’s predictions ŷv and the subgraph Gs, expressed
as: MI(ŷv,Gs) = H(ŷv)−H(ŷv|G = Gs).

However, optimizing this objective is infeasible due to the exponential number of possible subgraphs
(i.e., 2N ), the problem is relaxed by assuming Gs is a Gilbert random graph where edge selections
are conditionally independent. The probability of an edge eij being selected is modeled using a
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Figure 11: The computation graph for the targeted node 1784 from the CORA datasets, as identified
by PGExplainer (Luo et al., 2020) . The edge (1784, 709) is added during the successful attack.
Edge importances change considerably after the attack and negative class gains importance due to the
newly added nodes.

Bernoulli distribution: P (G) =
∏

(i,j)∈E P (eij), where eij ∈ V × V is a binary variable indicating
whether the edge is selected, with eij = 1 if the edge (i, j) is selected, and 0 otherwise. The
probability P (eij = 1) = θij is the probability that edge (i, j) exists in G. With this relaxation, the
objective can be rewritten as (Luo et al., 2020): minGs

H(ŷv|G = Gs) = minGs
EGs

[H(ŷv|G =
Gs)] ≈ minΘ EGs∼q(Θ)[H(ŷv|G = Gs)], where q(Θ) is the distribution of the explanatory graph
parameterized by θ’s.

Figure 9 shows the subgraph of the computation graph with the most influential edge connections.
Before the attack, the prediction ŷ1978 made by the GNN on node 1978 is strongly influenced by
edges connecting to node 1306. However, after the attack, which involves adding an edge between the
target node and node 387, the strong connection to node 1306 is no longer present. Instead, there is an
increase in the number of edges connecting to different label nodes such as node 1510. Consequently,
the GNN is misled into making an incorrect prediction for node 1978 after the application of GOttack.
In addition, we leverage PGExplainer to explain another successful attack of GOttack on node 1784,
described by Figure 11. Similarly, the newly added edge is considered as an important edge and there
are significant changes in the importance of the remaining edge in the computational subgraph caused
by the newly added edge (1784, 709).
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Table 45: The descriptions of symbols.

Symbol Descriptions
G Graph representation
V Sets of vertices in G
E Sets of edges in G
|E| Number of edges
|V| Number of nodes
A Adjacency matrix of G
X Node features
fθ Graph neural network model
v Target node
VT Set of target nodes

N (v) Set of adjacency nodes of v
h(·) Graph homophily ratio
G′ Perturbed graph
Gc Computation graph
Gs Subgraph of computation graph
A′ Perturbed adjacency matrix
ŷv Predicted class
∆ Attack budget
Ggp Graphlet

Aut(Ggp) Automorphisms of a graphlet
GOV Graphlets Orbit Vector
Orbmax Largest orbit count value
Orbsec Second-largest count value
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Table 46: Summary of the Literature review.

Ref. Article Name Attack Type Perturbation Evasion/
Poisoning Domain Model Baseline Metrics Dataset

Zügner et al. (2018) Nettack Target Attack Structure
Feature Both Node Classif.

GCN
CLN
DeepWalk

Random
FGSM

Accuracy
Classif. Margin

Cora-ML
Citeseer
Polblogs

Chen et al. (2018) FGA Target Attack Structure Both Node Classif.

GCN
Grarep
DeepWalk
Node2vec
Line
GraphGAN

Random
DICE
Nettack

Success Rate
AML

Cora-ML
Citeseer
Polblogs

Zügner & Günnemann (2024) Mettack Global Attack Structure
Feature Poisoning Node Classif.

GCN
CLN
DeepWalk

DICE
Nettack
First-order attack

Accuracy
Misclassif. Rate

Cora-ML
Pubmed
Citeseer
Polblogs

Dai et al. (2018) RL-S2V Target Attack Structure Evasion Node Classif. GNNs Rnd. sampling
Genetic algs. Accuracy

Citeseer
Finance
Pubmed
Cora

Bojchevski & Günnemann (2019) Node Embedding Global Attack Structure Poisoning Node Embedding

DW SVD
DW SGNS
Node2vec
Spect. Embd
Label Prop.
GCN

Unknown
Accuracy
Classif. Margin
Loss

Cora
Citeseer
Polblogs

Xu et al. (2019) PGD, Min-max Global Attack Structure Both Node Classif. GCN
DICE
Greedy
Meta-self

Misclassif. Rate Cora
Citeseer

Waniek et al. (2018) DICE Global Attack Structure Both Node Classif. GCN DICE
ROAM heuristic Concealment

TerroristNet
Facebook
Twitter
Google+
ScaleFree
SmallWorld
RandomGraph

Wu et al. (2019) IG-Attack Target Attack Structure
Feature Both Node Classif. GCN

JSMA
IG-JSMA
Nettack
FGSM

Classif. Margin
Accuracy

Cora
Citeseer
Polblogs

Sun et al. (2020) NIPA Global Attack Structure Poisoning Node Classif. GCN
Random
FGA
Preferential attack

Accuracy
Graph Statistics

Cora-ML
Pubmed
Citeseer

Li et al. (2021) SGAttack Target Attack Structure Poisoning Node Classif.

GCN
GAT
SGC
GraphSAGE
ClusterGCN

Random
DICE
GradArgmaxNettack

Accuracy
Classif. Margin

Citeseer
Cora
Pubmed
Reddit

Ma et al. (2020) GC-RWCS Target Attack Structure Evasion Node Classif.
GCN
JKNetConcat
JKNetMaxpool

Random
Degree
Pagerank
Betweenness
RWCS
GC-RWCS

Accuracy
Loss

Citeseer
Cora
Pubmed

Chang et al. (2022) GF-Attack Global Attack Feature Evasion Vertex Classif.

GCN
SGC
Cheby
DW
LINE

Random
Degree
RL-S2V
A_class
GF-Attack

Accuracy
Execution Time

Cora
Citeseer
Pubmed

Tao et al. (2021) G-NIA Target Attack Structure
Feature Evasion Node Classif.

GCN
GAT
APPNP

Radnom
MostAttr.
PrefEdge.
NIPA
AFGSM
G-NIA

Misclassif. Rate
Reddit
Citeseer
ogbn-products

Sun et al. (2018) OPT-Attack Target Attack Structure Poisoning Node Embedding

GAE
DeepWalk
Node2vec
LINE

Degree sum
Shortest path
Random
PageRank

AP
Similarity Score

Cora
Citeseer
Facebook

Hussain et al. (2021) STRUCtack Global Attack Structure Poisoning Node Classif. GCN

Random
DICE
Mettack
PGD
MinMax

Accuracy

Cora
Citeseer
Pubmed
Cora-ML
Polblogs

Wu et al. (2023) WT-AWP Unknown Feature Poisoning
Evasion

Node Classif.
Graph Classif.

GCN
GAT
PPNP

DICE
PGD
Mettack

Accuracy
Loss

Cora
Citeseer
Polblogs

Zou et al. (2021) TDGIA Unknown Feature Evasion Node Classif. GCN FGSM
AFGSMSPEIT Accuracy

KDD-CUP
ogbn-arxiv
Reddit

Tao et al. (2023) CANA Unknown Feature Unknown Unknown

COPOD
PCA
HBOS
IForestAE

PGD
TDGIA
G-NIA

Accuracy
Misclassif. Rate

ogbn-products
redditogbn-arxiv

Zhao et al. (2024) HGAttack Target Attack Unknown Evasion Node Embedding GCN FGA Macro F1
Micro F1

ACM
DBLP
IMDB

Jin et al. (2023) PEH Unknown Structure Unknown Node Classif.
Node Clustering

GCN
GAT
DGI
RGCN

Nettack
Mettack
Random
PGD

Accuracy
Attention Score

Cora
Citeseer
Polblogs

Proposed Approach GOttack Target Attack Structure Poisoning Node Classif.

GCN
GIN
GSAGE
RGCN
GCN-Jaccard
GCN-SVD
MedianGCN

Random
Nettack
FGA
SGA
PRBCD

Misclassif. Rate

Cora
Citeseer
Polblogs
Pubmed
BlogCatalog
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