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ABSTRACT

Exploration bonuses in reinforcement learning guide long-horizon exploration by
defining custom intrinsic objectives. Several exploration objectives like count-
based bonuses, pseudo-counts, and state-entropy maximization are non-stationary
and hence are difficult to optimize for the agent. While this issue is generally
known, it is usually omitted and solutions remain under-explored. The key con-
tribution of our work lies in transforming the original non-stationary rewards
into stationary rewards through an augmented state representation. For this pur-
pose, we introduce the Stationary Objectives For Exploration (SOFE) framework.
SOFE requires identifying sufficient statistics for different exploration bonuses
and finding an efficient encoding of these statistics to use as input to a deep net-
work. SOFE is based on proposing state augmentations that expand the state
space but hold the promise of simplifying the optimization of the agent’s objec-
tive. We show that SOFE improves the performance of several exploration ob-
jectives, including count-based bonuses, pseudo-counts, and state-entropy max-
imization. Moreover, SOFE outperforms prior methods that attempt to stabilize
the optimization of intrinsic objectives. We demonstrate the efficacy of SOFE in
hard-exploration problems, including sparse-reward tasks, pixel-based observa-
tions, 3D navigation, and procedurally generated environments.

1 INTRODUCTION

Intrinsic objectives have been widely used to improve exploration in reinforcement learning (RL),
especially in sparse-reward and no-reward settings. In the case of Markov Decision Processes
(MDPs) with a finite and small set of states, count-based exploration methods perform near-
optimally when paired with tabular RL algorithms (Strehl & Littman, 2008; Kolter & Ng, 2009).
Count-based methods keep track of the agent’s frequency of state visits to derive an exploration
bonus that can be used to encourage structured exploration. While much work has studied how to
extend these methods to larger state spaces and continuous environments (Bellemare et al., 2016;
Lobel et al., 2023; Tang et al., 2017), count-based methods introduce unstable learning dynamics
that have not been thoroughly studied and can make it impossible for the agent to discover optimal
policies. Specifically, any reward distribution that depends on the counts (i.e. the state-visitation
frequencies) is non-stationary because the dynamics for the counts change as the agents generate
new experiences, and the agent does not have access to the information needed to estimate these
dynamics. In an MDP, the convergence of policies and value functions relies on the transition dy-
namics and the reward distribution being stationary (Sutton & Barto, 2018). The non-stationarity
of count-based rewards induces a partially observable MDP (POMDP), as the dynamics of the re-
ward distribution are unobserved by the agent. In a POMDP, there are no guarantees for an optimal
Markovian (i.e. time-homogeneous) policy to exist (Alegre et al., 2021; Cheung et al., 2020; Lecar-
pentier & Rachelson, 2019). In general, optimal policies in POMDPs will require non-Markovian
reasoning to adapt to the dynamics of the non-stationary rewards (Seyedsalehi et al., 2023). Despite
this issue, count-based methods are usually paired with RL algorithms that are designed to converge
to Markovian policies and hence might attain suboptimal performance. Previous research has either
overlooked or attempted to address the non-stationarity issue in intrinsic rewards (Singh et al., 2010).

1



Published as a conference paper at ICLR 2024

Some efforts to tackle this problem involve completely separating the exploration and exploitation
policies (Schäfer et al., 2021; Whitney et al., 2021). However, these approaches add an additional
layer of complexity to the RL loop and can introduce unstable learning dynamics. In this work, we
introduce a framework to define stationary objectives for exploration (SOFE). SOFE provides an
intuitive algorithmic modification to eliminate the non-stationarity of the intrinsic rewards, making
the learning objective stable and stationary. With minimal complexity, SOFE enables both tractable
and end-to-end training of a single policy on the combination of intrinsic and extrinsic rewards.

SOFE is described in Section 4 and consists of augmenting the original states of the POMDP by
including the state-visitation frequencies or a representative embedding. SOFE proposes a state
augmentation that effectively formulates the intrinsic reward distribution as a deterministic function
of the state, at the cost of forcing the agent to operate over a larger set of states. We hypothesize
that RL agents with parametrized policies are better at generalizing across bigger sets of states
than at optimizing non-stationary rewards. We evaluate the empirical performance of SOFE in
different exploration modalities and show that SOFE enables learning better exploration policies.
We present SOFE as a method to solve the non-stationarity of count-based rewards. However, we
show that SOFE provides orthogonal gains to other exploration objectives, including pseudo-counts
and state-entropy maximization. Furthermore, our experiments in Section 5 show that SOFE is
agnostic to the RL algorithm and robust in many challenging environment specifications, including
large 3D navigation maps, procedurally generated environments, sparse reward tasks, pixel-based
observations, and continuous action spaces. Videos of the trained agents and summarized findings
can be found on our supplementary webpage1.

2 RELATED WORK

Exploration in RL Exploration is a central challenge in RL. Classical exploration strategies explore
in an aleatoric fashion. ϵ-greedy (Sutton & Barto, 2018) samples random actions during training for
the sake of exploration. Adding random structured noise in the action space (Lillicrap et al., 2015;
Fujimoto et al., 2018) can enable exploration in continuous spaces. Maximum entropy RL provides
a framework to find optimal policies that are as diverse as possible, and hence better explore the
space of solutions (Haarnoja et al., 2018; Levine et al., 2020; Jain et al., 2024). For hard-exploration
tasks, structured exploration has been studied through the lens of hierarchical RL (Gehring et al.,
2021; Eysenbach et al., 2018). State-entropy maximization has been proposed to explore efficiently,
in an attempt to learn policies that induce a uniform distribution over the state-visitation distribution
(Seo et al., 2021; Lee et al., 2019; Zisselman et al., 2023). In MDPs with sparse reward distributions,
exploration bonuses (i.e. intrinsic rewards) provide proxy objectives to the agents that can induce
state-covering behaviors, hence allowing agents to find the sparse rewards. Count-based methods
(Auer, 2002) derive an exploration bonus from state-visitation frequencies. Importantly, the inverse
counts of a given state measure its novelty and hence provide a suitable objective to train exploratory
agents. This property makes count-based exploration an appealing technique to drive structured
exploration. However, count-based methods do not scale well to high-dimensional state spaces
(Bellemare et al., 2016). Pseudo-counts provide a framework to generalize count-based methods
to high-dimensional and partially observed environments (Tang et al., 2017; Lobel et al., 2023;
Bellemare et al., 2016).

In modern deep RL applications, many popular methods enable exploration by defining exploration
bonuses in high-dimensional state spaces (Laskin et al., 2021), and among them are curiosity-based
(Pathak et al., 2017; Burda et al., 2018), data-based (Yarats et al., 2021) and skill-based (Eysenbach
et al., 2018; Lee et al., 2019). Recently, elliptical bonuses have achieved great results in contextual
MDPs with high-dimensional states (Henaff et al., 2022). These methods aim to estimate novelty
in the absence of the true state-visitation frequencies. Henaff et al. (2022) showed that elliptical
bonuses provide the natural generalization of count-based methods to high-dimensional observa-
tions. In this work, we show that SOFE improves the performance of count-based methods in small
MDPs and pseudo-counts in environments with high-dimensional observations (e.g. images), further
improving the performance of the state-of-the-art exploration algorithm E3B in contextual MDPs.
Additionally, our results show that SOFE provides orthogonal gains to exploration objectives of
different natures like state-entropy maximization.

1https://sites.google.com/view/sofe-webpage/home
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Non-stationary objectives A constantly changing (i.e. non-stationary) MDP induces a partially
observed MDP (POMDP) if the dynamics of the MDP are unobserved by the agent. In Multi-
Agent RL, both the transition and reward functions are non-stationary because these are a function
of other learning agents that evolve over time (Zhang et al., 2021a; Papoudakis et al., 2019). In
contextual MDPs, the transition and reward functions can change every episode and hence require
significantly better generalization capabilities, which might not emerge naturally during training
(Cobbe et al., 2020; Henaff et al., 2022; Wang et al., 2022). For MDPs with non-stationary rewards,
meta-learning and continual learning study adaptive algorithms that can adapt to moving objectives
(Beck et al., 2023). Learning separate value functions for non-stationary rewards has also been
proposed (Burda et al., 2018). Schäfer et al. (2021) proposed DeRL, which entirely decouples
the training process of an exploratory policy from the exploitation policy. While DeRL mitigates
the effect of the non-stationary intrinsic rewards in the exploitation policy, the exploration policy
still faces a hard optimization problem. Importantly, there might not exist an optimal Markovian
policy for a POMDP (Seyedsalehi et al., 2023). Hence, RL algorithms can only achieve suboptimal
performance in these settings.

Many exploration bonuses are non-stationary by definition. In particular, count-based methods
are non-stationary since the state-visitation frequencies change during training (Singh et al., 2010;
Şimşek & Barto, 2006). We note that this issue is also present in many of the popular deep explo-
ration methods that use an auxiliary model to compute the intrinsic rewards like ICM (Pathak et al.,
2017), RND (Burda et al., 2018), E3B (Henaff et al., 2022), density models (Bellemare et al., 2016;
Tang et al., 2017) and many others (Lobel et al., 2023; Raileanu & Rocktäschel, 2020; Flet-Berliac
et al., 2021; Zhang et al., 2021b). In these cases, the non-stationarity is caused by the weights of the
auxiliary models also changing during training. In this work, we argue that non-stationarity should
not be implicit when an exploration bonus is defined. For this reason, we introduce SOFE, which
proposes an intuitive modification to intrinsic objectives that eliminates their non-stationarity and
facilitates the optimization process.

3 PRELIMINARIES

Reinforcement Learning (RL) uses MDPs to model the interactions between a learning agent and
an environment. An MDP is defined as a tuple M = (S,A,R, T , γ) where S is the state space,
A is the action-space, R : S × A → R is the extrinsic reward function, T : S × A × S → [0, 1]
is a transition function and γ is the discount factor. The objective of the agent is to learn a policy
that maximizes the expected discounted sum of rewards across all possible trajectories induced by
the policy. If the MDP is non-stationary, then there exists some unobserved environment state that
determines the dynamics of the MDP, hence inducing a partially observed MDP (POMDP), which is
also a tupleM′ = (S,O,A,R, T , γ) whereO is the observation space and the true states s ∈ S are
unobserved. In a POMDP, the transition and reward functions might not be Markovian with respect
to the observations, and therefore, the policy training methods may not converge to an optimal policy.
To illustrate this, consider an MDP where the reward distribution is different at odd and even time
steps. If the states of the MDP are not augmented with an odd/even component, the rewards appear
to be non-stationary to an agent with a Markovian policy. In this case, a Markovian policy will not
be optimal over all policies. The optimal policy will have to switch at odd/even time steps. In this
work, we extend the previous argument to intrinsic exploration objectives in RL. In the following
sections, we uncover the implicit non-stationarity of several exploration objectives and propose a
novel method to resolve it.

3.1 EXPLORATION BONUSES AND INTRINSIC REWARDS

In hard-exploration problems, exploration is more successful if directed, controlled, and efficient.
Exploration bonuses provide a framework to decouple the original task from the exploration one
and define exploration as a separate RL problem. In this framework, the extrinsic rewards provided
by the environment are aggregated with the intrinsic rewards (i.e. exploration bonuses) to build an
augmented learning target. By directing the agent’s behavior towards custom exploration bonuses,
this formulation induces exploratory behaviors that are state-covering and are well-suited for long-
horizon problems.
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Central to SOFE is the introduction of the parameters ϕt in the formulation of exploration bonuses
B(st, at|ϕt), which enables reasoning about the dynamics of the intrinsic reward distributions. The
parameters of the intrinsic reward distribution ϕt determine how novelty is estimated and exploration
is guided, and if they change over time then B is non-stationary. In the following, we unify count-
based methods, pseudo-counts, and state-entropy maximization under the same formulation, which
includes ϕt. In the next section, we present SOFE as a solution to their non-stationarity.

3.1.1 COUNT-BASED METHODS

Count-based methods keep track of the agent’s frequencies of state visits to derive an exploration
bonus. Formally, the counts keep track of the visited states until time t, and so Nt(s) is equal to the
number of times the state s has been visited by the agent until time t. Two popular intrinsic reward
distributions derived from counts that exist in prior work are:

R(st, at, st+1|ϕt) = B(st, at, st+1|ϕt) =
β√

Nt(st+1|ϕt)
(1)

where β weights the importance of the count-based bonus, and:

R(st, at, st+1|ϕt) = B(st, at, st+1|ϕt) =
{ 1, if Nt(st+1|ϕt) = 0

0, else (2)

Note that the state-visitation frequencies Nt are the sufficient statistics for ϕt and hence for the
count-based rewards in Equations 1 and 2. That is, the state-visitation frequencies are the only
dynamically changing component that induces non-stationarity in count-based rewards.

Equation 1 (Strehl & Littman, 2008) produces a dense learning signal since B(st, at, st+1|ϕt) ̸= 0
unless Nt(st+1) = ∞ which is unrealistic in practice. Equation 2 (Henaff et al., 2023) defines a
sparse distribution where the agent is only rewarded the first time it sees each state, similar to the
objective of the travelling salesman problem. Throughout the paper, we refer to Equations 1 and 2
as√-reward and salesman reward.

3.1.2 PSEUDO-COUNTS

To enable count-based exploration in high-dimensional spaces, the notion of visitation counts has
been generalized to that of pseudo-counts (Bellemare et al., 2016). Prior work has estimated pseudo-
counts through density models (Bellemare et al., 2016), neural networks (Ostrovski et al., 2017),
successor representations (Machado et al., 2020), and samples from the Rademacher distribution
(Lobel et al., 2023). Recently, Henaff et al. (2022) proposed elliptical bonuses (E3B) as a natural
generalization of count-based methods. An appealing property of E3B is that it models the com-
plete set of state-visitation frequencies over the state space, and not only for the most recent state2

Concretely, the E3B algorithm produces a bonus:

B(st, at, st+1|ϕt) = ψt(st+1)
TC−1

t ψt(st+1)

Ct =

T∑
t=0

ψt(st)ψt(st)
T

(3)

where ψt is an auxiliary model that produces low-dimensional embeddings from high-dimensional
observations. Since the ellipsoid is updated after each transition, the exploration bonus is non-
stationary. The matrix Ct defines an ellipsoid in the embedding space, which encodes the distri-
bution of observed embeddings in a given trajectory. Since Ct is the only moving component of
Equation 3, it is a sufficient statistic to characterize the non-stationarity of the reward distribution.
Note that in an MDP with finite state space, where ψ is the one-hot encoding of the states, the explo-
ration bonus in Equation 3 becomes a count-based bonus similar to Equation 1. Concretely, C−1

t−1
becomes a diagonal matrix with the inverse state-visitation frequencies for each state in the elements
of the diagonal (Henaff et al., 2022).

2Previous pseudo-count methods allowed the agent to query a density model with a single state and obtain
its pseudo-count. However, E3B maintains a model of the state-visitation frequencies over the complete state
space. The latter is key for SOFE to obtain sufficient statistics of the E3B reward in Equation 3.
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3.1.3 STATE-ENTROPY MAXIMIZATION

State-entropy maximization is a widely used exploration objective that consists of training policies
to induce a uniform distribution over the state-marginal visitation distribution (Lee et al., 2019). A
canonical formulation of this problem is presented in Berseth et al. (2019). Maximizing the state-
entropy objective corresponds to training policies to maximize the following reward distribution
(Berseth et al., 2019):

R(st, at, st+1|ϕt) = B(st, at, st+1|ϕt) = − log pϕt(st+1) (4)
The parameters θ define the policy and ϕ are the parameters of a generative model which estimates
the state-marginal distribution dπθ (st). Note that the sufficient statistics of the generative distribu-
tion are also sufficient statistics for the intrinsic reward in Equation 4. Throughout the paper, we
refer to this algorithm as surprise maximization (S-Max) and use the Gaussian distribution to model
trajectories of states with pϕt . Hence the sufficient statistics of pϕt for the reward reward in Equation
4 are ϕt = (µt ∪ σ2

t ). We present the details of S-Max in Section A.7.

4 STATIONARY OBJECTIVES FOR EXPLORATION

In the following, we present a training framework for Stationary Objectives for Exploration (SOFE).
Any exploration bonus B(st, at, st+1|ϕt) derived from dynamically changing parameters will define
a non-stationary reward function. Without any modification, exploration bonuses define a POMDP:
M = (S,O,A,B, T , γ). For simplicity, we have fully replaced the task-reward R with the ex-
ploration bonus B, and we consider that the only unobserved components in the POMDP are the
parameters of the reward distribution3. Hence, we argue that the unobserved states s ∈ S satisfy
st = ot ∪ ϕt. Note that the transition function of the POMDP is generally only Markovian if defined
over the state space and not over the observation space: T : S ×A× S → [0, 1].

Figure 1: SOFE enables agents to observe the suffi-
cient statistics of the intrinsic rewards and use them for
decision-making.

The sufficient statistics for exploration bonuses
are always available during training as they
are explicitly computed to produce the intrin-
sic rewards. However, current RL methods do
not allow the agents to observe them. Hence,
any method that aims to solve M faces op-
timizing a non-stationary objective, which is
difficult to optimize, as it can require non-
Markovian properties like memory, continual
learning, and adaptation, and may only find
suboptimal policies. In this work, we argue
that non-stationarity should not be implicit in
the formulation of an exploration objective. For
this reason, we propose SOFE, which augments
the state space by defining an augmented MDP M̂ =

(
Ŝ,A,B, T , γ

)
where Ŝ = {O ∪ ϕ}, with

O being the observations fromM. Note that we get rid of the observation space O in the definition
of M̂ because by augmenting the original observations fromM with the sufficient statistics for B
we effectively define a fully observed MDP. This simple modification allows instantiating the same
exploration problem in a stationary and Markovian setting. That is the optimal policies in M̂ are
also optimal inM. This is true since the transition and reward functions are identical inM and M̂.
We note that the update rule for the parameters ϕt must be Markovian, meaning that these can be
updated after every step without requiring information other than st and st+1. For example, counts
only increment by one for the state that was most recently visited: Nt+1(s) = Nt(s)∀s ∈ {S−sj},
where sj = st+1 and Nt+1(sj) = Nt(sj) + 1. The latter also applies to E3B and S-Max, since
the ellipsoid Ct and parameters of the generative model are updated incrementally with every new
transition (see Equation 3 and Section A.7). Given the sufficient statistics, the intrinsic reward dis-
tributions in Equations 1,2, 3, 4 become fully Markovian, and hence are invariant across time.

3This assumption holds true if the agent has access to sufficient statistics of the transition dynamics (e.g.
grid environments), and makes SOFE transform a POMDP into a fully observed MDP. Even when there are
unobserved components of the true states apart from the parameters of the intrinsic reward distributions, we
empirically show that SOFE mitigates the non-stationary optimization, yielding performance gains.
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5 EXPERIMENTS

SOFE is designed to improve the performance of exploration tasks. To evaluate its efficacy, we study
three questions: (1) How much does SOFE facilitate the optimization of non-stationary exploration
bonuses? (2) Does this increased stationarity improve exploration for downstream tasks? (3) How
well does SOFE scale to image-based state inputs where approximations are needed to estimate
state-visitation frequencies?

Figure 2: We use 3 mazes and a large 3D map to eval-
uate both goal-reaching and purely exploratory behav-
iors. Maze 1: a fully connected, hard-exploration maze;
Maze 2: a maze with open spaces and a goal; Maze
3: same as Maze 1 but with 3 doors which an intel-
ligent agent should use for more efficient exploration;
3D map: a large map with continuous state and action
spaces.

To answer each of these research questions, we
run the experiments as follows. (1) We use
three different mazes without goals to inves-
tigate how SOFE compares to vanilla count-
based methods and S-Max in reward-free ex-
ploration. Concretely, we evaluate whether
SOFE allows for better optimization of purely
exploratory behaviors. We also use a large 3D
environment with continuous state and action
spaces which introduces complex challenges as
it requires more than purely navigation skills.

Secondly (2), we use a 2D maze with a goal
and sparse extrinsic reward distribution. This
is a hard-exploration task where the extrinsic
reward is only non-zero if the agent reaches
the goal, which requires a sequence of 75 co-
ordinated actions. We evaluate whether SOFE
enables better optimization of the joint objec-
tive of intrinsic and task rewards. Further-
more, we use the DeepSea sparse-reward hard-
exploration task from the DeepMind suite (Os-
band et al., 2019) and show that SOFE achieves
better performance than DeRL (Schäfer et al.,
2021) which attempts to stabilize intrinsic re-
wards by training decoupled exploration and
exploitation policies.

Thirdly (3), we apply SOFE on the E3B (Henaff et al., 2022) algorithm as argued in Section 4 to
demonstrate the effectiveness of the approach with an imperfect representation of the state-visitation
frequencies. We use the MiniHack-MultiRoom-N6-v0 task, originally used for E3B in Henaff et al.
(2023), and the Procgen-Maze task (Cobbe et al., 2020). In both environments, the task is to navigate
to the goal location in a procedurally generated map and the extrinsic reward is only non-zero if the
agent reaches the goal. Both environments return pixel observations. Minihack additionally returns
natural language observations. However, the Procgen-Maze task is more challenging because each
episode uses unique visual assets, requiring an additional level of generalization, while in Minihack,
different episodes only vary in the map layout. Additionally, we include the Habitat environment
(Szot et al., 2021) to evaluate purely exploratory behaviors and show the results in Section A.1.

We provide the details of the network architectures, algorithm hyperparameters, and environment
specifications in Section A.3. Furthermore, we provide an in-depth analysis of the behaviors learned
by SOFE in Section A.2, which uncovers valuable insights on how SOFE learns to drive exploration
more efficiently.

5.1 REWARD-FREE EXPLORATION

In this section, we focus on the first research question and consider the reward-free setting to eval-
uate purely exploratory behaviors. We use the 3 mazes in Figure 2 and measure map coverage,
which correlates with exploration in navigation environments. In Figure 3, we show how SOFE en-
ables agents to explore the mazes better than vanilla count-based methods. Even though we fix the
count-based rewards described in Equations 1 and 2, SOFE generally enables RL agents to better op-
timize them, achieving higher state coverage. Section A.9 contains the results across all algorithms
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and exploration modalities. We also run experiments in a large 3D environment from the Godot

Figure 3: Episodic state-visitation for A2C agents during training. The first row represents SOFE,
which uses both the count-based rewards and state augmentation (+ C. + Aug.), and the second row
represents training with the count-based rewards only (+ C.). Although optimizing for the same
reward distribution, our method achieves better exploration performance.

RL repository (Beeching et al., 2021a), to evaluate SOFE’s ability to scale to continuous state and
action spaces. This environment contains challenging dynamics that require exploratory agents to
master a variety of skills, from avoiding lava and water to using jump pads efficiently (Alonso et al.,
2020; Beeching et al., 2021b). Figure 4 shows that SOFE also scales to these more complex set-
tings, enabling SAC (Haarnoja et al., 2018) agents to achieve higher map coverage across different
exploration modalities.

Figure 4: Map coverage achieved by SAC agents in a complex 3D map. Blue curves represent
agents that use count-based rewards (+ C.); Red curves represent SOFE, which uses both count-
based rewards and the state augmentations from SOFE (+ C. + Aug.). Even though we use the same
learning objective, SOFE facilitates its optimization and achieves better exploration. Shaded areas
represent one standard deviation. Results are averaged from 6 seeds.

Additionally, we show that SOFE stabilizes the state-entropy maximization objective. Figure 5
shows the episodic map coverage achieved in Maze 2 by the vanilla S-Max algorithm compared to
the augmented S-Max with SOFE. These results provide further evidence that SOFE is a general
framework that tackles the non-stationarity of exploration objectives and provides orthogonal gains
across objectives of different natures.

5.2 EXPLORATION FOR SPARSE REWARDS

In the previous section, we showed that SOFE enables RL agents to better explore the state space. In
this section, we evaluate whether SOFE can achieve better performance on hard-exploration tasks.

We evaluate count-based methods and SOFE in Maze 2 in Figure 2. For each of the RL algorithms,
we compare training with the sparse extrinsic reward only and training with the extrinsic and intrinsic
rewards with and without SOFE. Figure 6 shows that SOFE significantly improves the performance
of RL agents in this hard-exploration task. Our results confirm that extrinsic rewards are not enough
to solve such hard-exploration tasks and show that SOFE is significantly more effective than vanilla
count-based methods, achieving the highest returns across multiple RL algorithms. PPO (Schulman
et al., 2017), PPO+LSTM (Cobbe et al., 2020), and A2C (Mnih et al., 2016) achieve near-optimal
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Figure 5: Episodic state coverage achieved by S-Max (blue) and SOFE S-Max (red) in Maze 2.
When augmented with SOFE, agents better optimize for the state-entropy maximization objective.
Shaded areas represent one standard deviation. Results are averaged from 6 seeds.

goal-reaching performance only when using SOFE. Importantly, policies equipped with LSTMs
have enough capacity to model the non-stationary intrinsic rewards (Ni et al., 2021) and could learn
to count implicitly (Suzgun et al., 2018). However, our results show that SOFE further improves
the performance of recurrent policies when optimizing for non-stationary intrinsic rewards. Addi-

Figure 6: Interquantile mean (IQM) of episode extrinsic rewards for episodic (left) and global (right)
exploration across multiple algorithms. Green bars represent training with the sparse reward; blue
bars represent additionally using count-based rewards (+ C.); and red bars represent additionally us-
ing count-based rewards and SOFE (+ C. + Aug.). We compute confidence intervals using stratified
bootstrapping with 6 seeds. SOFE generally achieves significantly higher extrinsic rewards across
RL algorithms and exploration modalities. Without exploration bonuses, agents fail to obtain a non-
zero extrinsic reward during training.

tionally, we compare SOFE to DeRL (Schäfer et al., 2021) in the DeepSea environment and show
the results in Table 1. DeRL entirely decouples the training process of an exploratory policy from
the exploitation policy to stabilize the optimization of the exploration objective. SOFE is degrees of
magnitude less complex than DeRL as it only requires training an additional feature extractor. Still,
SOFE achieves better results in the harder variations of the DeepSea environment.

5.3 EXPLORATION IN HIGH-DIMENSIONAL ENVIRONMENTS

In this section, we evaluate SOFE and E3B (Henaff et al., 2022), the state-of-the-art exploration al-
gorithm for high-dimensional contextual MDPs. E3B tackles the challenging problem of estimating
the true state-visitation frequencies from pixel observations. As argued in Section 5.3, the ellipsoid
is the only moving component of the E3B objective. Hence, we evaluate whether including either
the diagonal or the full ellipsoid in the state enables better exploration. We optimize the E3B objec-
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Algorithm DeepSea 10 DeepSea 14 DeepSea 20 DeepSea 24 DeepSea 30
DeRL-A2C 0.98± 0.10 0.65± 0.23 0.42± 0.16 0.07± 0.10 0.09± 0.08
DeRL-PPO 0.61± 0.20 0.92± 0.18 −0.01± 0.01 0.63± 0.27 −0.01± 0.01
DeRL-DQN 0.98± 0.09 0.95± 0.17 0.40± 0.08 0.53± 0.27 0.10± 0.10
SOFE-A2C 0.94± 0.19 0.45± 0.31 0.11± 0.25 0.08± 0.14 0.04± 0.09
SOFE-PPO 0.77± 0.29 0.67± 0.33 0.13± 0.09 0.07± 0.15 0.09± 0.23
SOFE-DQN 0.97± 0.29 0.78± 0.21 0.70± 0.28 0.65± 0.26 0.42± 0.33

Table 1: Average performance of DeRL and SOFE with one standard deviation over 100,000 evalu-
ation episodes in the DeepSea environment. SOFE achieves better performance in the harder explo-
ration variations of the DeepSea environment while consisting of a less complex method. Additional
details on the hyperparameters used for SOFE and DeRL are presented in Section A.3.

tive with IMPALA (Espeholt et al., 2018) as proposed in Henaff et al. (2022). Section A.3 contains
the details of the policy architecture.

Figure 7 shows that SOFE also improves the performance of pseudo-count-based methods, pro-
viding empirical evidence that reducing the non-stationarity of a reward distribution enables better
optimization even in high-dimensional environments. In Section A.1, we include experiments with
E3B and SOFE in the reward-free setting using the Habitat simulator. These show that SOFE im-
proves the sample efficiency of E3B.

Figure 7: Interquantile mean (IQM) of the episode extrinsic rewards in Minihack (left) and Procgen
(right). The vanilla E3B algorithm can solve MiniHack as shown in Henaff et al. (2022). However,
we find that E3B can only consistently reach the goals in Procgen-Maze when using SOFE. As
shown in Henaff et al. (2022), ICM (Pathak et al., 2017) and RND (Burda et al., 2018) fail to
provide a good exploration signal in procedurally generated environments. Results are averaged
from 6 seeds.

6 CONCLUSION

We identify that exploration bonuses can be non-stationary by definition, which can complicate their
optimization, resulting in suboptimal policies. To address this issue, we have introduced a novel
framework that creates stationary objectives for exploration (SOFE). SOFE is based on capturing
sufficient statistics of the intrinsic reward distribution and augmenting the MDP’s state representa-
tion with these statistics. This augmentation transforms the non-stationary rewards into stationary
rewards, simplifying the optimization of the agent’s objective. We have identified sufficient statis-
tics of count-based methods, the state-entropy maximization objective, and E3B. Our experiments
provide compelling evidence of the efficacy of SOFE across various environments, tasks, and rein-
forcement learning algorithms, even improving the performance of the state-of-the-art exploration
algorithm in procedurally generated environments. Using augmented representations, SOFE signif-
icantly improves exploration behaviors, particularly in challenging tasks with sparse rewards and
across multiple exploration modalities. Additionally, SOFE extends to large continuous state and
action spaces, showcasing its versatility.
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A APPENDIX

A.1 REWARD-FREE EXPLORATION WITH SOFE AND E3B

Figure 8: Map coverage on a held-out set of 100 3D
scenes of the HM3D dataset. The E3B agents trained
using SOFE explore the new scenes better.

As in Section 5.1, we evaluate if SOFE can en-
able better optimization of the non-stationary
exploration bonus, in this case for E3B. We
consider the reward-free setting for purely ex-
ploratory behaviors. For this reason, we use
the Habitat simulator (Savva et al., 2019; Szot
et al., 2021) and the HM3D dataset (Ramakr-
ishnan et al., 2021), which contains 1,000 dif-
ferent scenes of photorealistic apartments for
3D navigation. We train E3B and our proposed
augmented versions for 10M environment steps
and measure their map coverage in a set of 100
held-out scenes. We optimize the E3B explo-
ration bonus with PPO (Schulman et al., 2017)
which requires 31 hours in a machine with a
single GPU. We show the results in Figure 8. In Figure A.1 we show the learning curves corre-
sponding to the results presented in Section 5.3.

Figure 9: E3B (blue) outperforms the other deep exploration baselines in the hard-exploration and
partially-observable tasks of MiniHack and Procgen-Maze. With SOFE (Red and Green), we further
increase the performance of E3B.
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A.2 ANALYSIS OF THE BEHAVIOURS LEARNED BY SOFE

By using SOFE on count-based methods, RL agents extract features from the state-visitation fre-
quencies and use them for decision-making. To better understand how the agents use the augmented
information, we artificially create an object N0 with N0(si) > 0 ∀i ∈ {S − sj} and N0(sj) = 0.
Intuitively, we communicate to the agent that all states in the state space but sj have already been
visited through the state-visitation frequencies. We evaluate PPO agents pre-trained on reward-free
episodic exploration and show the results in Figure 10. Results show that augmented agents ef-
ficiently direct their exploration towards the unvisited states, self-identifying these as goals. This
reveals how the agents leverage the augmented information for more efficient exploration.

Figure 10: Analysis of how an RL agent uses SOFE for better exploration. Yellow boxes show
the agent’s starting position. Red boxes show the goals’ positions, which are the only positions for
which we set N0(sj) = 0, and green traces show the agent’s trajectory. Augmented agents pre-
trained on episodic exploration efficiently direct their exploration toward the unvisited states.

A.3 TRAINING DETAILS

A.3.1 NETWORK ARCHITECTURE

We use Stable-Baselines3 (Raffin et al., 2021) to run our experiments in the mazes, Godot maps,
and DeepSea. For DQN, PPO, A2C, and SAC we use the same CNN to extract features from the
observation. The CNN contains 3 convolutional layers with kernel size of (3 × 3), stride of 2,
padding of 1, and 64 channels. The convolutional layers are followed by a fully connected layer
that produces observation embeddings of dimension 512. For the augmented agents, we use an
additional CNN with the same configuration to extract features from ϕt. The augmented agents
concatenate the representations from the observation and the parameters ϕt and feed these to the
policy for decision-making, while the vanilla methods (e.g. counts, S-Max) only extract features
from the observations. We show the CNN architecture in Figure A.3.1.

For Minihack and Procgen, we use the official E3B codebase, which contains baselines for ICM and
RND, and uses IMPALA to optimize the exploration bonuses. We use the same policy architecture as
in Henaff et al. (2022), which contains an LSTM. We ran the experiments in Minihack and Procgen
for 100M steps. For the augmented agents, we design a CNN that contains 5 convolutional layers
with a kernel size of (3 × 3) and stride and padding of 1, batch normalization layers after every
convolutional layer, max-pooling layers with a kernel size of (2 × 2) and stride of 1, followed by

15



Published as a conference paper at ICLR 2024

a fully-connected layer that produces embeddings of dimension 1024. This architecture allows to
extract features from the 512x512 ellipsoids, which are later passed together with the observation
features to the policy for decision-making. We show the CNN architecture in Figure ??.
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A.4 ALGORITHM HYPERPARAMETERS

A.4.1 DQN

Hyperparameter Value
Num. Envs 16
Learning Rate 0.0001
Buffer Size 1000000
Learning Starts 50000
Batch Size 32
Tau 1.0
Gamma 0.99
Train Frequency 4
Gradient Steps 4
Target Update Interval 10000
Exploration Fraction 0.1
Exploration Initial Epsilon 1.0
Exploration Final Epsilon 0.05
Max Grad Norm 10

Table 2: Hyperparameters for the DQN Implementation

A.4.2 PPO

Hyperparameter Value
Num. Envs 16
Learning Rate 0.0003
N Steps 2048
Batch Size 64
N Epochs 10
Gamma 0.99
GAE Lambda 0.95
Clip Range 0.2
Normalize Advantage True
Entropy Coefficient 0.0
Value Function Coefficient 0.5
Max Grad Norm 0.5

Table 3: Hyperparameters for the PPO Implementation

A.5 A2C

Hyperparameter Value
Num. Envs 16
Learning Rate 0.0007
N Steps 5
Gamma 0.99
GAE Lambda 1.0
Entropy Coefficient 0.0
Value Function Coefficient 0.5
Max Grad Norm 0.5
RMS Prop Epsilon 1× 10−5

Use RMS Prop True
Normalize Advantage False

Table 4: Hyperparameters for the A2C Implementation
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A.6 ENVIRONMENT DETAILS

A.6.1 MAZES

We designed the mazes in Figure 2 with Griddly (Bamford, 2021). The 3 mazes are of size 32x32.
The agents observe entity maps: matrices of size (map size,map size) of entity id’s (e.g. 0 for
the floor, 1 for the wall, and 2 for the agent). The action space is discrete with the four-movement
actions (i.e. up, right, down, left). In the following, we now show an example of the observation
space of a 5x5 variation of the mazes we use throughout the paper following the OpenAI Gym
interface (Brockman et al., 2016).

obs_shape = env.observation_space.shape

# obs_shape == (3,5,5)

obs, reward, done, info = env.step( ... )

# obs = [
[ # avatar in these locations
[0,0,0,0,0],
[0,1,0,0,0],
[0,0,0,0,0],
[0,0,0,0,0],
[0,0,0,0,0]

],
[ # wall in these locations
[1,1,1,1,1],
[1,0,0,0,1],
[1,0,0,0,1],
[1,0,0,0,1],
[1,1,1,1,1]

],
[ # goal in these locations
[0,0,0,0,0],
[0,0,0,0,0],
[0,0,0,0,0],
[0,0,0,1,0],
[0,0,0,0,0]

]
]

A.6.2 DEEPSEA

Figure 11: The DeepSea environment.

The DeepSea environment is taken from (Os-
band et al., 2019) and has been used to evalu-
ate the performance of intrinsic exploration ob-
jectives (Schäfer et al., 2021). DeepSea repre-
sents a hard-exploration task in a N × N grid
where the agent starts in the top left and has to
reach a goal in the bottom right location. At
each timestep, the agent moves one row down
and can choose whether to descend to the left
or right. The agent observes the 2D one-hot en-
coding of the grid and receives a small nega-
tive reward of −0.01

N for moving right and 0 re-
wards for moving left. Additionally, the agent
receives a reward of +1 for reaching the goal
and the episode ends after N timesteps. Hence,
it is very hard for an agent trained on extrinsic
rewards only to solve the credit assignment problem and realize that going right is the optimal action.
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The episodes last exactly N steps, and the complexity of the task can be incremented by increasing
N .

A.6.3 GODOT MAP

We use the Godot game engine to design the 3D world used in Section 5.1, which we open-source
together with the code. We show a global view of the map in Figure A.6.3. The map is of size
120x120 and has continuous state and action spaces. To apply count-based methods we discretize
the map in bins of size 5, resulting in a 24x24 object Nt. The observations fed to the agent are
the result of shooting several raycasts from the agent’s perspective. The observations also contain
global features like the agent’s current velocity, rotation, and position. The action space contains 3
continuous dimensions that control the velocity, rotation, and jumping actions.

Figure 12: Global view of the 3D Godot map.

A.6.4 MINIHACK MULTIROOM

We use the Multiroom-N6 task from the Minihack suite (Samvelyan et al., 2021) to evaluate the
performance of E3B and our proposed augmentation, as originally used in Henaff et al. (2022). The
environment provides pixel and natural language observations and generates procedurally generated
maps at each episode. The rewards are only non-zero when the agent finds the goal location in
a maze that contains 6 rooms. We use the same policy architecture described in Section C.1.1 in
Henaff et al. (2022).

Figure 13: An observation from MiniHack.

19



Published as a conference paper at ICLR 2024

A.6.5 PROCGEN MAZE

We use the Procgen-Maze task from the Procgen benchmark (Cobbe et al., 2020) to evaluate the
performance of E3B and our proposed augmentation. We use the memory distribution of mazes.
The mazes are procedurally generated at each episode, have different sizes, and use different visual
assets. Procgen-Maze provides pixel observations and the rewards are only non-zero if the agent
finds the goal location.

Figure 14: Procedurally generated mazes from the Procgen-Maze environment.

A.7 STATE-ENTROPY MAXIMIZATION

In this section, we provide the pseudo-code for the surprise-maximization algorithm presented in
Section 3.1.3. Note that the update rule for the sufficient statistics of the generative model pϕt

is Markovian as it is updated at each timestep with the new information from the next state. As
mentioned in the paper, we use a Gaussian distribution to model pϕt

, and hence when using SOFE,
we pass its mean and standard deviation to the RL agents.

Algorithm 1 Surprise Maximization
1: while not converged do
2: β ← {} ▷ Initialize replay buffer
3: for episode = 0, . . . ,M do
4: s0 ← p(s0); τ0 ← {s0}
5: for t = 0, . . . ,T do
6: at ∼ πθ(at|st) ▷ Get action
7: st+1 ∼ T (st+1|st, at) ▷ Step dynamics
8: rt ← − log pϕt(st+1) ▷ Compute intrinsic reward
9: τt+1 ← τt ∪ {st+1} ▷ Update trajectory

10: ϕt+1 ← U(τt+1) ▷ Update mean and variance
11: β ← β ∪ {(st, at, rt, st+1)}
12: end for
13: end for
14: θ ← RL(θ, β) ▷ Update policy
15: end while
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A.8 EXPLORATION FOR SPARSE REWARDS

In this section, we show the complete set of results for Section 5.2. The results include confidence
intervals and learning curves for DQN, A2C, PPO, and PPO-LSTM for the task of reaching the goal
in Maze 2 in Figure 2. We also include the partially-observable setting, where the agent does not
observe the full maze but 5x5 agent-centred observation.
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A.9 REWARD-FREE EXPLORATION

In this section, we show the complete set of results for Section 5.1. The results include learning
curves for DQN, A2C, PPO and PPO-LSTM measuring the map coverage achieved by these algo-
rithms in the 3 mazes in Figure 2.

A.9.1 DQN
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A.9.2 A2C
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A.9.3 PPO
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A.9.4 PPO-LSTM
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