
Published as a conference paper at ICLR 2024

BAYESDIFF: ESTIMATING PIXEL-WISE UNCERTAINTY
IN DIFFUSION VIA BAYESIAN INFERENCE

Siqi Kou1, Lei Gan4, Dequan Wang1,5, Chongxuan Li2,3∗, and Zhijie Deng1∗
1Qing Yuan Research Institute, SEIEE, Shanghai Jiao Tong University
2Gaoling School of Artificial Intelligence, Renmin University of China
3Beijing Key Laboratory of Big Data Management and Analysis Methods
4School of Computer Science, Fudan University 5Shanghai Artificial Intelligence Laboratory
happy-karry@sjtu.edu.cn, 21307130211@m.fudan.edu.cn
dequanwang@sjtu.edu.cn, chongxuanli1991@gmail.com, zhijied@sjtu.edu.cn

ABSTRACT

Diffusion models have impressive image generation capability, but low-quality
generations still exist, and their identification remains challenging due to the
lack of a proper sample-wise metric. To address this, we propose BayesDiff, a
pixel-wise uncertainty estimator for generations from diffusion models based on
Bayesian inference. In particular, we derive a novel uncertainty iteration principle
to characterize the uncertainty dynamics in diffusion, and leverage the last-layer
Laplace approximation for efficient Bayesian inference. The estimated pixel-wise
uncertainty can not only be aggregated into a sample-wise metric to filter out
low-fidelity images but also aids in augmenting successful generations and recti-
fying artifacts in failed generations in text-to-image tasks. Extensive experiments
demonstrate the efficacy of BayesDiff and its promise for practical applications.
Our code is available at https://github.com/karrykkk/BayesDiff.

1 INTRODUCTION

The ability of diffusion models to gradually denoise noise vectors into natural images has paved
the way for numerous applications, including image synthesis (Dhariwal & Nichol, 2021; Rombach
et al., 2022), image inpainting (Lugmayr et al., 2022), text-to-image generation (Saharia et al., 2022;
Gu et al., 2022; Zhang et al., 2023), etc. However, there are still inevitable low-quality generations
causing poor user experience in downstream applications. A viable remediation is to filter out low-
quality generations, which, yet, cannot be trivially realized due to the lack of a proper metric for
image quality identification. For example, the traditional metrics such as the Fréchet Inception
Distance (FID) (Heusel et al., 2017) and Inception Score (IS) (Salimans et al., 2016) scores estimate
the distributional properties of the generations instead of sample-wise quality.

Bayesian uncertainty has long been used to identify data far from the manifold of training sam-
ples (Maddox et al., 2019; Deng et al., 2021). The notion is intuitive—the Bayesian posterior deliv-
ers low uncertainty for the data witnessed during training while high uncertainty for the others. This
fits the requirement that the generations returned to the users should be as realistic as the training im-
ages. However, the integration of Bayesian uncertainty and diffusion models is not straightforward.
Diffusion models typically involve large-scale networks, necessitating efficient Bayesian inference
strategies. Additionally, the generation of images typically involves an intricate reverse diffusion
process, which adds to the challenge of accurately quantifying their uncertainty.

To address these challenges, we propose BayesDiff, a framework for estimating the pixel-wise
Bayesian uncertainty of the images generated by diffusion models. We develop a novel uncer-
tainty iteration principle that applies to various sampling methods to characterize the dynamics of
pixel-wise uncertainty in the reverse diffusion process, as illustrated in Figure 1. We leverage the
last-layer Laplace approximation (LLLA) (Kristiadi et al., 2020; Daxberger et al., 2021a) for effi-
cient Bayesian inference of pre-trained score models. Finally, BayesDiff enables the simultaneous

∗Corresponding authors.

1

https://github.com/karrykkk/BayesDiff


Published as a conference paper at ICLR 2024

Pre-trained 
   weights

Pre-trained 
   weights

LLLA
 with uncertainty   

Iterate T steps with BayesDiff
Prompt: A photo of the mathematician Bayes holding a rose in his hand. 

D
ecoder   

Variance Iteration Principle

D
ecoder   

Image

Pixel-wise Uncertainty

Figure 1: Given an initial point xT ∼ N (0, I), our BayesDiff framework incorporates uncertainty
into the denoising process and generates images with pixel-wise uncertainty estimates.

delivery of image samples and pixel-wise uncertainty estimates. The naive BayesDiff can be slow
due to the involved Monte Carlo estimation, so we further develop an accelerated variant of it to
enhance efficiency.

We can aggregate the obtained pixel-wise uncertainty into image-wise metrics (e.g., through sum-
mation) for generation filtering. Through extensive experiments conducted on ADM (Dhariwal &
Nichol, 2021), U-ViT (Bao et al., 2023), and Stable Diffusion (Rombach et al., 2022) using sam-
plers including DDIM (Song et al., 2020) and DPM-Solver (Lu et al., 2022), we demonstrate the
efficacy of BayesDiff in filtering out images with cluttered backgrounds. Moreover, in text-to-image
generation tasks, we surprisingly find that pixel-wise uncertainty can enhance generation diversity
by augmenting good generations, and rectify failed generations containing artifacts and mismatch-
ing with textual descriptions. Additionally, we perform comprehensive ablation studies to seek a
thorough and intuitive understanding of the estimated pixel-wise uncertainty.

2 BACKGROUND

This section briefly reviews the methodology of diffusion probabilistic models and introduces
Laplace approximation (LA), a classic method for approximate Bayesian inference.

2.1 DIFFUSION MODELS

Let x ∈ Rc×h×w denote an image. A diffusion model (DM) (Ho et al., 2020) typically assumes
a forward process gradually diffusing data distribution q(x) towards qt(xt),∀t ∈ [0, T ], with
qT (xT ) = N (0, σ̃2I) as a trivial Gaussian distribution. The transition distribution obeys a Gaussian
formulation, i.e., qt(xt|x) = N (xt;αtx, σ

2
t I), where αt, σt ∈ R+. The reverse process is defined

with the data score ∇xt log qt(xt), which is usually approximated by −ϵθ(xt, t)/σt with ϵθ as a
parameterized noise prediction network trained by minimizing:

Ex∼q(x),ϵ∼N (0,I),t∼U(0,T )[w(t)∥ϵθ(αtx+ σtϵ, t)− ϵ∥22] (1)

where w(t) denotes a weighting function.

Kingma et al. (2021) show that the stochastic differential equation (SDE) satisfying the transition
distribution specified above takes the form of

dxt = f(t)xtdt+ g(t)dωt, (2)

where ωt is the standard Wiener process, f(t) = d logαt

dt , and g(t)2 =
dσ2

t

dt − 2d logαt

dt σ2
t . An SDE

and an ordinary differential equation (ODE) starting from xT capturing the reverse process can be
constructed as (Song et al., 2021):

dxt = [f(t)xt +
g(t)2

σt
ϵt]dt+ g(t)dω̄t (3)
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dxt

dt
= f(t)xt +

g(t)2

2σt
ϵt, (4)

where ω̄t is the reverse-time Wiener process when time flows backward from T to 0, dt is an
infinitesimal negative timestep and ϵt := ϵθ(xt, t) denotes the noise estimated by the neural network
(NN) model. We could sample x0 ∼ q(x) from xT ∼ qT (xT ) by running backwards in time with
the numerical solvers (Lu et al., 2022; Karras et al., 2022) for Equation (3) or Equation (4).

2.2 BAYESIAN INFERENCE IN DEEP MODELS AND LAPLACE APPROXIMATION

Bayesian inference turns a deterministic neural network into a Bayesian neural network (BNN).
Let p(D|θ) denote the data likelihood of the NN fθ for the dataset D = {(x(n), y(n))}Nn=1. As-
suming an isotropic Gaussian prior p(θ), BNN methods estimate the Bayesian posterior p(θ|D) =
p(θ)p(D|θ)/p(D), where p(D|θ) :=

∏
n p(y

(n)|x(n), θ) =
∏

n p(y
(n)|fθ(x(n))), and predict for

new data x∗ with p(y|x∗,D) = Ep(θ|D)p(y|fθ(x∗)).

Due to NNs’ high nonlinearity, analytically computing p(θ|D) is often infeasible. Hence, approx-
imate inference techniques such as variational inference (VI) (Blundell et al., 2015; Hernández-
Lobato & Adams, 2015; Louizos & Welling, 2016; Zhang et al., 2018; Khan et al., 2018),
Laplace approximation (LA) (Mackay, 1992; Ritter et al., 2018), Markov chain Monte Carlo
(MCMC) (Welling & Teh, 2011; Chen et al., 2014; Zhang et al., 2019), and particle-optimization
based variational inference (POVI) (Liu & Wang, 2016) are routinely introduced to yield an approx-
imation q(θ) ≈ p(θ|D). Among them, LA has recently gained particular attention because it can
apply to pre-trained models effortlessly in a post-processing manner and enjoy strong uncertainty
quantification (UQ) performance (Foong et al., 2019; Daxberger et al., 2021a;b).

LA approximates p(θ|D) with q(θ) = N (θ; θMAP,Σ), where θMAP denotes the maximum a pos-
teriori (MAP) solution θMAP = argmaxθ log p(D|θ) + log p(θ), and Σ = [−∇2

θθ(log p(D|θ) +
log p(θ))|θ=θMAP ]

−1 characterizes the Bayesian uncertainty over model parameters. Last-layer
Laplace approximation (LLLA) (Kristiadi et al., 2020; Daxberger et al., 2021a) further improves
the efficiency of LA by concerning only the parameters of the last layer of the NN. It is particularly
suited to the problem of uncertainty quantification for DMs, as DMs are usually large.

3 METHODOLOGY

We incorporate LLLA into the noise prediction model in DMs for uncertainty quantification at a sin-
gle timestep. We then develop a novel algorithm to estimate the dynamics of pixel-wise uncertainty
along the reverse diffusion process. We also develop a variant of it for practical acceleration.

3.1 LAPLACE APPROXIMATION ON NOISE PREDICTION MODEL

Usually, the noise prediction model is trained to minimize Equation (1) under a weight decay regu-
larizer, which corresponds to the Gaussian prior on the NN parameters. Namely, we can regard the
pre-trained parameters as a MAP estimation and perform LLLA. Of note, the noise prediction prob-
lem corresponds to a regression under Gaussian likelihood, based on which we estimate the Hessian
matrix involved in the approximate posterior (or its variants such as the generalized Gauss-Newton
matrix). The last layer in DMs is often linear w.r.t. the parameters, so the Gaussian approximate
posterior distribution on the parameters directly leads to a Gaussian posterior predictive:

p(ϵt|xt, t,D) ≈ N (ϵθ(xt, t),diag(γ
2
θ (xt, t))), (5)

where we abuse θ to denote the parameters of the pre-trained DM. We keep only the diagonal
elements in the Gaussian covariance, γ2

θ (xt, t), because they refer to the pixel-wise variance of the
predicted noise, i.e., the pixel-wise prediction uncertainty of ϵt. Implementation details regarding
the LLLA are shown in Appendix A.4.

3.2 PIXEL-WISE UNCERTAINTY ESTIMATION IN REVERSE DENOISING PROCESS

Next, we elaborate on integrating the uncertainty obtained above into the reverse diffusion process.
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Although various sampling methods may correspond to various reverse diffusion processes, the
paradigm for characterizing the uncertainty dynamics is similar. Take the SDE-form one (Equa-
tion (3)) for example, introducing Bayesian uncertainty to the noise prediction model yields:

dxt = [f(t)xt +
g(t)2

σt
ϵt]dt+ g(t)dω̄t, (6)

where ϵt ∼ N (ϵθ(xt, t),diag(γ
2
θ (xt, t))). Assume the following discretization for it:

xt−1 = xt − (f(t)xt +
g(t)2

σt
ϵt) + g(t)z, (7)

where z ∼ N (0, I). To estimate the pixel-wise uncertainty of xt−1, we apply variance estimation
to both sides of the equation, giving rise to

Var(xt−1) = (1− f(t))2Var(xt)− (1− f(t))
g(t)2

σt
Cov(xt, ϵt) +

g(t)4

σ2
t

Var(ϵt) + g(t)21, (8)

where Cov(xt, ϵt) ∈ Rc×w×h denotes the pixel-wise covariance between xt and ϵt. With this, we
can iterate over it to estimate the pixel-wise uncertainty of the final x0. Recalling that Var(ϵt) =
γ2
θ (xt, t), the main challenges then boils down to estimating Cov(xt, ϵt).

The estimation of Cov(xt, ϵt). By the law of total expectation E(E(X|Y )) = E(X), there is

Cov(xt, ϵt) = E(xt ⊙ ϵt)− Ext ⊙ Eϵt
= Ext

(Eϵt|xt
(xt ⊙ ϵt|xt))− Ext ⊙ Ext

(Eϵt|xt
(ϵt|xt))

= Ext(xt ⊙ ϵθ(xt, t))− Ext ⊙ Ext(ϵθ(xt, t))

(9)

where ⊙ denotes the element-wise multiplication. To estimate this, we need the distribution of xt.

We notice that it is straightforward to estimate E(xt) via a similar iteration rule to Equation (8):

E(xt−1) = (1− f(t))E(xt)−
g(t)2

σt
E(ϵt). (10)

Given these, we can reasonably assume xt follows N (E(xt),Var(xt)), and then Cov(xt, ϵt) can
be approximated with Monte Carlo (MC) estimation:

Cov(xt, ϵt) ≈
1

S

S∑
i=1

(xt,i ⊙ ϵθ(xt,i, t))− Ext ⊙
1

S

S∑
i=1

ϵθ(xt,i, t), (11)

where xt,i ∼ N (E(xt),Var(xt)), i = 1, . . . , S.

Applying our method to existing samplers. The derivation from Equation (7) to Equation (11)
presents our general methodology based on the classical Euler sampler of reverse-time SDE, which
can be applied to an arbitrary existing sampler of diffusion models in principle. For broader interests
and simplicity, we show the explicit rules for DDPM (Ho et al., 2020) as an instance.

Specifically, the sampling rule of DDPM (Ho et al., 2020) is:

xt−1 =
1√
α′
t

(xt −
1− α′

t√
1− ᾱ′

t

ϵt) +
√
βtz (12)

where α′
t := 1 − βt with βt as the given noise schedule for DDPM and ᾱ′

t =
∏t

s=1 α
′
s. Using the

same techniques as above, we can trivially derive the corresponding iteration rules:

Var(xt−1) =
1

α′
t

Var(xt)− 2
1− α′

t

α′
t

√
1− ᾱ′

t

Cov(xt, ϵt) +
(1− α′

t)
2

α′
t(1− ᾱ′

t)
Var(ϵt) + βt (13)

E(xt−1) =
1√
α′
t

E(xt)−
1− α′

t√
α′
t(1− ᾱ′

t)
E(ϵt) (14)

Equation (11) can still be leveraged to approximate Cov(xt, ϵt). We iterate over these equations to
obtain x0 as well as its uncertainty Var(x0). Since the advanced samplers, e.g., Analytic-DPM (Bao
et al., 2021), DDIM (Song et al., 2020) and DPM-Solver (Lu et al., 2022), are more efficient and
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Algorithm 1 Pixel-wise uncertainty estimation via Bayesian inference. (BayesDiff)
Input: Starting point xT , Monte Carlo sample size S, Pre-trained noise prediction model ϵθ.
Output: Image generation x0 and pixel-wise uncertainty Var(x0).
1: Construct the pixel-wise variance prediction function γ2

θ via LLLA;
2: E(xT )← xT ,Var(xT )← 0, Cov(xT , ϵT )← 0;
3: for t = T → 1 do
4: Sample ϵt ∼ N (ϵθ(xt, t),diag(γ

2
θ (xt, t)));

5: Obtain xt−1 via Equation (7);
6: Estimate E(xt−1) and Var(xt−1) via Equation (10) and Equation (8);
7: sample xt−1,i ∼ N (E(xt−1),Var(xt−1)), i = 1, . . . , S;
8: Estimate Cov(xt−1, ϵt−1) via Equation (11).
9: end for

widely adopted, we also present the explicit formulations corresponding to them in Appendix A.1.
The 2-order DPM-solver is particularly popular in practice, e.g., in large-scale text-to-image models,
but it is non-trivial to apply the above derivations directly to it because there is an extra hidden state
introduced between xt and xt−1. We propose to leverage structures like conditional independence
to resolve this. Find more details in Appendix A.1.
Continuous-time reverse process. Instead of quantifying the uncertainty captured by the discrete
diffusion process as Equation (7), we can also directly quantify that associated with the original
continuous-time process, i.e., Equation (6). We have derived an approximate expression illustrating
the pattern of uncertainty dynamics at arbitrary timestep in [0, T ]. However, estimating Var(x0)
using it is equally laborious as a discrete-time reverse process because discretization is still required
to approximate the involved integration. See Appendix A.2 for more discussion.

Algorithm. Algorithm 1 demonstrates the procedure of applying the developed uncertainty iteration
principle to the SDE sampler in Equation (7). After obtaining the pixel-wise uncertainty Var(x0),
we can aggregate the elements into an image-wise metric for low-quality image filtering.

3.3 THE PRACTICAL ACCELERATION

Algorithm 1 computes the uncertainty of the hidden state at each sampling step, abbreviated as
BayesDiff. The function γ2

θ (xt, t) produces outcomes along with ϵθ(xt, t), raising minimal added
cost. Yet, the MC estimation of Cov(xt, ϵt) in Equation (11) causes S (usually S > 10) more
evaluations of ϵθ, which can be prohibitive in the deployment scenarios.

To address this, we develop a faster variant of BayesDiff by performing uncertainty quantification
on only a subset of the denoising steps rather than all of them, dubbed BayesDiff-Skip. Concretely,
we pre-define a schedule t̃ := {t̃1, . . . , t̃U} in advance. For each timestep t, if t ∈ t̃, we sample ϵt
from LLLA and estimate corresponding uncertainty Var(xt−1) following the uncertainty iteration
principle. Otherwise, we adopt the deterministic sampling step where Cov(xt, ϵt) and Var(ϵt) are
set to zero. We outline such a procedure in Appendix A.3.
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Figure 2: A study on the reliability of
the BayesDiff-Skip algorithm. The top im-
ages with the highest uncertainty selected by
BayesDiff are still with high uncertainty in
BayesDiff-Skip algorithm.

Consistency between BayesDiff-Skip and BayesDiff.
We check the reliability of BayesDiff-Skip here. Con-
cretely, we generate 96 images using BayesDiff (skipping
interval = 0) under the DDIM sampling rule on ImageNet
and mark the top 9 and bottom 9 samples with the high-
est and lowest uncertainty according to the summation of
pixel-wise uncertainty. We send the same random noises
(i.e., xT ) to BayesDiff-Skip (skipping interval > 0) with
various skipping intervals (unless specified otherwise, we
evenly skip) to obtain generations close to the aforemen-
tioned 96 images yet with various uncertainties. We plot
the uncertainties of the marked images in Figure 2. It is
shown that the marked images that BayesDiff is the most
uncertain about remain the same for BayesDiff-Skip. No-
tably, in this experiment, BayesDiff-Skip can achieve a
5× reduction in running time.
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Figure 3: The images with the highest (left) and lowest (right) uncertainty among 5000 unconditional
generations of U-ViT model trained on ImageNet at 256× 256 resolution.

A photo of a bald eagle. A photo of an iguana. A photo of a white shark.

Figure 4: The images with the highest (left) and lowest (right) uncertainty among 80 generations on
Stable Diffusion at 512× 512 resolution.

4 EXPERIMENTS

In this section, we demonstrate the efficacy of BayesDiff in filtering out low-quality generations. Be-
sides, we show that pixel-wise uncertainty can aid in generating diverse variations of the successful
generation and addressing artifacts and misalignment of failure generations in text-to-image tasks.
At last, we seek an intuitive understanding of the uncertainty estimates obtained by BayesDiff. We
sum over the pixel-wise uncertainty to obtain an image-wise metric. Unless specified otherwise, we
set the Monte Carlo sample size S to 10 and adopt BayesDiff-Skip with a skipping interval of 4,
which makes our sampling and uncertainty quantification procedure consume no more than 2× time
than the vanilla sampling method.

4.1 EFFECTIVENESS IN LOW-QUALITY IMAGE FILTERING

Comparison between high and low uncertainty images. We first conduct experiments on the
U-ViT (Bao et al., 2023) model trained on ImageNet (Deng et al., 2009) and Stable Diffusion,
performing sampling and uncertainty quantification using BayesDiff-Skip. The sampling algorithm
follows the 2-order DPM-Solver with 50 function evaluations (NFE). We display the generations
with the highest and lowest uncertainty in Figure 3 and Figure 4.

As shown above, our image-wise uncertainty metric is likely to indicate the level of clutter and the
degree of subject prominence in the image. It can be used to detect low-quality images with cluttered
backgrounds in downstream applications.

Relationship between our sample-wise uncertainty metric and traditional distributional met-
rics. We use BayesDiff-Skip to generate 100,000 images on CELEBA (Liu et al., 2015) based on
DDPM (Ho et al., 2020) model and DDIM sampler, 250,000 256× 256 ImageNet images based on
U-ViT (Bao et al., 2023) and 2-order DPM-Solver, and 250,000 128× 128 ImageNet images based
on ADM (Dhariwal & Nichol, 2021) and DDIM. We separately divide the sets into five groups of
the same size with descending uncertainty. We compute the traditional metrics for each group of
data, including Precision (Kynkäänniemi et al., 2019), which evaluates the fidelity of the genera-
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Figure 5: FID, Precision and Recall scores of 5 groups of generations with descending uncertainty
on CELEBA and ImageNet datasets. Results show there is a strong correlation between our sample-
wise uncertainty metric and traditional distributional metrics.

Table 1: Comparison on three metrics between randomly selected images and our selected images.
We use 50 NFE for both DDIM and DPM-Solver sampler.

Model Dataset Sampler FID ↓ Precision ↑ Recall ↑
random ours random ours random ours

ADM ImageNet 128 DDIM 8.68± 0.04 8.48 0.661 0.665 0.655 0.653
ADM ImageNet 128 2-order DPM-Solver 9.77± 0.03 9.67 0.657 0.659 0.649 0.649
U-ViT ImageNet 256 2-order DPM-Solver 7.24± 0.02 6.81 0.698 0.705 0.658 0.657
U-ViT ImageNet 512 2-order DPM-Solver 17.72± 0.03 16.87 0.728 0.732 0.602 0.604

tion, Recall (Kynkäänniemi et al., 2019), which accounts for the diversity, and FID, which conjoins
fidelity and diversity. We present the results in Figure 5.

Notably, images with higher uncertainty have higher Recalls in both scenarios, i.e., higher diversity,
and images with lower uncertainty have higher Precisions, i.e., higher fidelity. This echoes the trade-
off between Precision and Recall. Moreover, as Figure 3 implies, images with high uncertainty have
cluttered elements, which is consistent with the results of Precision. However, the trend of FID is
different among the three datasets. The main reason is that the generations on the simple CELEBA
are all good enough, so diversity becomes the main factor influencing FID. Conversely, on the more
complex ImageNet, fidelity is the main factor influencing FID.

Top 16% with 
highest uncertainty

Figure 6: The empirical distribution of the
uncertainty estimates yielded by our ap-
proach. The dashed line denotes the nor-
mal distribution fitted on them. Inspired
by this, we propose to filter out the top
16% samples with the highest uncertainty.

Criterion for low-quality image filtering to improve
the quality of generated distribution. We generate
50,000 images using a 2-order DPM-Solver sampler
and BayesDiff-Skip on ImageNet at 256 × 256 reso-
lution to explore the distribution of image-wise uncer-
tainty. As shown in Figure 6, the empirical distribu-
tion of the image-wise uncertainty of the generations
is approximately a normal distribution. According to
the 3-sigma criterion of normal distribution for elimi-
nating outliers, we eliminate low-quality images by fil-
tering out the images with uncertainty higher than µ+σ,
which is equivalent to top 16% images with the high-
est uncertainty. To test the effectiveness of this crite-
rion, we generate 60,000 images with various models
and samplers and select the 50,000 images with lower
uncertainty. We compute the Precision, Recall, and
FID of these samples in Table 1, which also includes
the random selection baseline. The results validate that
we filter out low-quality images precisely with such an
uncertainty-based filtering criterion.
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A photo of a Shiba Inu dog wearing 
      sunglasses and a beach hat.

A painting of a cheetah drinking an espresso.

origin augmented samples origin augmented samples 

Figure 7: Examples of the augmentation of good generations with enhanced diversity on Stable
Diffusion with DDIM sampler (50 NFE).

A street sign that reads 'Bayes' A teddy bear is riding a bikeA Garfield in sunglasses 
       is eating lasagna

origin refined origin refined origin refined origin refined

Figure 8: Examples of the rectification of artifacts and misalignment in failure generations on Stable
Diffusion with DDIM sampler (50 NFE). The flawed samples are identified by humans and the
bounding boxes are manually annotated.

4.2 PIXEL-WISE UNCERTAINTY: A TOOL FOR DIVERSITY ENHANCEMENT AND ARTIFACT
RECTIFICATION

The main issue with Stable Diffusion is that usually, only a few generations denoised from ‘good’
initial noises can align with the input textual description (Wu et al., 2023). We show that the pixel-
wise uncertainty estimated by BayesDiff can be leveraged to alleviate such an issue. Specifically,
BayesDiff-Skip allows for introducing a distribution of xt ∼ N (E(xt),Var(xt)) for any time
t ∈ [0, T ]. If the final sample x0 appears to be a good generation, we can resample xt,i from
N (E(xt),Var(xt)) and denoise it to a new one x0,i, which is similar yet different from x0. We
leverage BayesDiff-Skip with a skipping interval of 1 and DDIM sampler with 50 NFE to test this.
We use the Gaussian distribution estimated at t = 40 for resampling. Figure 7 shows that the
resampled x0,i still conforms the above hypothesis. Moreover, Figure 8 shows that in some cases,
the artifacts in original samples can be rectified, and hence the failed samples, which are mismatched
with the prompts, are rectified into successful samples. More examples are shown in Appendix A.5.

4.3 FURTHER UNDERSTANDING OF PIXEL-WISE UNCERTAINTY

Visualization of pixel-wise uncertainty. To gain an intuitive understanding of the obtained uncer-
tainty estimates, we visualize them in this section. In detail, we launch BayesDiff using DDPM
model for generating CELEBA images and Stable Diffusion for generating prompt-conditional im-
ages. Nonetheless, the visualization for Stable Diffusion is not straightforward because we actually
obtain the variance in the final latent states. To solve this problem, we sample a variety of latent states
and send them to the decoder of Stable Diffusion. We estimate the empirical variance of the out-
comes as the final pixel-wise uncertainty. Figure 9 presents the results. As shown, our uncertainty
estimates carry semantic information. The eyes, noses, and mouths of human faces demonstrate
greater uncertainty on CELEBA, and the contours of objects in images from Stable Diffusion ex-

8



Published as a conference paper at ICLR 2024

Figure 9: Visualization of the pixel-wise uncertainty of generations on CELEBA (top) and from
Stable Diffusion with prompt ‘A photo of a whitethroat’ (bottom). We adopt BayesDiff-Skip and
DDIM sampler (50 NFE) in both cases.

Figure 10: Visualization of xadjacent,0, which are denoised from adjacent initial positions corre-
sponding to low image-wise uncertainty (left, ranges from 2.5 to 2.8) and high one (right, ranges
from 24.5 to 28.1) on CELEBA with DDIM sampler (50 NFE).

hibit higher levels of uncertainty. This further explains the higher image-wise uncertainty for clutter
images and the lower one for clean images mentioned in Section 4.1.
Visualization of generations of adjacent initial positions. In BayesDiff, the estimated uncertainty
Var(x0) is dependent on the corresponding initial position xT ∼ N (0, I), and higher uncertainty
estimates correspond to larger variations in the sampling trajectory. Therefore, adding minor pertur-
bation to initial positions corresponding to high uncertainty should produce diverse generations. We
conduct experiments on CELEBA (Liu et al., 2015) with DDIM sampler to validate this conjecture.
Specifically, we define the adjacent initial position xadjacent,T :=

√
1− ηxT +

√
ηz, z ∼ N (0, I)

and visualize xadjacent,0, which is denoised from xadjacent,T . Figure 10 shows that images gener-
ated from adjacent positions with high uncertainty indeed exhibit greater diversity. This result also
echos the higher Recall of the group with higher uncertainty on CELEBA in Section 4.1.

5 RELATED WORK

Several works incorporate Baysian inference into deep generative models and exihibit strong perfor-
mance. Variational Autoencoder (VAE) (Kingma & Welling, 2014) is a classic generative model that
learns the data distribution through Bayesian variational inference. VAEs have been applied in vari-
ous domains and demonstrate powerful capabilities of data representation and generation. (Kingma
& Welling, 2014; Hou et al., 2017; Bowman et al., 2015; Semeniuta et al., 2017; Wang et al., 2019;
Ha & Schmidhuber, 2018) Variational Diffusion Models (VDMs) (Kingma et al., 2021) employ a
signal-to-noise ratio function to parameterize the forward noise schedule in diffusion models, en-
abling the direct optimization of the variational lower bound (VLB) and accelerating training a lot.

6 CONCLUSION

In this paper, we introduce BayesDiff, a framework for pixel-wise uncertainty estimation in Diffu-
sion Models via Bayesian inference. We have empirically demonstrated that the estimated pixel-wise
uncertainty holds a significant practical value, including being utilized as an image-wise uncertainty
metric for filtering low-quality images and a tool for diversity enhancement and misalignment rec-
tification in text-to-image generations. Apart from image generations, the powerful capability of
Diffusion Models to generate realistic samples has been applied in various other domains such as
natural language processing (audio synthesis (Huang et al., 2022); text-to-speech (Kim et al., 2022))
and AI for science (molecular conformation prediction (Xu et al., 2021); material design (Luo et al.,
2022)). We believe BayesDiff holds great potential for incorporating with these applications to
improve the predictive uncertainty and calibrate generations.
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A APPENDIX

A.1 ITERATION RULES FOR OTHER SAMPLING METHODS

For Analytic-DPM (Bao et al., 2021), the sampling method is:

xt−1 =
1√
α′
t

(xt −
1− α′

t√
1− ᾱ′

t

ϵt) + σtz (15)

σ2
t = λ2

t + (

√
1− ᾱ′

t

α′
t

−
√
1− ᾱ′

t−1 − λ2
t )

2(1− (1− ᾱ′
t)Γt) (16)

λ2
t =

1− ᾱ′
t−1

1− ᾱ′
t

(1− α′
t), Γn =

1

M

M∑
m=1

∥st (xt,m)∥2

d
,xt,m

i.i.d∼ qt (xt) (17)

The corresponding iteration rule is:

E(xt−1) =
1√
α′
t

E(xt)−
1− α′

t√
α′
t(1− ᾱ′

t)
E(ϵt) (18)

Var(xt−1) =
1

α′
t

Var(xt)− 2
1− α′

t

α′
t

√
1− ᾱ′

t

Cov(xt, ϵt) +
(1− α′

t)
2

α′
t(1− ᾱ′

t)
Var(ϵt) + σ2

t (19)

For DDIM (Song et al., 2020), the sampling method is

xt−1 = αt−1(
xt − σtϵt

αt
) + σt−1ϵt (20)

The corresponding iteration rule is:

E(xt−1) =
αt−1

αt
E(xt) + (σt−1 −

αt−1

αt
σt)E(ϵt) (21)

Var(xt−1) =
α2
t−1

α2
t

Var(xt) + 2
αt−1

αt
(σt−1 −

αt−1

αt
σt)Cov(xt, ϵt) + (σt−1 −

αt−1

αt
σt)

2Var(ϵt)

(22)

For 2-order DPM-Solver (Lu et al., 2022), applying our method is non-trivial because it involves an
extra hidden state between xt and xt−1:

xst =
αst

αt
xt − σst(e

ht
2 − 1)ϵt (23)

xt−1 =
αt−1

αt
xt − σt−1(e

ht − 1)ϵst , (24)

where λt = log αt

σt
is the half-log-SNR (Lu et al., 2022). ht = λt−1 − λt. st denotes the timestep

corresponding to the half-log-SNR of λt−1+λt

2 .

Estimating expectation and variance for both sides of Equation (24) yields:

E(xt−1) =
αt−1

αt
E(xt)− σt−1(e

ht − 1)E(ϵst) (25)

Var(xt−1) =
α2
t−1

α2
t

Var(xt)− 2
αst

αt
σt−1(e

ht − 1)Cov(xt, ϵst) + σ2
t−1(e

ht − 1)2Var(ϵst). (26)

Unlike first-order sampling methods, we cannot approximate Cov(xt, ϵst) with rarely MC samples
xt,i. Nonetheless, we observe that injecting the uncertainty on ϵt to Equation (23) yields

xst |xt ∼ N (
αst

αt
xt − σst(e

ht
2 − 1)ϵθ(xt, t),diag(σ

2
st(e

ht
2 − 1)2γ2

θ (xt, t))). (27)

Consequently, we can first sample xt,i ∼ N (E(xt),Var(xt)), based on which xst,i are sampled.
Then, we can approximate Cov(xt, ϵst) with MC estimation similar to Equation (11).
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A.2 UNCERTAINTY QUANTIFICATION ON CONTINUOUS-TIME REVERSE PROCESS

Firstly, we integrate Equation (6) with time t from 0 to T to obtain the continuous-time solution x0.

x0 = xT −
∫ T

0

[f(t)xt +
g(t)2

σt
ϵt]dt+

∫ T

0

g(t)dω̄t (28)

Due to the independence between the reverse-time Wiener process and xt, we have

Var(x0) = Var(xT ) + Var(

∫ T

0

[f(t)xt +
g(t)2

σt
ϵt]dt) + Var(

∫ T

0

g(t)dω̄t)

= 1+Var(

∫ T

0

[f(t)xt +
g(t)2

σt
ϵt]dt) +

∫ T

0

g(t)2dt

(29)

The second equality is derived using the Ito isometry property Equation (30) of Ito calculus:

E(
∫ T

0

g1(t)dω̄t

∫ T

0

g2(t)dω̄t) = E(
∫ T

0

g1(t)g2(t)dt) (30)

that is,

Var(

∫ T

0

g(t)dω̄t) =E((
∫ T

0

g(t)dω̄t)
2)− E(

∫ T

0

g(t)dω̄t)
2

=E((
∫ T

0

g(t)dω̄t)
2)− 0 =

∫ T

0

g(t)2dt

(31)

Assuming that the reward process xt, t ∈ [0, T ] is a stochastic process with second order moments
and is mean square integrable, we have

Var(

∫ T

0

[f(t)xt +
g(t)2

σt
ϵt]dt)

=

∫ T

0

∫ T

0

f(s)f(t)Cov(xs,xt)

−f(s)g(t)
2

σt
Cov(xs, ϵt)− f(t)

g(s)2

σs
Cov(xt, ϵs) +

g(s)2

σs

g(t)2

σt
Cov(ϵs, ϵt)dsdt

=

∫ T

0

∫ T

0

f(s)f(t)Cov(xs,xt)− f(s)
g(t)2

σt
Cov(xs, ϵt)dsdt

−2
∫ T

0

f(s)
g(s)2

σs
Cov(xs, ϵs)ds+

∫ T

0

g(s)4

σ2
s

Cov(ϵs, ϵs)ds

(32)

The second equvalence holds because xs and ϵt, ϵs and ϵt are both independent when s ̸= t, i.e.
Cov(xs, ϵt) = 0,Cov(ϵs, ϵt) = 0,∀s ̸= t.∫ T

0

∫ T

0

f(s)f(t)Cov(xs,xt)dsdt =2

∫ T

0

f(t)(

∫ t

0

f(s)Cov(xs,xt)ds)dt

=2

∫ T

0

f(t)(

∫ t

0

f(s)Cov(xs,xs +

∫ t

s

(f(u)xu −
g(u)2

σu
ϵu)du

+

∫ t

s

g(u)dω̄uds)dt

=2

∫ T

0

f(t)(

∫ t

0

f(s)Var(xs)ds)dt

+2

∫ T

0

f(t)(

∫ t

0

f(s)Cov(xs,

∫ t

s

(f(u)xu −
g(u)2

σu
ϵu)du)ds)dt

(33)
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Then the question boils down to approximate Cov(xs,
∫ t

s
(f(u)xu− g(u)2

σu
ϵu)du). According to the

numerical integration method and Cov(xs, ϵt) = 0,∀s ̸= t,

Cov(xs,

∫ t

s

(f(u)xu −
g(u)2

σu
ϵu)du) = Cov(xs,

∫ t

s

f(u)xudu) + Cov(xs,

∫ t

s

−g(u)2

σu
ϵu)du)

= Cov(xs,

∫ t

s

f(u)xudu)−
g(u)2

σu
Cov(xs, ϵu)∆t

(34)

So when ∆t→ 0,

Cov(xs,

∫ t

s

(f(u)xu −
g(u)2

σu
ϵu)du) = Cov(xs,

∫ t

s

f(u)xudu) (35)

According to sampling method xt−1 = xt − (f(t)xt +
g(t)2

σt
ϵt))∆t+ g(t)(wt−1 −wt),

xs+∆t = xs + (f(s)xs +
g(s)2

σs
ϵs)∆t+ h(w)

xs+2∆t = xs+∆t + (f(s+∆t)xs+∆t +
g(s+∆t)2

σt+∆t
ϵs+∆t)∆t+ h(w)

= xs + (f(s)xs +
g(s)2

σs
ϵs)∆t+ f(s+∆t)xs∆t+

g(s+∆t)2

σt+∆t
ϵs+∆t∆t+O(∆t2) + h(w)

(36)

Then using naiive numerical integration method, we have∫ t

s

f(u)xudu = f(s)xs∆t+ f(s+∆t)xs+∆t∆t+ f(s+ 2∆t)xs+2∆t∆t+ · · ·++f(t−∆t)xt−∆t∆t

= f(s)xs∆t+ f(s+∆t)xs∆t+ f(s+ 2∆t)xs∆t+ · · ·+ f(t−∆t)xs∆t+
∑
O(∆t2) +H(w)

=

∫ t

s

f(u)xsdu+
∑
O(∆t2) +H(w)

(37)
We neglect second-order terms and get the approximation of Cov(xs,

∫ t

s
f(u)xudu):

Cov(xs,

∫ t

s

f(u)xudu) ≈ Cov(xs,

∫ t

s

f(u)xsdu) = Var(xs)

∫ t

s

f(u)du (38)

In conclusion, we derive an approximate illustrating the pattern of uncertainty dynamics from xT to
x0,

Var(x0) ≈ 1+ 2

∫ T

0

f(t)(

∫ t

0

f(s)Var(xs)ds)dt+ 2

∫ T

0

f(t)(

∫ t

0

f(s)Var(xs)(

∫ t

s

f(u)du)ds)dt

− 2

∫ T

0

f(s)
g(s)2

σs
Cov(xs, ϵs)ds+

∫ T

0

g(s)4

σ2
s

Var(ϵs)ds+

∫ T

0

g(t)2dt

(39)
Moreover, we can generalize it to arbitrary reverse time interval [i, j] ∈ [0, T ].

Specifically, ∀0 ≤ i ≤ j ≤ T ,

Var(xi) ≈ Var(xj) + 2

∫ j

i

f(t)(

∫ t

i

f(s)Var(xs)ds)dt+ 2

∫ j

i

f(t)(

∫ t

i

f(s)Var(xs)(

∫ t

s

f(u)du)ds)dt

− 2

∫ j

i

f(s)
g(s)2

σs
Cov(xs, ϵs)ds+

∫ j

i

g(s)4

σ2
s

Var(ϵs)ds+

∫ j

i

g(t)2dt

(40)
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Algorithm 2 A faster variant of BayesDiff. (BayesDiff-Skip)

Input: Starting point xT , Monte Carlo sample size S, Pre-trained noise prediction model ϵθ.
Output: Image generation x0 and pixel-wise uncertainty Var(x0).
1: Construct the pixel-wise variance prediction function γ2

θ via LLLA;
2: E(xT )← xT ,Var(xT )← 0, Cov(xT , ϵT )← 0;
3: for t = T → 1 do
4: if t ∈ t̃ then
5: Sample ϵt ∼ N (ϵθ(xt, t),diag(γ

2
θ (xt, t)));

6: else
7: ϵt ← ϵθ(xt, t), Cov(xt, ϵt)← 0, Var(ϵt)← 0;
8: end if
9: Obtain xt−1 via Equation (7);

10: Estimate E(xt−1) and Var(xt−1) via Equation (10) and Equation (8);
11: if t− 1 ∈ t̃ then
12: Sample xt−1,i ∼ N (E(xt−1),Var(xt−1)), i = 1, . . . , S;
13: Estimate Cov(xt−1, ϵt−1) via Equation (11);
14: end if
15: end for

A.3 BAYESDIFF-SKIP ALOGORITHM

In this section, we present our BayesDiff-Skip algorithm. To be specific, if sampling with uncer-
tainty is used from xt to xt−1, then ϵt is considered as a random variable sampled from the normal
posterior predictive distribution, where Cov(xt, ϵt) and Var(ϵt) are non-zero. Conversely, if origi-
nal deterministic sampling is used from xt to xt−1, ϵt is treated as a constant and Cov(xt, ϵt) and
Var(ϵt) are zero. We conclude it to this algorithm in Algorithm 2.

A.4 IMPLEMENTATION DETAILS OF LAST LAYER LAPLACE APPROXIMATION

We adopt the most lightweight diagonal factorization and ignore off-diagonal elements for Hessian
approximation in LLLA (Daxberger et al., 2021a). To avoid storing large Jacobian matrix, we adopt
the Monte Carlo method to approximate the accurate variance of outputs diag(γ2

θ (x, t)) directly by
the variance of samples fθi(x, t) , θi ∼ p(θ|D) = N (θ; θMAP, Σ). This results in faster computation
speed, while still maintaining a reasonable level of accuracy. The number of samples is chosen as
100 in practice.

A.5 ADDITIONAL EXAMPLES OF RESAMPLING METHOD WITH BAYESDIFF

To provide a more intuitive demonstration of the significance of our resampling method, we include
additional prompts and corresponding images containing artifacts annotated by humans, presenting
8 resampled images using BayesDiff in Figure 11 and Figure 12. We find that the success rate of
resampling flawed samples into desirable samples is approximately at least 60%.
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a hamster working in a police office, professional photography, photo realistic

medium format film portrait close up of a female astronaut sitting on a bench in the park on a 
rainy day, hasselblad film bokeh, unsplash, soft light photographed on colour expired film

Figure 11: 8 potential rectified samples resampled by BayesDiff (right) of flawed images (left)
annotated by humans.

17



Published as a conference paper at ICLR 2024

a cat standing on a castle surrounded by fire, digital art, realistic, large 
depth of field, vignette effect, trending  on arstation

Figure 12: 8 potential rectified samples resampled by BayesDiff (right) of flawed images (left)
annotated by humans.
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