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The supplementary materials are organized as follows:

• Section A gives the implementation details including network configurations and training strategies.

• Section B presents more visual results.

• Section C discusses the limitations of our work.

• Section D gives the broader impacts of our work.

A IMPLEMENTATION DETAILS

We elaborate on the implementation details in terms of network configurations and training strategies. For
convenience, we summarize the implementation details in Table 6. It is worth noting that since Uformer and
Restormerare equipped with different network configurations and training strategies, we train Uformer171,
and Restormer1311 with their respective settings. For better illustration, we give the U-Net architectures in
Figure 5. All the experiments are conducted on NVIDIA-SMI A100 GPUs.

Network Configurations. The input projection and output projection are implemented as 3× 3 convolutions, as
shown in Figure 5.

For Uformer171, we adopt a 4-level U-Net. The channel dimension is set to 32, and the channel expansion
factor in Channel MLP is set to 4 as those of Uformer Wang et al. (2022). DownSample is implemented using
a 4 × 4 convolution with stride 2, and UpSample is implemented using a 2 × 2 transposed convolution with
stride 2. For the depths of encoder, bottleneck, and decoder, Uformer is set to [1, 2, 8, 8], 2, and [8, 8, 2, 1],
respectively. To keep the comparable parameters and complexity, we adjust the depths of encoder, bottleneck,
and decoder of Uformer171 to [1, 2, 8, 10], 3, and [10, 8, 2, 1], respectively.

For Restormer1311, we adopt a 3-level U-Net. The channel dimension is set to 48, and the channel expansion
factor in Channel MLP is set to 2.66 as those of Restormer Zamir et al. (2022). DownSample is implemented
using a 3× 3 convolution with stride 1 and the PixelUnshuffle operation, and UpSample is implemented using
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Figure 5: U-Net architectures for representative transformer-based image restoration methods. (a)
Uformer Wang et al. (2022), (b) Restormer Zamir et al. (2022).
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Table 6: Details of network configurations and training strategies for different models.

Uformer Wang et al. (2022) Uformer171 Restormer Zamir et al. (2022) Restormer1311

Network
configurations

Input Projection convolution
(k=3, s=1)

convolution
(k=3, s=1)

convolution
(k=3, s=1)

convolution
(k=3, s=1)

Output Projection convolution
(k=3, s=1)

convolution
(k=3, s=1)

convolution
(k=3, s=1)

convolution
(k=3, s=1)

Levels of U-Net 4 4 3 3
Depths of Encoder [1, 2, 8, 8] [1, 2, 8, 9] [4, 6, 6] [4, 6, 8]
Depths of Bottleneck 2 3 8 9
Depths of Decoder [8, 8, 2, 1] [9, 8, 2, 1] [6, 6, 4] [8, 6, 4]
Channel Dimension 32 32 48 48

DownSample convolution
(k=4, s=2)

convolution
(k=4, s=2)

convolution
(k=3, s=1),
PixelUnshuffle

convolution
(k=3, s=1),
PixelUnshuffle

UpSample transposed convolution
(k=2, s=2)

transposed convolution
(k=2, s=2)

convolution
(k=3, s=1),
PixelShuffle

convolution
(k=3, s=1),
PixelShuffle

Channel Expansion
Factor in Channel MLP 4 4 2.66 2.66

Training
strategies

Training Patch Size

256×256
(deblurring),
128×128
(denoising)

256×256
(deblurring),
128×128
(denoising)

128, 160, 192,
256, 320, 384
(Progressive)

128, 160, 192,
256, 320, 384
(Progressive)

Batch Size 8 (deblurring),
32 (denoising)

8 (deblurring),
32 (denoising)

64, 40, 32,
16, 8, 8
(Progressive)

64, 40, 32,
16, 8, 8
(Progressive)

Epochs 3000 (deblurring),
250 (denoising)

3000 (deblurring),
250 (denoising)

Iterations 300K 300K

Optimizer
AdamW
((0.9, 0.999),
0.02)

AdamW
((0.9, 0.999),
0.02)

AdamW
((0.9, 0.999),
10−4)

AdamW
((0.9, 0.999),
10−4)

Initial Learning Rate 2× 10−4 2× 10−4 3× 10−4 3× 10−4

Final Learning Rate 1× 10−6 1× 10−6 1× 10−6 1× 10−7

Decay Strategy Cosine Cosine Cosine Cosine

Data Augmentation

horizontal
flipping
or rotation
(90◦, 180◦,
or 270◦)

horizontal
flipping
or rotation
(90◦, 180◦,
or 270◦)

horizontal or
vertical flipping

horizontal or
vertical flipping

Loss functions Charbonnier loss Charbonnier loss L1 loss L1 loss

a 3 × 3 convolution with stride 1 and the PixelShuffle operation. For the depths of encoder, bottleneck, and
decoder, Restormer is set to [4, 6, 6], 8, and [6, 6, 4], respectively. To keep the comparable parameters and
complexity, we adjust the depths of encoder, bottleneck, and decoder of Restormer1311 to [4, 6, 8], 9, and [8,
6, 4], respectively. In the refinement stage, we keep the number of blocks to 4 as those of Restormer.

Training Strategies. For fair comparison, we train Uformer171, Restormer1311, and Baseline131/NAFNet131
with the same train strategies as those of Uformer Wang et al. (2022), Restormer Zamir et al. (2022), and
Baseline/NAFNet Chen et al. (2022a), respectively.

Specifically, for Uformer171, we randomly crop patches of size 256 × 256 from the original training image
pairs for training. We train Uformer171 with a batch size of 8 for deblurring and 32 for denoising by 3K epochs.
The AdamW with weight decay 0.02 and momentum terms (0.9, 0.999) is used for optimization. The learning
rate declines from 2×10−4 to 1×10−6 with the cosine decay strategy Loshchilov & Hutter (2016). The training
data is randomly augmented with horizontal flipping or rotation (90◦, 180◦, or 270◦). For Uformer171, we use
the Charbonnier loss for training as those of Uformer Wang et al. (2022).

For Restormer1311, we adopt the progressive learning strategy as those of Restormer. Specifically, we crop
patches of size 512×512 with step size 256 from the training data. We train Restormer1311 for 300K iterations.
The AdamW with weight decay 10−4 and momentum terms (0.9, 0.999) is used for optimization. We first train
Restormer1311 with the patch size 128 × 128, batch size 64, and learning rate 3 × 10−4 for 92K. Then, the
patch size and batch size pairs are updated to [(1602, 40), (1922, 32), (2562, 16), (3202, 8), (3842, 8)] at
iterations [92K, 156K, 204K, 240K, 276K], and the learning rate correspondingly declines from 3 × 10−4 to
1 × 10−6 with the cosine decay strategy. The training data is randomly augmented with horizontal or vertical
flipping. For Restormer1311, we use the L1 loss for training as those of Restormer Zamir et al. (2022).

B MORE VISUAL RESULTS

Figure 6 presents more visual results on GoPro Nah et al. (2017). Figure 7 presents a visual example on
SIDD Abdelhamed et al. (2018). Figure 8 presents a visual example on GoPro Nah et al. (2017). Fig-
ure 9 presents a visual example on SIDD Abdelhamed et al. (2018). Figure 10 presents a visual example
on Rain14000 Fu et al. (2017b).
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PSNR 21.38 dB 26.50 dB
Reference Blurry Uformer

21.38 dB 27.68 dB 25.36 dB 27.58 dB
Blurry Image Uformer171 Restormer Restormer1311

Figure 6: Single image motion deblurring on the GoPro dataset Nah et al. (2017). Compared to
Uformer Wang et al. (2022), and Restormer Zamir et al. (2022), Uformer171 and Restormer1311 generate
sharper and visually more faithful results.

PSNR 29.45 dB 45.64 dB
Reference Noisy Uformer

29.45 dB 45.74 dB 46.01 dB 46.14 dB
Noisy Image Uformer171 Restormer Restormer1311

Figure 7: Real image denoising on the SIDD dataset Abdelhamed et al. (2018). Compared to Uformer Wang
et al. (2022), and Restormer Zamir et al. (2022), Uformer171 and Restormer1311 generate cleaner and visually
more faithful results.

PSNR 26.58 dB 30.94 dB
Reference Blurry MPRNet

26.58 dB 30.77 dB 31.14 dB 31.94 dB
Blurry Image Restormer MAXIM F2C1Former (Ours)

Figure 8: Single image motion deblurring on the GoPro dataset Nah et al. (2017). Compared to MPRNet Za-
mir et al. (2021), Restormer Zamir et al. (2022), and MAXIM Tu et al. (2022), F2C1Former(Ours) generates
sharper and visually more faithful results.
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PSNR 17.83 dB 34.04 dB
Reference Rainy MPRNet

17.83 dB 34.30 dB 34.25 dB 34.43 dB
Rainy Image Restormer MAXIM F2C1Former (Ours)

Figure 9: Real image denoising on the SIDD dataset Abdelhamed et al. (2018). Compared to MPRNet Zamir
et al. (2021), Restormer Zamir et al. (2022) and MAXIM Tu et al. (2022), F2C1Former(Ours) generates cleaner
and visually more faithful results.

PSNR 20.28 dB 31.83 dB
Reference Rainy MPRNet

20.28 dB 32.39 dB 32.46 dB 32.51 dB
Rainy Image Restormer MAXIM F2C1Former (Ours)

Figure 10: Single image deraining on the Rain14000 dataset Fu et al. (2017b). Compared to MPRNet Zamir
et al. (2021), Restormer Zamir et al. (2022), and MAXIM Tu et al. (2022), F2C1Former(Ours) generates sharper
and visually more faithful results.

C LIMITATIONS AND DISCUSSIONS

We have demonstrated the effectiveness of F2C1Former on image restoration tasks including image deblurring,
image denoising and deraining. More experiments could be conducted on other image restoration tasks, such
as dehazing, desnowing, etc.

Notwithstanding the extensive and promising results, there are still open questions remaining for transformer-
based image restoration methods.

Is there a more effective transformer-like structure for image restoration? The success of MetaFormer
demonstrates that the structure LN + FeatureMixing + LN + ChannelMLP matters for image restoration, even
without attention modules. This reminds us that an effective structure is also vital for image restoration. Since
MetaFormer is abstracted from transformers proposed first for NLP tasks, exploring structures customized for
image restoration is also a meaningful task.
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D BROADER IMPACTS

Nowadays, image acquisition systems inevitably suffer from various degradations due to camera shakes, bad
weather conditions, etc. Image restoration solves the problem well, and has important research and application
value. Our proposed MetaFormer, such as Uformer171, Restormer131, and F2C1Former, achieve competitive
restoration results. However, there are also potential negative societal impacts. For example, image restoration
technology is prone to privacy leakage.
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