
Published as a conference paper at ICLR 2025

MULTILEVEL GENERATIVE SAMPLERS FOR
INVESTIGATING CRITICAL PHENOMENA

Ankur Singha1,2∗, Elia Cellini3,4∗, Kim A. Nicoli5,6∗
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ABSTRACT

Investigating critical phenomena or phase transitions is of high interest in physics
and chemistry, for which Monte Carlo (MC) simulations, a crucial tool for numer-
ically analyzing macroscopic properties of given systems, are often hindered by
an emerging divergence of correlation length—known as scale invariance at criti-
cality (SIC) in the renormalization group theory. SIC causes the system to behave
the same at any length scale, from which many existing sampling methods suf-
fer: long-range correlations cause critical slowing down in Markov chain Monte
Carlo (MCMC), and require intractably large receptive fields for generative sam-
plers. In this paper, we propose a Renormalization-informed Generative Critical
Sampler (RiGCS)—a novel sampler specialized for near-critical systems, where
SIC is leveraged as an advantage rather than a nuisance. Specifically, RiGCS
builds on MultiLevel Monte Carlo (MLMC) with Heat Bath (HB) algorithms,
which perform ancestral sampling from low-resolution to high-resolution lattice
configurations with site-wise-independent conditional HB sampling. Although
MLMC-HB is highly efficient under exact SIC, it suffers from a low acceptance
rate under slight SIC violation. Notably, SIC violation always occurs in finite-size
systems, and may induce long-range and higher-order interactions in the renormal-
ized distributions, which are not considered by independent HB samplers. RiGCS
enhances MLMC-HB by replacing a part of the conditional HB sampler with gen-
erative models that capture those residual interactions and improve the sampling
efficiency. Our experiments show that the effective sample size of RiGCS is a
few orders of magnitude higher than state-of-the-art generative model baselines in
sampling configurations for 128 × 128 two-dimensional Ising systems. SIC also
allows us to adopt a specialized sequential training protocol with model transfer,
which significantly accelerates training.

1 INTRODUCTION

Monte Carlo (MC) simulations, where samples from a Boltzmann distribution are used to estimate
macroscopic properties, are ubiquitous in many fields of science, ranging from chemistry (Metropo-
lis et al., 1953), statistical physics (Hastings, 1970; Creutz et al., 1983), and quantum field the-
ory (Creutz et al., 1979; Wilson, 1980) to biology (Huelsenbeck et al., 2001) and financial analy-
sis (Doucet et al., 2001). In MC simulations, the ability to efficiently sample from unnormalized
distributions in a high-dimensional space poses crucial challenges. Standard algorithms such as
Monte Carlo Markov Chain (MCMC) methods (Metropolis & Ulam, 1949; Robert & Casella, 2004)
are often plagued by, e.g., slow convergence (Cowles & Carlin, 1996), energy barriers and local
minima (Cérou et al., 2012), and critical slowing down (Wolff, 1990; 2004; Schaefer et al., 2011).
This paper specifically tackles the problem of critical slowing down around critical regimes. In
the broader context of physical sciences, the term criticality refers to situations where a system
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undergoes a sharp behavioral change, often associated with phase transitions (Nishimori & Ortiz,
2011). At criticality, physical systems typically exhibit self-similarity with respect to the change
of scale, i.e., the physics of the coarse-grained system is similar to that of the fine-grained one.
This phenomenon, called scale invariance at criticality (SIC), requires us to deal with arbitrar-
ily long-range correlations, for which standard MCMC samplers with local moves undergo critical
slowing down with arbitrarily long integrated auto-correlation time. Although many highly spe-
cialized cluster algorithms, leveraging non-local moves, have been developed in the context of spin
systems (Wolff, 1989b;a), critical slowing down still represents one of the major shortcomings of
MCMC approaches.

For efficient sampling around criticality, MultiLevel (or Multiscale) Monte Carlo with Heat Bath
(MLMC-HB) algorithms (Schmidt, 1983; Faas & Hilhorst, 1986; Jansen et al., 2020) were devel-
oped, based on Renormalization Group Theory(RGT) (Kadanoff, 1966; Wilson, 1971; Wilson &
Kogut, 1974; Cardy, 1996). RGT systematically analyzes how macroscopic features emerge when
the system is coarse-grained to larger length scales by marginalizing the degrees of freedom corre-
sponding to the fine lattice grid, and provides crucial insights into critical phenomena of physical
systems (Wilson, 1971; Fisher, 1973; Shankar, 1994; Cardy, 1996). An important outcome of RGT
is the emergence of SIC over the coarse-grained and fine-grained lattices. Adopting the block-spin
transformations (Kadanoff, 1966) for partitioning of lattice sites, Schmidt (1983) proposed MLMC-
HB that performs ancestral sampling from the coarsest lattice sites to the finer ones. Crucially, con-
ditional distributions between consecutive resolution levels can thus be factorized into independent
distributions under SIC, for which sampling can be efficiently performed by HB algorithms. In
MLMC-HB, the long-range correlations are captured in the low resolution lattice, which is much
easier than capturing them in the original high resolution lattice.

Machine learning techniques are also seen as potential candidates to, either partially or fully, over-
come the shortcomings of MCMC algorithms. In particular, generative models with accessibility
to exact sampling probabilities—such as normalizing flows (Rezende & Mohamed, 2015; Kobyzev
et al., 2020; Papamakarios et al., 2021) and autoregressive models (van den Oord et al., 2016c;b;
Salimans et al., 2017)—offer efficient independent sampling and unbiased MC estimation via im-
portance sampling, showing notable success across various domains. Such applications include
statistical physics (Wu et al., 2019; Nicoli et al., 2020), quantum many-body systems (Hibat-Allah
et al., 2020), quantum chemistry (Noé et al., 2019; Gebauer et al., 2019), string theory (Caselle et al.,
2024), and lattice field theory (Albergo et al., 2019; Nicoli et al., 2021; Caselle et al., 2022; Cranmer
et al., 2023; Abbott et al., 2024). However, capturing long-range interactions in large lattice systems
may require intractably large receptive fields. Generative models therefore tend to struggle to gen-
erate samples around criticality, except for a few recent works whose goal was to mitigate critical
slowing down (Pawlowski & Urban, 2020; Białas et al., 2023).

In this work, we propose a Renormalization-informed Generative Critical Sampler (RiGCS), which
enhances MLMC-HB algorithms by mitigating their major weakness—i.e., the HB samplers in
MLMC-HB ignore long-range and higher-order interactions that may exist in renormalized sys-
tems when SIC does not hold exactly. Instead, RiGCS uses generative models with sufficiently
large receptive fields to approximate renormalized distributions, effectively capturing the majority
of those residual interactions. In our experiments, RiGCS drastically improves the sampling ef-
ficiency of MLMC-HB, and achieves an effective sample size a few orders of magnitude higher
than the previous state-of-the-art generative sampler (Białas et al., 2023) for the two-dimensional
Ising model. Furthermore, we propose a specialized sequential training procedure with warm starts,
which transfers model parameters between different resolution levels, substantially improving the
training efficiency. Our contributions include:

• Renormalization-informed Multilevel Sampling: We propose a novel method that lever-
ages both SIC and generative modeling to efficiently draw samples from Boltzmann distri-
butions around criticality.

• Sequential Training with Warm Starts: We propose a sequential training procedure that
initially samples a small-scale system and progressively transitions to the target large-scale
system. Model parameters trained on smaller systems are transferred to larger ones for
initialization, enabling a warm start that significantly accelerates training.
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As with most generative neural samplers for simulating lattice-based physical systems, we do not
claim that our method surpasses state-of-the-art MCMC samplers, such as cluster methods for the
Ising model, which remain unmatched for general observable estimation in large-scale systems.

Related Work Renormalization Group Theory (RGT) (Wilson, 1971; Wilson & Kogut, 1974;
Kadanoff, 1966) has profoundly influenced the study of critical behavior in statistical systems and
quantum field theory. Leveraging results of RGT, MLMC-HB for near-critical systems was pro-
posed (Schmidt, 1983), showing notable improvements in sampling efficiency for one- and two-
dimensional Ising models. Adopting a particular partitioning of lattice sites, called block-spin
transformations (Kadanoff, 1966), MLMC-HB draws samples hierarchically by the site-wise in-
dependent conditional HB sampling based on the renormalized systems at different scales. Faas &
Hilhorst (1986) further enhanced MLMC-HB by incorporating long-range interactions. Recently,
Jansen et al. (2020) introduced a low variance MC estimator by leveraging the correlations between
the lattices with consecutive resolution levels, which further advanced MLMC-HB.

A variety of generative models, including Generative Adversarial Networks (GANs) (Pawlowski
& Urban, 2020; Singha et al., 2022), Variational Auto Encoders (VAEs) (D’Angelo & Böttcher,
2020), and energy-based models (D’Angelo & Böttcher, 2020; Torlai & Melko, 2016), have been
used as independent MC samplers for lattice systems. Generative models with accessibility to the
exact sampling probability are particularly useful for MC simulations, because they allow for un-
biased MC estimation by importance sampling or neural MC (Nicoli et al., 2020), i.e., sampling
with the Metropolis-Hastings rejection. Specifically, Variational Autoregressive Networks (VANs)
(Wu et al., 2019; Nicoli et al., 2020) and normalizing flows (Albergo et al., 2019) have proven to
be highly effective for discrete and continuous systems, respectively. Recent works (Singha et al.,
2023a;b; Gerdes et al., 2023) introduced conditional normalizing flows for scalar field and gauge the-
ories, showing that models trained away from criticality can interpolate (or extrapolate) for drawing
samples near criticality. Nicoli et al. (2021) and Bulgarelli et al. (2024) demonstrated that genera-
tive models are particularly useful for estimating thermodynamic observables, e.g., free energy and
entropy, which cannot be directly estimated with standard MCMC methods.

Recently, hierarchical sampling approaches have been integrated with generative modeling both for
discrete systems (Li & Wang, 2018; Białas et al., 2022) and continuous lattice field theories (Finken-
rath, 2024; Abbott et al., 2024). Neural Network Renormalization Group (NeuralRG) (Li & Wang,
2018) uses a hierarchical bijective map to learn a renormalization transform, and was applied to
the Ising model using a continuous relaxation technique. Hierarchical Autoregressive Network
(HAN) (Białas et al., 2022)—a state-of-the-art generative sampler for discrete physical systems—
uses a recursive domain decomposition (Cè et al., 2016), and performs independent conditional
sampling for separate regions with trained VANs. The HAN approach has shown improved sam-
pling efficiency compared to MLMC-HB in two-dimensional Ising models. We refer to Appendix A
for an extended review of related works.

2 BACKGROUND

This paper focuses on Monte Carlo (MC) simulations of hypercubic lattice systems around critical-
ity. We refer to a (row vector) sample s ∈ SV to be a configuration on the V = ND grid points
in the D dimensional lattice, where S denotes the domain of the random variable at each site, and
N denotes the lattice size (per dimension). Given a Hamiltonian (or energy) H(s) describing the
interactions between the lattice sites, MC simulations draw samples from the Boltzmann distribution

p(s) = 1
Z e−βH(s), (1)

where β is a constant inversely proportional to the temperature, and Z is the (typically unknown)
normalization constant called the partition function. With a sufficient number M of samples, phys-
ical observables O, e.g., energy, magnetization, and susceptibility, can be estimated by averaging
over the sample configurations ⟨O⟩ ≈ 1

M

∑M
m=1O(sm), thus revealing macroscopic physical prop-

erties and phenomena like phase transitions. Below, we introduce common sampling methods with
and without machine learning techniques.
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sampled sites
condition sites
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Markov Blanket: RiGCS Markov Blanket: MLMC-HB Markov Blanket: True 

Figure 1: Site partitionings based on the block-spin transformation (Kadanoff, 1966). The ancestral
sampling is performed from the coarsest level (right) to the finest level (left), namely, in the order
of sL−2 (green), sL−1 (blue), and sL (red). In the one-dimensional case (upper row), the marginal
distribution at each resolution level involves only nearest neighbor (NN) interactions. Consequently,
the true Markov blanket (indicated by yellow shadows) of the highlighted site (black circle) includes
only NN conditioning sites, enabling precise and independent HB sampling. In the two-dimensional
case (lower row), marginal distributions generally include long-range and higher-order interactions.
As a result, except at the finest level, the true Markov blanket (yellow shadows) possibly encom-
passes all other sites. While MLMC-HB with NN Markov blankets (red shadows) can still serve
as an approximate trial sampler, its locality leads to low acceptance rates for large lattice sizes. In
contrast, our RiGCS, with wider Markov blankets (purple shadows) induced by the receptive field
of generative models, effectively captures long-range and higher-order interactions, providing more
accurate samples. Note that the Markov blankets of RiGCS used for the intermediate resolutions in
our implementation are of the size 7 × 7 (i.e., much larger than the one shown in this figure). Sites
at sL−2 (green) can be further partitioned until the dimension of s0 gets sufficiently small.

2.1 MARKOV CHAIN MONTE CARLO (MCMC) METHODS AROUND CRITICALITY

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms used to sample from unnor-
malized distributions. Since the partition function is not analytically computable in most physical
systems, MCMC methods are fundamental tools for performing MC simulations in, e.g., statistical
mechanics and lattice quantum field theory. A crucial challenge for MCMC sampling around crit-
icality is to cope with long-range correlations. When distant regions in the lattice become strongly
correlated, the standard MCMC methods that rely on local updates struggle to move from a low-
energy state to another low-energy state. This is because local updates generally ignore the corre-
lations, and thus, the proposed trials tend to be rejected in the Metropolis-Hastings rejection step
due to the increased energy. This results in a long autocorrelation time for the Markov chain—a
phenomenon known as critical slowing down (Wolff, 1990). Two approaches were developed to
mitigate critical slowing down.

Cluster algorithms Cluster algorithms (Wolff, 1989a; Swendsen & Wang, 1987) perform global
updates by identifying clusters of correlated lattice sites and flipping them collectively. These global
updates efficiently reduce the autocorrelation time and mitigate critical slowing down. Appendix B
introduces two variants of cluster methods, including the Wolff algorithm (Wolff, 1989a) which we
refer to as the cluster algorithm throughout the rest of the paper. Cluster methods are not seen
as universal remedies against critical slowing down because they are not generally applicable to
arbitrary continuous variable systems, although generalizations to specific continuous systems were
proposed (Kent-Dobias & Sethna, 2018).
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Multilevel Monte Carlo with Heat Bath (MLMC-HB) The MultiLevel Monte Carlo with Heat
Bath (MLMC-HB) algorithm (Schmidt, 1983)—a protocol inspired by RGT—was developed for
sampling physical systems around criticality. We denote by JNN ∈ RV×V a homogeneous 2 · D
nearest neighbor (NN) interaction matrix that satisfies

(JNN)v,v′ =

{
J if (v, v′) are 2 ·D nearest neighbor pairs,
0 otherwise,

(2)

for J ∈ R, where (·)v,··· denotes the (v, · · · )-th entry of a vector, matrix, or tensor. For some im-
portant physical systems, including the Ising model (Onsager, 1944) and the XY model (Kosterlitz,
1974), the Hamiltonian can be written as

H(s) = −sJNNs⊤ (3)

with JNN ∈ RV×V .1 In MLMC-HB, one partitions the lattice sites into L + 1 levels s =
(sL, sL−1, . . . , s0) so that all 2 · D nearest neighbors of each entry of sl (for l = 1, . . . , L) be-
long to the coarser level partitions (sl−1, . . . , s0). Figure 1 shows examples of site partitionings
based on the block-spin transformations (Kadanoff, 1966) for (D = 1)- and (D = 2)-dimensional
lattices, where the sites with the same color (red, blue, or green) belong to the same partition
(sL, sL−1, or sL−2). For compact descriptions, we use inequalities to express subsets of the parti-
tions, e.g., s≤l = (sl, . . . , s0), and s>l = (sL, . . . , sl+1). We denote by Vl the dimension of s≤l,
i.e., s≤l ∈ RVl and s>l ∈ RV−Vl . The marginal distribution of the l-th level lattice is given by

p(s≤l) =
∫
p(s)D[s>l] ≡ 1

Zl
e−βHl(s

≤l), (4)

where the corresponding Hamiltonian Hl(s
≤l) (i.e., a scaled negative log-marginal probability)

is called a renormalized Hamiltonian. An important result in RGT is that, around the criticality,
the renormalized Hamiltonian for l = 0, . . . , L̃, where L̃ is a few levels smaller than L, can be
approximated as a Hamiltonian with NN interactions, i.e.,

Hl(s
≤l) ≈ H̃l(s

≤l), where H̃l(s
≤l) = −s≤lJNN

l (s≤l)⊤ (5)

with the NN interaction matrix JNN
l ∈ RVl×Vl .2 If Eq. (5) holds exactly, the conditional probability

p(sl|s≤l−1) can be decomposed as

p(sl|s≤l−1) =
∏Vl

v=1 p(s
l
v|s≤l−1), (6)

because the Markov blanket3 (Bishop, 2006) of slv does not contain slv′ for any v′ ̸= v (see yellow
shadows in the one-dimensional example in Figure 1, upper row). This makes the sampling from
the conditional distribution (6) extremely easy and efficient—one can apply the HB conditional
sampling exactly for the discrete domain (with a probability table of size |S|), and approximately
for the continuous domain (with, e.g., a one-dimensional Gaussian mixture). Therefore, starting
from drawing samples from p(s0) (which can be efficiently performed by HB or MCMC if L is
sufficiently large and hence V0 is small), the ancestral sampling of the full lattice according to

p(s) =
(∏L

l=1 p(s
l|s≤l−1)

)
p(s0) (7)

can be efficiently performed. Intuitively, MLMC-HB captures the long-range correlations by the
coarse level marginals, i.e., p(s≤l) for small l, which avoids two major difficulties—large lattice
size and long-range correlations—arising at the same time.

1The whole discussion in this paper can be applied to a slight generalization with the Hamiltonian in the
form ofH(s) = −

∑
v,v′(J

NN)v,v′ψ(sv, sv′), where ψ(s, s′) is a similarity function between two states, e.g.,
ψ(s, s′) = δs,s′ for Potts model (Wu, 1982).

2The corresponding NN interaction coefficient—J in Eq. (2) which we refer to as Jl—can be analytically
computed in RGT (see Appendix C). When N,L → ∞, Jl converges to a limiting value as l decreases, and
thus the scale invariance at criticality (SIC) emerges. Since we consider finite lattices, exact SIC never holds.
Nevertheless, in one-dimensional finite lattices, the renormalized Hamiltonians consist only of NN interactions,
which is sufficient for MLMC-HB to be accurate, as explained in Figure 1.

3The Markov blanket of a random variable sv is a set of other random variables Bsv ⊆ {sv′}v′ ̸=v that
have sufficient information to determine the conditional distribution of sv given the other random variables,
i.e., p(sv|Bsv ) = p(sv|{sv′}v′ ̸=v).
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For the (D = 1)-dimensional lattice (see Figure 1 upper row), it is known that Eq. (5), and thus
Eq. (6), hold exactly, and therefore, MLMC-HB generates accurate samples from the target Boltz-
mann distribution. For D ≥ 2 (see Figure 1 lower row), Eq. (5) holds only approximately, and
therefore, MLMC-HB should be combined with importance sampling or Metropolis-Hastings rejec-
tion. Namely, one should draw samples according to

qNN(s) = p(sL|s≤L−1)
(∏L−1

l=1 qNN(sl|s≤l−1)
)
qNN(s0), (8)

and compensate the sampling bias by using the sampling probability qNN(s), where
{qNN(sl|s≤l−1)}L−1

l=1 and qNN(s0) are approximate distributions with NN interactions to the true
conditionals {p(sl|s≤l−1)}L−1

l=1 and the true marginal p(s0), respectively. Unfortunately, the ap-
proximation errors accumulate through ancestral sampling, leading to a significantly low acceptance
rate for large lattice sizes. We will show in Section 4 that MLMC-HB is not very efficient for D = 2.
Further details on RGT and MLMC-HB are given in Appendix C and Appendix D, respectively.

2.2 GENERATIVE MODELING FOR MC SIMULATIONS

In recent years, deep generative models have gained significant traction in the field of physics
for their efficient modeling of complicated probability distributions. In particular, normalizing
flows (Kobyzev et al., 2020) and autoregressive neural networks (van den Oord et al., 2016c) be-
came very popular in the context of computational physics due to their intrinsic capability of pro-
viding the exact sampling probability qθ(s), which allows asymptotically unbiased MC estima-
tion. Notably, well-trained generative models can provide independent samples from an approxi-
mate distribution, and asymptotically unbiased estimates of physical observables can then be com-
puted by importance sampling (Nicoli et al., 2020): ⟨O⟩ ≈ 1

M

∑M
m=1

w̃m∑M
m′=1

w̃m′
O(sm), where

w̃m = e−βH(sm)/qθ(sm) are the unnormalized importance weights. However, naive generative
modeling can be problematic for sampling large lattices near criticality because large receptive fields
are required to capture long-range correlations. Improving the scalability of generative samplers for
large systems is therefore one of the most crucial challenges to achieving the same level of perfor-
mance as state-of-the-art MCMC samplers, and ultimately surpassing them in efficiency.

3 METHOD

In this section, we describe our proposed method that enhances MLMC-HB (introduced in Sec-
tion 2.1) with generative modeling (introduced in Section 2.2). We focus on (D = 2)-dimensional
lattice systems with (V = N ×N) grid points.

3.1 RENORMALIZATION-INFORMED GENERATIVE CRITICAL SAMPLER (RIGCS)

Higher-order RGT (Maris & Kadanoff, 1978) shows that, for D = 2, the Hamiltonian of the
marginal distribution (4) consists not only of the NN interaction terms but also of long-range and
higher-order interaction terms:

Hl(s
≤l) = −s≤lJNN

l (s≤l)⊤ − s≤lJLR
l (s≤l)⊤ −

∑
v,v′,v′′

(J HO
l )v,v′,v′′s≤l

v s≤l
v′ s

≤l
v′′ + · · · , (9)

where JLR
l and J HO

l denote the matrix and the tensor that express the long-range and high-order in-
teractions, respectively.4 Instead of simply approximating the renormalized Hamiltonian (9) by the
Hamiltonian (5) with NN interactions (as done in MLMC-HB), our method, called Renormalization-
informed Generative Critical Sampler (RiGCS), approximates it with generative models that can
capture the long-range and higher-order interactions. Specifically, RiGCS performs ancestral sam-
pling according to

qθ(s) = p(sL|s≤L−1)
(∏L−1

l=1 qθl
(sl|s≤l−1)

)
qθ0

(s0), (10)

4Note the difference between the “interactions” and the “correlations”. The former means the direct cross
dependent terms in the Hamiltonian, while the latter means statistical dependence in the Boltzmann distribution.
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Figure 2: Illustration of sequential training for a six-layer (L = 6) RiGCS model on a 16 × 16
lattice. Training begins with the marginal model qθ0(s

0) on the smallest 2 × 2 target Boltzmann
distribution. Conditional models for progressively larger RiGCS layers are then trained sequentially
on target Boltzmann distributions for increasingly larger lattices. Red arrows indicate model transfer
initializations, while parameters without incoming red arrows are randomly initialized. For larger
lattices, the final step is repeated until the target size is achieved.

where qθl
(sl|s≤l−1) for l = L − 1, . . . , 1 and qθ0

(s0) are conditional and unconditional gener-
ative models that approximate p(sl|s≤l−1) and p(s0), respectively. Here, θ = (θL−1, . . . ,θ0)
denotes all model’s trainable parameters. Similarly to the configuration variable s, we use inequali-
ties to express subsets of the parameters, e.g., θ≤l = (θl, . . . ,θ0). Note that, at the finest level, the
conditional distribution p(sL|s≤L−1) has only NN interactions by assumption, and therefore, the
exact HB algorithm can be efficiently applied without generative modeling. Therefore, it holds that
θ = θ≤L = θ≤L−1—as there is no model parameter at the L-th level.

3.2 RECEPTIVE FIELD DESIGN

It is known that long-range and higher-order interactions between lattice sites diminish with in-
creasing distance (Maris & Kadanoff, 1978). Therefore, the accuracy of approximating the renor-
malized Hamiltonian can be controlled by adjusting the receptive field size of conditional generative
models—the larger the receptive field is, the more accurate the approximation to the renormalized
Hamiltonian (9). Compared to vanilla generative models (without multilevel sampling), where the
receptive field needs to cover the whole correlation range in the original finest-level lattice, our
RiGCS approach allows us to keep the receptive field of each conditional model small. In particular,
if we set the number of levels L proportional to the lattice size N (per dimension), we can keep
the receptive field size constant for different N . This is because RiGCS captures the long-range
interactions in the coarser levels—the receptive field size α × α of the coarsest generative model
qθ0(s

0) effectively amounts to the receptive field size αL/2 × αL/2 in the finest lattice. Although
the optimal receptive field size for each level l should in principle exist such that the accumulated ap-
proximation error is minimized for a given computational cost, we use the same architecture for the
conditional models for l = L−1, . . . , 1 in this work. This choice, with makes the model complexity
of RiGCS linear to L, enables efficient model transfer in training, as explained below.

3.3 SEQUENTIAL TRAINING WITH MODEL TRANSFER INITIALIZATION

We train our RiGCS by minimizing the reverse Kullback-Leibler (KL) divergence, i.e.,

min
θ

KL(qθ(s)∥p(s))=
∑

s∈SV qθ(s) log
qθ(s)
p(s) ≈ 1

Mtr

∑Mtr

m=1 log
qθ(sm)
p(sm) , (11)

which is estimated with the generated samples {sm ∼ qθ(s)}Mtr
m=1—training data drawn from the

target distribution are not required. However, training all parameters θ from scratch, e.g., with
random initialization, tends to suffer from long initial random walking steps. This is because the
randomly initialized RiGCS generates random samples, with which the estimated stochastic gradi-
ent of the objective (11) rarely provides useful signal to train the model. We tackle this problem with
a specific training procedure with model transfer, again based on RGT. We choose L to be an even
number, and consider a set of sequential target Boltzmann distributions pL′(s≤L′

) ∝ e−βH̃L′ (s≤L′
)

7
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for L′ = 0, 2, 4, . . . , L, where {H̃l(s
≤l)}Ll=0 are the approximate renormalized Hamiltonians with

NN interactions, defined in Eq.(5), and H̃L(s
≤L) = H(s). For each target pL′(s≤L′

) in the in-
creasing order of L′, we train a RiGCS qθ≤L′−1(s≤L′

) that shares the same coarsest lattice size V0

as the model, qθ≤L−1(s≤L) = qθ(s), for the original target distribution. This allows for initializing
the RiGCS parameters for learning pL′(s≤L′

) with the corresponding parameters already trained on
pL′−2(s

≤L′−2)—an easier (smaller lattice size) system. Figure 2 illustrates this procedure, where
the initializations are indicated by the red arrows. Thanks to SIC, the models connected by the
red arrows are similar to each other, as detailed in Appendix E.1. Note that all parameters except
θ0,θ1,θ2—which are trained on the three smallest lattice sizes with random initializations—can
be warm-started. The pseudocode for the sampling and training routines of RiGCS is provided
in Appendix E.2.

4 NUMERICAL EXPERIMENTS

We evaluate our proposed RiGCS and compare it against several baseline methods. The experimen-
tal setup is detailed below. The code is available at https://github.com/mlneuralsampler/multilevel.

Target Physical Systems We adopt the two-dimensional Ising model, for which the Hamiltonian
is given by Eq. (3) with the 2-dimensional binary lattice, i.e., s ∈ SV = {−1, 1}N×N , and J = 1.
This commonly used benchmark exhibits a second-order phase transition (critical point), and is
exactly solvable (Onsager, 1944)—i.e., the ground-truth is analytically computed. We set β =
0.44, which corresponds to the critical (inverse) temperature where the phase transition occurs by
spontaneous symmetry breaking in the limit of an infinite lattice.

Generative models Since the lattice sites are discrete random variables in a binary domain, we
use autoregressive neural networks (ARNNs)

qθ(s) =
(∏V

v=2 qθ(sv | sv−1, . . . , s1)
)
qθ(s1) (12)

for unconditional and conditional generative models at each level of RiGCS. More specifically, we
adopt PixelCNNs (van den Oord et al., 2016c;b), which allow us to control their receptive fields by
adjusting the convolution kernel sizes. Further details on ARNNs are given in Appendix F.

Baselines We compare our method against three different baselines, MLMC-HB (Schmidt, 1983),
VAN (plain ARNN without multilevel sampling (Wu et al., 2019)), and HAN (Białas et al., 2022).
We also evaluate the Wolff cluster method (see Appendix B), which is widely recognized as a
highly efficient sampler for the Ising model, surpassing the performance of generative modeling ap-
proaches. In our experiments, RiGCS achieves comparable (though slightly inferior) performance
to the cluster method on large lattices, while outperforming HAN—the previous state-of-the-art
generative model—and other baselines.

Model Architecture: The RiGCS architecture (10) consists of autoregressive models at each level.
At the coarsest level (l = 0), the generative model qθ0

(s0) employs a PixelCNN architecture with
three masked convolutional layers, each with 12 channels and a half-kernel size of 6. At all inter-
mediate levels except the finest one, the conditional generative models {qθl

(sl|s≤l−1)}L−1
l=1 utilize

convolutional neural networks (CNNs) with two convolutional layers, both featuring 12 channels
with kernel sizes of 5 and 3, respectively. We design the kernel size to ensure that the receptive
field adequately captures long-range dependencies at each scale. Consequently, the receptive field
of qθ0

(s0) spans the entire coarsest lattice, ensuring comprehensive coverage. For intermediate lev-
els (l = 1, . . . , L− 1), the receptive field of qθl

(sl|s≤l−1) extends over an 7× 7 region, effectively
capturing long-range and higher-order interactions up to sites that are three steps apart. At the finest
level (l = L), RiGCS performs exact independent Heat-Bath (HB) sampling using p(sL|s≤L−1).
For further implementation details, we refer readers to Appendix G.

4.1 FREE ENERGY ESTIMATION

We evaluate the sampling methods in terms of the bias and the variance in estimating the free
energy—a thermodynamic observable. For the cluster MCMC method, we combine it with annealed
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Figure 3: Left: Relative estimation error for the free energy. Only RiGCS provides estimates for
N = 128 that are comparable to those of Cluster-AIS. The vanilla VAN cannot be trained for
N ≥ 64 in reasonable time. Right: ESS as a function of training hours for RiGCS with the vanilla
training with random initialization (orange) and with the proposed sequential training (purple) for
N = 64. The plot of the sequential training starts at ≈ 2.3 hours when the pretraining for smaller
lattice systems is finished. The ESS at each training epoch is computed with M = 16 samples, and
the markers at “final” show the ESS computed with M = 106 at the end of training.

importance sampling (Neal, 2001) (Cluster-AIS) for estimating the free energy (Caselle et al., 2016).
For generative samplers, i.e., VAN, HAN, and our RiGCS, we use the asymptotically unbiased esti-
mator introduced by Nicoli et al. (2020):

F̂ = − 1
β log Ẑ, where Ẑ = 1

M

∑M
m=1 e

−βH(sm)/qθ(sm), sm ∼ qθ(s). (13)

Here M is the number of generated samples. We use this estimator also for MLMC-HB by com-
puting all factors in Eq. (8) including the normalization constants. This is tractable because all
conditionals {qNN(sl|s≤l−1)}Ll=1 are products of independent distributions, and the lowest level
marginal qNN(s0) is the Boltzmann distribution with only 22×2 states.

Figure 3 left shows the relative estimation error (F̂−F )/|F |where F is the ground-truth free energy,
computed analytically (Onsager, 1944). Each error bar shows one standard deviation of the statistical
error. We observe that MLMC-HB already performs poorly for N ≥ 32, exhibiting strong biases.5
The other four methods achieve compatible (unbiased) estimation up to N ≤ 32, with Cluster-AIS
and our RiGCS outperforming VAN and HAN in terms of the variance. Furthermore, for N ≥
64, the vanilla VAN cannot be trained because its wall-clock training time exceeds several weeks,
and the variance for HAN is much larger compared to RiGCS. For N = 128, only Cluster-AIS
and RiGCS achieve results compatible with the ground truth free energy, while HAN gives highly
biased estimates incompatible with the ground truth. These results demonstrate the superiority of
our RiGCS over existing generative models for estimating thermodynamic observables.

4.2 QUALITY MEASURES FOR GENERAL OBSERVABLE ESTIMATION

We further compare the samplers using a recently proposed Effective Mode-Dropping Measure
(EMDM) (Nicoli et al., 2023) and the commonly used Effective Sample Size (ESS) as indicators
of bias and variance, respectively, for general (non-thermodynamic) observable estimation. The
EMDM is defined as w̄ = Eq̃θ [w(s)] ∈ [0, 1], where w(s) = p(s)

qθ(s)
, and q̃θ is the renormalized

density of qθ(s) with effective support—i.e., the support excluding the low density areas where no
sample appears with high probability. 6 Nicoli et al. (2023) showed that the bias of the importance-
weighted estimators for general observables can be bounded with EMDM, and w̄ = 1 indicates that
no effective mode-dropping occurs and thus the estimator is unbiased. ESS (per sample), defined as
ESS = 1

Eqθ
[w(s)2] ∈ [0, 1], is known to be inversely proportional to the variance of general unbiased

estimators, and ESS = 1 implies that qθ(s) = p(s).

Figure 4 (left) shows the w̄ (EMDM) for RiGCS, VAN and HAN. We recall that the vanilla VAN can
be trained only up to N = 32, as explained above. For N ≤ 64, the EMDMs of HAN and RiGCS are

5The results for N ≥ 64 are out of the range.
6The threshold for the “low density area” depends on the number M of samples, and q̃θ(s) = qθ(s) for

M → ∞.
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Figure 4: EMDM (left) and ESS (right). The vanilla VAN cannot be trained for N ≥ 64 in reason-
able time. The inset in the left plot zooms around the region of w̄ ≈ 1.0, showing that RiGCS does
not suffer from mode dropping even for large N = 128. Similarly, the ESS plot (right) shows that
RiGCS achieves the closest performance to Cluster-AIS for large systems.

compatible with EMDM ≈ 1, indicating no effective mode-dropping. However, for N = 128, the
EMDM of HAN drops significantly, implying that the model is affected by effective mode-dropping.
This result is consistent with the biased free energy estimation by HAN observed in Figure 3 (left).
RiGCS shows no evidence of mode-dropping for N = 128, highlighting its robustness in accurately
modeling the target distribution and avoiding mode collapse in high dimensions. Figure 4 (right)
shows that RiGCS outperforms all baselines except the cluster method, a state-of-the-art approach
for general observable estimation. Note that for N = 128, RiGCS improves the ESS of HAN by
several orders of magnitude, making it the only generative model with non-vanishing ESS.

Simulation Costs Generative modeling approaches like VAN, HAN, and RiGCS require training,
with wall-clock times for a N = 64 lattice of approximately 60 days, 2.8 hours, and 3.8 hours,
respectively. Sequential training with model transfer (introduced in Section 3.3) offers a significant
advantage over random initialization, as shown in Figure 3 (right). Sampling costs for generating
100 samples with MLMC-HB, VAN, HAN, and RiGCS are approximately 14, 27, 0.2, and 0.4
seconds, respectively.

Further investigation including additional analysis, ablation study with transformer architectures,
and benchmarking for different physical theories are provided in Appendix H.

5 CONCLUSIONS

Critical phenomena such as phase transitions are of high relevance in many fields of physics, where
Renormalization Group Theory (RGT) plays a central role for theoretical analysis. Insights from
RGT were also used for improving tools for numerical analysis, leading to MultiLevel Monte Carlo
(MLMC) methods based on the emerging scale invariance at criticality (SIC). In this paper, we
further enhanced such tools by leveraging machine learning techniques. Specifically, we introduced
Renormalization-informed Generative Critical Sampler (RiGCS), a multilevel sampling algorithm
where conditional generative models, with appropriate size of receptive fields, are substituted to
naive nearest-neighbor heat bath conditional samplers. This modification allows for capturing long-
range and higher-order interactions that exist under slight violation of SIC, making RiGCS the new
state-of-the-art generative samplers. Furthermore, we also introduced the sequential training with
model transfer, which was again inspired by SIC and significantly reduced the training cost. Al-
though many previous works incorporated general domain knowledge, e.g., invariances, equivari-
ances, and preservation laws, for machine learning model design, this work is one of the few appli-
cations where the knowledge of critical phenomena, i.e., SIC, is incorporated directly in both the
architecture design and the training procedure. We see this work as a first step toward developing
specialized machine learning methods for critical regimes, paving the way for more efficient algo-
rithms. Future research directions include applying RiGCS to other physical models, such as Potts
models and lattice gauge theories, as well as exploring hybrid approaches that combine RiGCS with
related methods, such as HAN.
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Marco Cè, Leonardo Giusti, and Stefan Schaefer. Domain decomposition, multilevel integration,
and exponential noise reduction in lattice qcd. Phys. Rev. D, 93:094507, 2016. doi: 10.1103/
PhysRevD.93.094507.

F. Cérou, P. Del Moral, T. Furon, and A. Guyader. Sequential monte carlo for rare event estimation.
Statistics and Computing, 22(3):795–808, 2012. doi: 10.1007/s11222-011-9231-6.

Zhuo Chen, Laker Newhouse, Eddie Chen, Di Luo, et al. Antn: Bridging autoregressive neural
networks and tensor networks for quantum many-body simulation. In Advances in Neural Infor-
mation Processing Systems, volume 36, pp. 450–476. Curran Associates, Inc., 2023.

Jui-Hui Chung and Ying-Jer Kao. Neural monte carlo renormalization group. Phys. Rev. Res., 3:
023230, 2021. doi: 10.1103/PhysRevResearch.3.023230.

Jordan Cotler and Semon Rezchikov. Renormalization group flow as optimal transport. Phys. Rev.
D, 108:025003, 2023a. doi: 10.1103/PhysRevD.108.025003.

Jordan Cotler and Semon Rezchikov. Renormalizing diffusion models. arXiv:2308.12355, 2023b.

Mary Kathryn Cowles and Bradley P. Carlin. Markov chain monte carlo convergence diagnostics:
A comparative review. Journal of the American Statistical Association, 91(434):883–904, 1996.
doi: 10.1080/01621459.1996.10476956.
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A EXTENDED RELATED WORK

Renormalization Group Theory (RGT) has significantly impacted the study of statistical systems,
especially in analyzing critical phenomena and phase transitions. The pioneering works by Wil-
son, Kogut, and Kadanoff laid the foundational principles of RG theory (Wilson, 1971; Wilson &
Kogut, 1974; Kadanoff, 1966). Subsequent advancements have expanded the application of RGT-
inspired methods to disordered systems, random ferromagnetic chains, and Monte Carlo simula-
tions (Aharony, 1973; Fisher, 1973; Swendsen, 1979; Derrida, 1980; Butera & Comi, 2002). These
developments have enriched the understanding of critical phenomena and further established the
applications of RGT techniques in both theoretical and computational contexts. For further insights
into RG we refer the reader to Appendix C.

In computational physics, substantial research has focused on RGT-inspired sampling methods for
lattice simulations. For example, early studies on the Ising model (Schmidt, 1983; Faas & Hilhorst,
1986) achieved notable success in simulating small systems in one dimension, yet faced limitations
as the lattice size increased. More recently, Jansen et al. (2020) introduced a new theoretical frame-
work for low variance estimation, showing promising results for one-dimensional quantum systems.
In lattice gauge theory, the application of RGT concepts led to the development of several algo-
rithms, including multigrid (Cahill & Kogut, 1982; Goodman & Sokal, 1986; Hulsebos & Hockney,
1989), multiscale thermalization techniques (Endres et al., 2015), and decimation maps (Matsumoto
et al., 2023).

In recent years, RGT-inspired approaches have been combined with machine learning to develop
more scalable neural samplers. Notable examples include applications in U(1) (Finkenrath, 2024)
and SU(3) gauge theories (Abbott et al., 2024), where a renormalization group (RG) scheme has
been combined with normalizing flows. Similarly to our approach, Białas et al. (2022) proposed
a Hierarchical Autoregressive Network (HAN) for sampling configurations of the 2D Ising model.
This latter leverages a recursive domain decomposition technique (Cè et al., 2016), in which different
regions of the configuration are sampled in parallel using the same autoregressive network, thus
replacing the traditional scaling with the system’s linear extent L. Białas et al. (2022) demonstrated
the effectiveness of HAN on the two-dimensional Ising model, simulating lattices up to the size
of 128 × 128. However, this method has several limitations, which are discussed in Section 4
and Appendix H in great detail. On a side note, we emphasize that our multilevel approach and the
domain decomposition proposed in Białas et al. (2022) are not mutually exclusive. In fact, these
methods could in principle be combined leading to more powerful sampling protocols. We defer
this investigation to future work.

Besides the development of enhancing sampling methods, other recent works have leveraged the
idea of RG in different ways. Li & Wang (2018) focused on neural network renormalization group,
investigating the capability of neural networks to perform hierarchical feature extraction and hierar-
chical transformations. To this end, they used bijective transformations to learn hierarchical maps to
automatically identify mutually independent collective variables. While inspired by RGT, this ap-
proach does not use multilevel sampling, and does not observe favorable scaling—in the paper only
results on rather small lattices up to 16 × 16 are shown. Koch-Janusz & Ringel (2018) proposed
a machine learning approach to identify the relevant degrees of freedom and extract Ising critical
exponents in one and two-dimensional systems. Efthymiou et al. (2019) leveraged the idea of image
super-resolution and trained convolutional neural networks that invert real-space renormalization
decimations. The authors showed that it is possible to predict thermodynamic quantities for lat-
tice sizes larger than those used in training. Lenggenhager et al. (2020) drew a connection between
real-space RG and real-space mutual information. From an information-theoretic standpoint, they
investigated the information loss at arbitrary coarse graining of the lattices through the lens of RG. A
more recent study by Marchand et al. (2023) introduced the Wavelet-Conditional Renormalization
Group (WCRG), where fast wavelet transforms are used to build an RG transformation across scales.
While similar in spirit, their approach is substantially different from ours. Specifically, they train the
model by using a contrastive divergence loss, which requires a lot of training samples drawn from the
target distributions. Furthermore, Hu et al. (2020) used the neural network renormalization group (Li
& Wang, 2018) as a universal approach to design generic Exact Holographic Maps (EHMs) for in-
teracting field theories. Chung & Kao (2021) used Restricted Boltzmann Machines (RBMs) to learn
a valid real-space RG transformation without prior knowledge of the physical system, establishing a
solid connection between the RG transformation in physics and the statistical learning theory. Ron
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et al. (2021) and Bachtis et al. (2022), instead, used modified block-spin transformations—to im-
prove convergence in the Monte Carlo (MC) renormalization group trajectory—and inverse RG
transformations, respectively, to extract critical exponents of a given physical theory.

Recently, a so-called Machine-Learning Renormalization Group (MLRG) algorithm has been devel-
oped to explore and analyze many-body lattice systems in statistical physics (Hou & You, 2023). In
a recent work by Di Sante et al. (2022), the authors proposed a data-driven dimensionality reduction
and used a Neural Ordinary Differential Equation (NODE) solver in a low-dimensional latent space
to efficiently learn the functional RG dynamics. The authors showed promising results in the context
of the Hubbard model.

Lin et al. (2017) pointed out that convolutional neural networks in supervised learning tasks can
act as a “coarse-graining” procedure, isolating relevant macroscopic features from irrelevant mi-
croscopic noise. In recent years, RG-inspired machine learning applications have emerged in the
context of variational inference (Ahn et al., 2018), regularization techniques (Wang et al., 2024),
transfer learning (Redman et al., 2022), and multi-scale semantic manipulation of images (Hu et al.,
2022). While all these related works leverage the concept of RG in different ways—such as for
extracting critical exponents, or interpreting RG as coarse-graining procedures in machine learn-
ing—they suffer from a few shortcomings when it comes to efficient sampling. First, they often lack
the access to a tractable probability density, which is required for importance sampling or neural MC
to obtain unbiased estimates. Second, they do not allow for data-free training of a neural sampler as
well as rapid and effective sampling at multiple scales—as RiGCS does.

RG ideas have also been used in the context of Tensor Networks (TNs) to construct an emergent scale
invariant description for critical systems. TNs describe the wave function, or the partition function,
of a system as a contraction of a network of smaller tensors. This approach was shown to be efficient
as long as the entanglement in the system is moderate (Bridgeman & Chubb, 2017). Blocking
tensors together and coarse graining the system allow for (numerically) obtaining a description of the
system at a larger length scale. Prominent algorithms for coarse graining the partition function of a
critical system are the Tensor Network Renormalization (TNR) group (Evenbly & Vidal, 2015) and
loop TNR (Yang et al., 2017) for square lattices, as well as Graph-Independent Local Truncations
(GILT) for arbitrary graphs (Hauru et al., 2018). The Multi-scale Entanglement Renormalization
Ansatz (MERA) (Vidal, 2008; Evenbly & Vidal, 2014) leverages the hierarchical structure of RG
to efficiently represent quantum states for critical systems in 1+1 dimensions that are described by
an underlying conformal field theory. Generalizing this idea, and understanding holographic duality
as a generalization of the RG flow, Qi (2013) and Lee & Qi (2016) proposed an exact holographic
mapping, which is a one-to-one unitary mapping between boundary and bulk degrees of freedom.
Unlike MC methods, TN approaches enable the direct computation of the expectation values of
observables, as they provide an approximation to the wave function or the partition function of a
system. However, although the numerical algorithms for TN methods, which allow for recovering
exact scale invariance at the critical point, scale polinomially with respect to both system size and
tensor size, the computational cost remains challenging due to a large degree in the tensor size
χ—the leading order costs of TNR and MERA are O(χ6), and O(χ9), respectively.

Lastly, Cotler and Rezchikov have recently uncovered intriguing connections between RG theory
and optimal transport (Cotler & Rezchikov, 2023a) and diffusion models (Cotler & Rezchikov,
2023b), highlighting promising new directions for further investigation.

B MARKOV CHAIN MONTE CARLO AND CLUSTER METHODS

B.1 MARKOV CHAIN MONTE CARLO (MCMC) SAMPLING

MCMC methods allow for producing a sequence of configurations {s(1), s(2), . . . } through a
Markov chain, following an target distribution p(s) = 1

Z p̃(s) for which the partition function Z

is unknown. To this end, given the current configuration s(m), a new configuration s′ is proposed,
which is either accepted or rejected. If accepted, it becomes the next configuration, i.e., s(m+1) = s′,
while if rejected, the configuration stays, i.e., s(m+1) = s(m). To ensure that the produced config-
urations follow the target distribution, the transition probability T (s → s′) from configuration s to
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s′ has to fulfill ∑
s

p̃(s)T (s→ s′) = p̃(s′) =
∑
s

p̃(s′)T (s′ → s) . (14)

One way to ensure the condition above is by making the transition probability satisfy the detailed
balance condition:

p̃(s)T (s→ s′) = p̃(s′)T (s′ → s). (15)

Together with the property of ergodicity—i.e., existence of at least one Markov chain connecting
any pair of configurations with positive transition probability—the detailed balance condition en-
sures that the configurations sampled by the Markov process follow the target distribution p(s) after
thermalization.

Once a sufficient number of configurations are sampled, the expectation values of physical observ-
ables O(s), e.g., energy, magnetization, and correlation functions, can be estimated by averaging
over the configurations

⟨O⟩ ≈ 1

M −m

M∑
m=m+1

O(s(m)), (16)

where M is the total number of sampled configurations, and m(< M) is the number of burn-in
steps for thermalization. Due to the dependence of each sample configuration on the previous one
in the Markov chain, MCMC samples are inherently correlated. This correlation is quantified by
the autocorrelation time τ , which characterizes the degree and persistence of correlation between
samples. A long autocorrelation time can significantly degrade the accuracy of the Monte Carlo
estimator (16), because it makes the Effective Sample Size (ESS) much smaller than the generated
number of samples.

Crucially, as the system approaches the critical point, the autocorrelation time τ of thermodynamic
properties diverges, following a power law in the correlation length ξ:

τ ∝ ξz, (17)

where z is known as the dynamical critical exponent. Due to scale invariance at criticality (SIC), the
correlation length diverges (ξ →∞) as the system approaches the critical point. This means that the
autocorrelation time diverges, as Eq. (17) implies, leading to a phenomenon called critical slowing
down (Wolff, 1990). For finite hypercubic lattices, the correlation length in lattice units is bounded
by the extent N of the lattice in each dimension, hence

τ ∝ Nz, (18)

as one approaches the critical point. From Eq. (18), it is clear that, depending on the critical ex-
ponent z, sampling configurations with high ESS at criticality becomes increasingly challenging as
the lattice size N increases. For local update protocols, as for example Metropolis-Hastings, one
typically obtains values of z ≈ 2 (Wolff, 1990). This increase in autocorrelation necessitates a larger
number of samples to achieve accurate statistical estimates, thereby raising the computational cost
(Schaefer et al., 2011).

B.2 CLUSTER ALGORITHMS

In contrast to the algorithms relying on local updates, cluster algorithms can yield the dynamical
critical exponents close to zero, thus avoiding critical slowing down. In the following, we briefly
review two cluster algorithms for efficient sampling close to the critical point in the Ising model,

p(s) = 1
Z exp

(
−β∑⟨v,v′⟩ Jsvsv′

)
, (19)

where s ∈ {−1, 1}V is the spin configuration, and
∑

⟨·,·⟩ takes the sum over all nearest neighbor
pairs.
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B.2.1 SWENDSEN-WANG ALGORITHM

The basic principle of the Swendsen-Wang algorithm is to flip entire clusters of spins instead of
a single one (Swendsen & Wang, 1987). To this end, a given spin configuration is divided into
clusters by forming bonds between spins. A cluster then consists of all spins connected directly or
indirectly via bonds. Subsequently, all the spins belonging to a cluster are flipped collectively. More
specifically, given the current configuration s(m) ∈ {−1, 1}V , the algorithm proceeds as follows:

1. Inspect all nearest-neighbor pairs ⟨v, v′⟩ in s(m). If s(m)
v = s

(m)
v′ , a bond is formed between

the pair with probability 1− exp (−2βJ). Otherwise, no bond is formed.

2. Identify all clusters, i.e., all sets of spins connected either directly or indirectly by the
bonds.

3. Flip all spins within each cluster collectively with a certain probability P flip, resulting in a
new spin configuration s′.

4. Remove all bonds and repeat the steps for the new spin configuration s(m+1) = s′.

In step 3, if P flip is chosen to be close to zero, the new configuration s′ will, in general, be too
similar to s. In contrast, choosing P flip = 1 will result in a full inversion of the configuration
s(m), which does not change the energy at all. As both extremal cases do not produce sensible new
configurations, P flip is typically set to 1/2.

The Swendsen-Wang algorithm can be viewed as a data augmentation method (Higdon, 1998; Kaste-
leyn & Fortuin, 1969; Fortuin & Kasteleyn, 1972), where the configuration space of the Ising model
is extended by introducing auxiliary bond variables u⟨v,v′⟩ ∈ [0, e2βJ ] for nearest-neighbor pairs.
Specifically, we assume that u⟨v,v′⟩ follows the conditional uniform distribution:

p(u⟨v,v′⟩|sv, sv′) = exp(−βJ(1 + svsv′)) · 1(u⟨v,v′⟩ ∈ [0, exp(βJ(1 + svsv′))]), (20)

where 1(·) is the identity function equal to one if the event is true and zero otherwise. This gives the
entire joint distribution as

p({u⟨v,v′⟩}, s) = p(u⟨v,v′⟩|s)p(s) ∝
∏

⟨v,v′⟩

1(u⟨v,v′⟩ ∈ [0, exp(βJ(1 + svsv′))]). (21)

Noting that

exp(βJ(1 + svsv′)) =

{
0 if sv ̸= sv′ ,

exp(2βJ) > 1 if sv = sv′ ,

Eq. (21) gives the following conditional distribution:

p(sv, sv′ |u⟨v,v′⟩) =


1
2 for (sv, sv′) ∈ {{−1,−1}, {1, 1}} if u⟨v,v′⟩ > 1,

0 for (sv, sv′) ∈ {{−1, 1}, {1,−1}} if u⟨v,v′⟩ > 1,
1
4 for (sv, sv′) ∈ {−1, 1}2 if u⟨v,v′⟩ ≤ 1,

(22)

Since Eq. (22) depends on u⟨v,v′⟩ only through whether it is larger than 1 or not, and our goal is
to sample configurations s, we can replace the continuous random variable u⟨v,v′⟩ with the binary
random variable b⟨v,v′⟩ ∈ {0, 1} such that the event b⟨v,v′⟩ = 1 corresponds to the event u⟨v,v′⟩ > 1.
From Eqs. (20) and (22), we have

p(b⟨v,v′⟩ = 1|sv, sv′) = p(u⟨v,v′⟩ > 1|sv, sv′) =
exp(βJ(1 + svsv′))− 1

exp(βJ(1 + svsv′))

= (1− exp(−2βJ)) · 1(sv = sv′), (23)

and

p(sv, sv′ |b⟨v,v′⟩) =


1
2 for (sv, sv′) ∈ {{−1,−1}, {1, 1}} if b⟨v,v′⟩ = 1,

0 for (sv, sv′) ∈ {{−1, 1}, {1,−1}} if b⟨v,v′⟩ = 1,
1
4 for (sv, sv′) ∈ {−1, 1}2 if b⟨v,v′⟩ = 0,

(24)
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respectively. Notably, the spins between the neighboring pairs with a bond b⟨v,v′⟩ = 1 must be
the same, and those without bond b⟨v,v′⟩ = 0 have no interactions in the conditional (24). This
allows for cluster-wise independent sampling without rejection step. Swendsen-Wang algorithm
thus performs Gibbs sampling with Eq. (23) (Step 1) and Eq.(24) (Step 3) iteratively to obtain a
Markov chain of spin configurations {s(m)}.
The effectiveness of the Swendsen-Wang algorithm can be understood by the fact that flipping large
clusters allows for efficiently destroying the long-range correlations emerging close to the critical
point. For D > 2, the Swendsen-Wang algorithm becomes less capable, as the majority of the
formed clusters tend to be small, with only a few large ones being generated.

B.2.2 WOLFF ALGORITHM

The Wolff algorithm (Wolff, 1989a) is a single-cluster variant of the Swendsen-Wang algorithm.
Instead of dividing the entire configuration into clusters and flipping each of them, the Wolff algo-
rithm only forms a single cluster and collectively flips the spins inside this cluster. Given the current
configuration s(m) ∈ {−1, 1}V , the Wolff algorithm proceeds with the following steps:

1. Randomly choose a site v ∈ {1, . . . , V }.
2. Form bonds, analogous to the Swendsen-Wang algorithm, with probability 1−exp (−2βJ)

with all nearest neighbors {v′} such that sv = sv′ .

3. For each of the bonded sites {v′}, form bonds with its respective neighbors that have not
been bonded, according to Step 2.

4. Repeat Step 3 iteratively until no more bonds can be formed.

5. Flip all spins within the cluster and obtain a spin configuration s′.

6. Remove all bonds and repeat the steps for the new spin configuration s(m+1) = s′.

Note that compared to the Swendsen-Wang algorithm, the cluster is flipped with probability P flip =
1. If the cluster formed by the Wolff algorithm is large, the long-range correlations are broken up
essentially as effectively as in the Swendsen-Wang algorithm with a smaller computational cost—
because the Wolff algorithm focuses only on a single cluster. If the cluster formed by the Wolff
algorithm is small, the configuration does not change significantly, however, at the same time, the
computational cost is also small. Thus, the Wolff algorithm turns out to be even more efficient in
decreasing the dynamical critical exponent z, compared to the Swendsen-Wang approach (Swendsen
& Wang, 1987; Wolff, 1989b).

In our experiments in Section 4 and Appendix H, we used the Wolff algorithm as the state-of-the-art
Cluster method, which is more efficient than the Swendsen-Wang algorithm.

C RENORMALIZATION GROUP

The Renormalization Group (RG) (Wilson, 1971; Cardy, 1996) is a powerful framework in theoret-
ical physics for studying the behavior of systems as they are progressively coarse-grained to larger
length scales. During this process, microscopic degrees of freedom are systematically marginalized,
generating a flow in parameter space known as the RG flow. More formally, given a Hamiltonian H
describing the system at a given length-scale, one can define an RG transformationRλ as

H ′ = Rλ [H] .

Namely, the operatorRλ changes the scale of the system and yields a renormalized Hamiltonian H ′

describing the system at a larger length scale, indexed by λ, with less degrees of freedom. For Rλ

to be a proper RG transformation, it has to fulfill the semi-group property, i.e., there exists a neutral
element R0 that does not change the scale and the composition of two transformations to different
length scales λ and λ′ has to fulfill Rλ′ ◦ Rλ = Rλ′+λ. This transformation generates a flow on
the space of Hamiltonians that can yield crucial insights into the macroscopic properties of physical
systems. In particular, the critical points correspond to the fixed points H∗ satisfying

H∗ = Rλ [H
∗] (25)
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in the RG flow, as the system exhibits scale invariance at criticality (SIC).

Close to the critical point, one can approximate the Hamiltonian of the system as H = H∗ + δH ,
where δH is a small perturbation. Expanding the RG transformation around the fixed point, one
finds

Rλ [H
∗ + δH] = H∗ + L [H∗] δH +O

(
δH2

)
≈ H∗ + δH ′, (26)

where δH ′ = L [H∗] δH . Applying the transformationRλ for τ -times, we find in leading order that

Rτ×λ [H
∗ + δH] ≈ H∗ + L [H∗]

τ
δH. (27)

Expanding δH in the eigenoperators {Mj} of L [H∗], one finds that the leading order correction can
be expressed as

L [H∗]
τ
δH =

∑
j

cje
τ
jMj , (28)

where {cj} are the expansion coefficients, and {ej} are the eigenvalues corresponding to the eigen-
operators {Mj}.
For a large τ , or equivalently at large length scales, one observes that the eigenvalues {ej} determine
the behavior of the system: the renormalized Hamiltonian tends to be dominated by the eigenop-
erators with larger eigenvalues. We say that the eigenoperator Mj is relevant, marginally relevant,
or irrelevant if the corresponding eigenvalues are ej > 1, ej = 1, or ej < 1, respectively. Then,
Eq. (28) implies that the relevant and marginally relevant operators determine the macroscopic be-
havior of the system. Thus, close to the critical point, the systems sharing the same (marginally) rel-
evant operators will exhibit the same behavior at macroscopic scales, regardless of the microscopic
degrees of freedom. This gives rise to the notion of universality classes, i.e., physical systems show-
ing the same scaling behavior at criticality described by typically a few critical exponents, despite
being microscopically different (Cardy, 1996). Thus, information about a system’s behavior close
to criticality can be obtained by studying another model within the same universality class. For ex-
ample, the Ising model, originally developed to describe phase transitions in ferromagnetic systems,
can also be used to study the liquid-gas transition, superfluids, and the Higgs mechanism (Wilson,
1971; Wilson & Kogut, 1974).

A simple example of an RG transformation is the Kadanoff block spin transformation, which will
be illustrated below. The partition function of the Ising Hamiltonian is given by

Z =
∑
s

exp (−βH(s)) =
∑
s

exp
(
−βJ sINNs⊤

)
, (29)

where INN is the nearest neighbor matrix (of the appropriate size depending on the context) defined
as

(INN)v,v′ =

{
1 if (v, v′) are 2 ·D nearest neighbor pairs,
0 otherwise.

(30)

For D = 1 (see the top row in Figure 5), this can be rewritten (Maris & Kadanoff, 1978) as

Z =
∑

s1,s3,s5,...

( ∑
s2,s4,s6,...

eK(s1s2+s2s3)eK(s3s4+s4s5) . . .

)
(31)

=
∑

s1,s3,s5,...

[
eK(s1+s3) + e−K(s1+s3)

] [
eK(s3+s5) + e−K(s3+s5)

]
. . . , (32)

where K = −βJ . Here, we have separated the sum over the even and odd spins in Eq. (31), and
explicitly performed the sum over the even spins in Eq. (32). Since sv ∈ {−1, 1}, it holds that

eK(s1+s3) + e−K(s1+s3) = f(K)eK
′ s1s3 , (33)

where

f(K) = 2
√
cosh(2K), K ′ = ln(cosh(2K))/2. (34)
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sampled sites
condition sites

sampled sites
condition sites

sampled sites

Markov Blanket: RiGCS Markov Blanket: MLMC-HB Markov Blanket: True 

Figure 5: Site partitionings based on the block-spin transformation (Kadanoff, 1966). This figure is
similar to, yet more accurate than, Figure 1. Specifically, the only difference is in the true Markov
blanket (yellow shadow) of the second finest level in the 2D case (bottom row in the middle). While
Figure 1 is for explaining that the true Markov blankets of the intermediate levels—which in general
are unknown—possibly covers the entire lattice, this figure faithfully shows the Markov blanket for
the true renormalized Hamiltonian (36) at the second finest level.

Substituting Eq. (33) into Eq. (32), one finds

Z = f(K)N/2
∑

s1,s3,s5,...

exp(K ′s≤L−1INN(s≤L−1)⊤)

= f(K)N/2
∑

s≤L−1

exp
(
−βH̃L−1(s

≤L−1;−K ′/β)
)
, (35)

where

H̃l(s
≤l; J) = −Js≤lINN(s≤l)⊤

is the nearest-neighbor renormalized Hamiltonian. This demonstrates that the partition function of
the system on the fine lattice is related to the one on a coarser lattice described by the same type
of Hamiltonian with K ′ different from K = −βJ . Moreover, looking at Eq. (34), the only fixed
points K∗ in the recursion relation for the renormalized couplings are the trivial ones, i.e., K∗ = 0,
corresponding to the temperature T = β−1 → ∞, where the system is in the paramagnetic phase,
and K∗ =∞, corresponding to T = 0, where the system is in the ferromagnetic phase.

For D = 2 (see the bottom row in Figure 5), one can follow a similar approach by marginalizing at
each iteration over the even (or odd) degrees of freedom in a “checker board” pattern (see also Fig-
ure 6). After a single step of the procedure, one obtains the following partition function (Maris &
Kadanoff, 1978):

Z = f(K)N/2
∑

s≤L−1

exp

K1

∑
⟨ij⟩

sisj +K2

∑
⟨⟨ij⟩⟩

sisj +K3

∑
□

sisjsrst

 , (36)

where ⟨ij⟩ corresponds to the nearest-neighbors on the lattice after summing over one sublattice,
⟨⟨ij⟩⟩ to the spins on next nearest-neighbor sites, □ indicates the spins on a plaquette of the coarser
lattice, and

K1 =
1

4
ln (cosh (4K)) , K2 =

1

8
ln (cosh (4K)) , K3 =

1

8
ln (cosh (4K))− 1

2
ln (cosh (2K)) .

Note that in this case, the partition function is not given by the exponential of the same type of
Hamiltonian as the original model just with different parameters on a coarser lattice. This is illus-
trated in Figure 5 as the “true Markov blanket” (yellow shadow) of the second finest level lattice in
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Figure 6: Illustration of the Kadanoff block spin method on a square lattice, the spheres indicate
the spins and the solid black lines the original lattice. After summing over the configurations of the
orange spins, one obtains an renormalized Hamiltonian for the blue spins on a square lattice that
is tilted by 45° relative to the original lattice (indicated by the grey dashed lines). The resulting
Hamiltonian on the dashed lattice contains nearest-neighbor interactions, interactions of all four
spins along a square as well as next nearest-neighbor interactions along the diagonal of the squares.

the 2D case (the middle figure in the bottom row). Continuing this procedure, one would generate
various long-range and multi-body interactions in the renormalized Hamiltonian, which is captured
in the Hamiltonian in Eq. (9).

A practical example of RG flow in machine learning is the application of CNNs to a classification
problem (Lin et al., 2017). CNNs perform a form of coarse-graining, where successive convolu-
tional layers progressively filter out microscopic noise (irrelevant operators) and isolate high-level
features (relevant operators) essential for distinguishing the target classes. The latter example can be
tested by training a CNN to classify the phase (ferromagnetic or paramagnetic) of the Ising model.
As shown in Carrasquilla & Melko (2017), the output of such a CNN is strongly correlated with the
magnetization, indicating that both neural networks and the RG flow capture the same key param-
eter—magnetization—as a relevant feature to characterize the phase transition in the Ising model.
Interestingly, a similar behavior was observed in Alexandrou et al. (2020), where the latent repre-
sentation of an autoencoder trained on Ising configurations was studied.

D MULTILEVEL MONTE CARLO WITH HEAT BATH (MLMC-HB)
ALGORITHM

With the site partitioning (see Figure 1) based on the block-spin transformations (Kadanoff, 1966),
MLMC-HB performs ancestral sampling, according to Eq. (8), i.e.,

qNN(s) = p(sL|s≤L−1)
(∏L−1

l=1 qNN(sl|s≤l−1)
)
qNN(s0),

which approximates the target distribution (7):

p(s) =
(∏L

l=1 p(s
l|s≤l−1)

)
p(s0).

Here,

qNN(s≤l) =
(∏l−1

l′=1 q
NN(sl

′ |s≤l′−1)
)
qNN(s0)

for l = 0, . . . , L− 1 approximates the true marginal distribution (4), i.e.,

p(s≤l) =
∫
p(s)D[s>l] ≡ 1

Zl
e−βHl(s

≤l),

with nearest-neighbor (NN) interaction Hamiltonians, i.e.,

qNN(s≤l) = 1

Z̃l
e−βH̃l(s

≤l) with H̃l(s
≤l) = −s≤lJNN

l (s≤l)⊤.

Based on RGT (Appendix C), the interaction coefficients {Jl} (J in Eq. (2) for each JNN
l ) are com-

puted by the following recursive equation in the two-dimensional Ising model (Maris & Kadanoff,
1978): for lattice spacing al =

al−1√
2

, i.e., 45 degree rotated lattice,

Kl−1 =
3

8
log{cosh(4Kl)}, (37)
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where Kl = βJl for l = L, . . . , 1 with JL = J .

Thanks to the site partitioning and the approximation with NN interactions, the conditional sampling
probability can be fully decomposed into independent distributions as

qNN(sl|s≤l−1) =
∏Vl

v=1 q
NN(slv|s≤l−1) (38)

(see the Markov blankets shown Figure 1). Sampling from the independent distribution
qNN(slv|s≤l−1) can be easily performed by the heat bath (HB) algorithm: for the Ising models,
each site slv ∈ {−1, 1} follows

qNN(slv|s≤l−1) =
exp

(
− slv

∑
v′(JNN

l )v,v′s<l−1
v′

)
exp

(∑
v′(JNN

l )v,v′s<l−1
v′

)
+ exp

(
−∑v′(JNN

l )v,v′s<l−1
v′

) ,
and can therefore be sampled by using a probability versus state space table. This is efficient because
each site has only 2D nearest neighbors. When sampling coarser levels, where the nearest-neighbor
interactions are governed by the recursion relation (37), the sampling distribution can be tuned by
adjusting Jl to improve the performance.

E ALGORITHMIC DETAILS OF RIGCS

In this section, we provide a detailed description of the specialized sequential training with model
transfer for RiGCS. Furthermore, we also provide pseudocode for both training and sampling.

E.1 DETAILS OF SEQUENTIAL TRAINING WITH MODEL TRANSFER INITIALIZATION

As mentioned in Section 3.3, we train our RiGCS by minimizing the reverse Kullback-Leibler (KL)
divergence (11), which can suffer from long initial random walking steps if the training parameters
θ are not well initialized, e.g., by randomly initialization. This is because a randomly initialized
RiGCS, qθ(s), generates random samples, for which the stochastic gradient of the objective (11)
rarely provides useful signal to train the model for a large lattice system. We tackle this problem
with a specialized training procedure for RiGCS using model transfer, again based on RGT.

We choose L to be an even number, and consider a set of sequential target Boltzmann distribu-
tions {pL′(s≤L′

) ∝ e−βH̃L′ (s≤L′
);L′ = 0, 2, 4, . . . , L}, where {H̃l(s

≤l)}Ll=0 are the approximate
Hamiltonians with NN interactions, defined in Eq.(5), and H̃L(s

≤L) = H(s). Let us consider the
corresponding set of RiGCS models {qθ0

(s0), {qθ≤L′−1(s≤L′
);L′ = 2, 4, . . . , L}} that share the

same coarsest lattice size V0. We train each RiGCS model to the sequential targets in the increasing
order of L′, namely,

At level 0, the 0-layered RiGCS (plain VAN) qθ0
(s0) is trained on p0(s

0) ∝ e−βH̃0(s
0),

At level 2, the 2-layered RiGCS qθ≤1
(s≤2) = p(s2|s≤1)qθ1(s

1|s0)qθ0(s0)

is trained on p2(s
≤2) ∝ e−βH̃2(s

≤2),

At level 4, the 4-layered RiGCS qθ≤3
(s≤4) = p(s4|s≤3)

(
3∏

l=1

qθl
(sl|s≤l−1)

)
qθ0

(s0)

is trained on p4(s
≤4) ∝ e−βH̃4(s

≤4),

...

At level L′, the L′-layered RiGCS qθ≤L′−1
(s≤L′) = p(sL

′ |s≤L′−1)

L′−1∏
l=1

qθl
(sl|s≤l−1)

 qθ0
(s0)

is trained on pL′(s≤L′
) ∝ e−βH̃L′ (s≤L′

),

...
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At level L, the L-layered RiGCS qθ≤L−1
(s≤L) = p(sL|s≤L−1)

(
L−1∏
l=1

qθl
(sl|s≤l−1)

)
qθ0

(s0)

is trained on pL(s
≤L) ∝ e−βH̃L(s≤L).

Figure 2 illustrates this procedure in the case of L = 6 for the 16× 16 lattice, where the parameters
{θl} to be trained are explicitly shown.

Now, assume that scale invariance at criticality (SIC) holds approximately. Then, the renormal-
ized Hamiltonian should be well approximated with NN interactions, i.e., Hl(s

≤l) ≈ H̃l(s
≤l) (see

Eq. (5)). This means that the sequential target distributions {pL′(s≤L′
);L′ = 0, 2, 4, . . . , L} have

similar marginal distributions on the sites s≤l (for l ≤ L′). Therefore, once the parameters {θl}
of the (L′ − 2)-layered RiGCS have been trained on the corresponding target pL′−2(s

≤L′
), they

represent suitable initializations for the corresponding components of the L′-layered RiGCS to be
trained on the next level, i.e., for the target distribution pL′(s≤L′

). This justifies the model transfer
initializations depicted as the vertical red arrows in Figure 2. Furthermore, SIC—stating that the
interaction terms in the renormalized Hamiltonians {Hl(s

≤l)} quickly converge to a fixed point for
l < L̃ with some L̃ < L—implies that the renormalized Hamiltonians for different scales, e.g.,
Hl−2(s

≤l−2) and Hl(s
≤l), should consist of similar sets of interaction terms. Therefore, thanks to

our choice of using the same architecture for all conditional models over different levels, we can
also apply model transfer initializations from θl−2 to θl, as depicted as the diagonal red arrows
in Figure 2.

In summary, our sequential training with model transfer follows the following procedure:

1. Train the (unconditional) generative model qθ0(s0) to approximate p̃(s0) ∝ e−βH̃0(s
0)

with J̃NN
0 . Set θ̃0 ← θ0.

2. Refine θ≤1 from its initial value θ̃≤1 = (θ̃1, θ̃0), where θ̃1 is set randomly, by training
qθ≤1

(s≤2) = p(s2|s≤1)qθ1
(s1|s0)qθ0

(s0) to approximate p̃(s≤2) ∝ e−βH̃2(s
≤2). Set

θ̃≤1 ← θ≤1.

3. Refine θ≤3 from its initial value θ̃≤3 = (θ̃1, θ̃2, θ̃1, θ̃0), where θ̃2 is set randomly, by train-

ing qθ≤3
(s≤4) = p(s4|s≤3)

(∏3
l′=1 qθl′ (s

l′ |sl′−1)
)
qθ0

(s0) to approximate p̃(s≤4) ∝
e−βH̃4(s

≤4). Set θ̃≤3 ← θ≤3.

4. For L′=6, 8, . . . , L, refine θ≤L′−1 from its initial value θ̃≤L′−1=(θ̃L′−3, θ̃L′−4, θ̃≤L′−3)

by training qθ≤L′−1
(s≤L′) = p(sL

′ |s≤L′−1)
(∏L′−1

l=1 qθl
(sl|s≤l−1)

)
qθ0

(s0) to approxi-

mate p̃(s≤L′
) ∝ e−βH̃L′ (s≤L′

). Set θ̃≤L′−1 ← θ≤L′−1.

Note that all parameters except θ0,θ1,θ2—which are trained on the three smallest lattice sizes
with random initializations—can be initialized to the parameters trained on easier problems (smaller
lattice), which significantly accelerates the training process, as shown in Figure 3 (right). For large
L and l ≪ L, the approximate renormalized Hamiltonian H̃l(s

≤l) with NN interactions might be
significantly different from the true renormalized Hamiltonian Hl(s

≤l) that may have long-range
and higher-order interaction terms. Crucially, our training procedure helps reducing this gap step by
step by fine-tuning the generative models with receptive fields extending beyond nearest neighbors.

E.2 PSEUDOCODE FOR RIGCS

The pseudocodes provided in Algorithm 1 and Algorithm 2 describe the practical steps for training
RiGCS and for sampling from a trained RiGCS, respectively.

F AUTOREGRESSIVE NEURAL NETWORKS

Autoregressive neural networks are a class of generative models, where the elements of random
configurations are ordered, and each element is sampled, depending only on the previous elements.
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Algorithm 1 RiGCS training

1: Input:
• Coarsest lattice size N0

• PixelCNN qθ0
• numbers of levels L
• Conditional networks {qθl

(sl|s≤l−1)}
• HB algorithm p(sl|sl−1)

2: Output:
• Trained RiGCS (PixelCNN-based generative model): list of conditional models for

sampling sL ∈ SD with D = 2LN0 × 2LN0

3: Train the PixelCNN qθ0 on N0 ×N0 target lattices.
4: Add to the RiGCS’s list of models the conditional VAN qθ1(s

1|s≤0) (randomly initialized) and
the HB p(s2|s≤1).

5: Train the RiGCS on 2N0 × 2N0 lattices.
6: Replace the HB p(s2|s≤1) with the conditional VAN qθ2

(s2|s≤1) randomly initialized.
7: Add to the RiGCS’s list of models the conditional VAN qθ3

(s3|s≤2) initialized with the weights
of the trained model qθ̃1

, and the HB p(s4|s≤3).
8: Train the RiGCS on 4N0 × 4N0 lattices.
9: for l = 5, l < L, l = l + 2 do

10: Replace the HB p(sl−1|s≤l−2) with the conditional VAN qθl−1
(sl−1|s≤l−2) initialized with

the trained model qθ̃l−3
weights.

11: Add to the RiGCS’s list of models the conditional VAN qθl
(sl|s≤l−1), initialized with the

trained model qθ̃l−2
weights, and HB p(sl+1|s≤l).

12: Train the RiGCS on lattices of size 2l+1N0 × 2l+1N0.
13: end for
14: return List of (trained) conditional models {qθl

(sl|s≤l−1)}L−1
l=1

These models are widely used in time series forecasting (Triebe et al., 2019), natural language
processing (van den Oord et al., 2016a), large language models (Brown et al., 2020), and generative
modeling (van den Oord et al., 2016b) as they explicitly capture the dependencies between elements
in a sequence.

In the last decades, autoregressive neural networks have been extensively deployed in different sci-
entific domains including statistical physics (Wu et al., 2019; Nicoli et al., 2020; Wang et al., 2022;
Biazzo, 2023; Biazzo et al., 2024), quantum chemistry (Gebauer et al., 2019; Joshi et al., 2021;
Gebauer et al., 2022), learning wave functions of many body systems (Hibat-Allah et al., 2020),
tensor newtorks (Chen et al., 2023) and quantum computing (Liu et al., 2021).

Relying on the factorizability of arbitrary distributions as

p(s) =

(
V∏

v=2

p(sv | sv−1, . . . , s1)

)
p(s1), (39)

autoregressive models approximate each factor in the right-hand side with neural network models qθ
with the parameters θ to be optimized so that qθ(s) ≈ p(s). The ancestral sampling in the order of
s1, . . . , sV allows sampling and density evaluation at the same time. State-of-the-art architectures
often use convolutional neural networks, leveraging masked filters to ensure that the conditional de-
pendencies are restricted to previous elements in the sequence (van den Oord et al., 2016b; Salimans
et al., 2017).
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Algorithm 2 RiGCS sampling

1: Input:
• Coarsest lattice size N0

• PixelCNN qθ0
• List of conditional models {qθl

(sl|s≤l−1)}L−1
l=1

• Heatbath algorithm for sampling the finest level L: p(sL|sL−1).
2: Output:

• Samples: sL ∈ SD with D = 2LN0 × 2LN0

• Log-prob: Exact sampling probability ln qθ(s
L).

3: Sample s0 ∼ qθ0
and compute ln qθ0

(s0).
4: for l = 1, l < L, l = l + 2 do
5: Embed the sample sl−1 into a 2Nl−1 × 2Nl−1 with zeros in the lattice sites of the levels

l, l + 1.
6: Sample sl ∼ qθl

(sl|s≤l−1) and compute ln qθl
(sl).

7: if l + 1 ̸= L then
8: Sample sl+1 ∼ qθl+1

(sl|s≤l) and compute ln qθl+1
(sl+1).

9: else
10: Sample sL ∼ p(sL|sL−1) with HB and compute ln qθ(s

L).
11: end if
12: end for
13: return sL, ln qθ(sL)

G IMPLEMENTATION DETAILS FOR VAN, HAN AND RIGCS

G.1 VAN

Two possible architectures often used for implementing VAN-like networks (Wu et al., 2019)
are Masked Autoencoder for Distribution Estimation (MADE) (Germain et al., 2015) and Pixel-
CNN (van den Oord et al., 2016c;b), which rely on fully-connected and convolutional layers, re-
spectively. In order to ensure the autoregressive properties, the weights of these architectures are
masked (see Figure 1 in van den Oord et al. (2016b)) so that the v-th entry of the output ŝv = gθ(s)
of the network gθ depends only on the previous values s<v = (sv−1, . . . , s1), i.e.,

ŝv = gθ(s<v).

With the sigmoid function used in the last layer of the network gθ(s<v), the output is bounded as
ŝv ∈ (0, 1), which expresses the probability that the entry has the positive spin sv = +1. Namely,
the corresponding entry is drawn from the following Bernoulli distribution:

qθ(sv|s<v) = ŝvδsv,+1 + (1− ŝv)δsv,−1. (40)

In our experiments, we used the PixelCNN-based VAN—implemented by Wu et al. (2019)—which
leverages masked convolutional kernels of the size of K ×K for odd K. Let M ∈ {0, 1}K×K be
the mask for the kernel. Noting that (k, k′) = ((K − 1)/2 + 1, (K − 1)/2 + 1) corresponds to the
center of the kernel, setting the mask such that

Mk,k′ =

{
1 if [k < (K − 1)/2 + 1] ∨ [[k = (K − 1)/2 + 1] ∧ [k′ < (K − 1)/2 + 1]] ,

0 otherwise

ensures the autoregressive properties. When more than two layers are used, PixelCNN uses residual
connections (He et al., 2016) (i.e., the original input to the layer is summed to the output) for each
layer, except for the first and the last layers. Within the residual connections before each masked
convolutional layer, as well as at the end of the network before the sigmoid function, a standard
convolutional layer with the kernel size of 1× 1 is added.

The PixelCNN, used in our experiments as the plain VAN, has 6 masked convolutional layers with
32 channels and the kernel size of K = 13.
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G.2 HAN

The HAN (Białas et al., 2022) model leverages recursive domain decomposition (Cè et al., 2016)
in order to sample in parallel different regions of the lattice configurations. The crucial aspect of
the domain decomposition is that the domains must be connected through a common boundary, and,
once it is given, each domain can be sampled independently by using the same model. In the HAN
implementation, a boundary B0 that divides the lattice into four domains is first sampled by using
a standard MADE architecture. Then, each domain is further split into four by sampling in parallel
four boundaries {Bi} using another MADE model conditioned on the boundary B0. This procedure
is repeated until the remaining entries have all the neighbors fixed and therefore can be sampled by
HB.

In our experiments, where HAN is evaluated as a baseline, we used the code and the hyperparameters
provided by the authors of Białas et al. (2022).

G.3 RIGCS

In our implementation of RiGCS, the (unconditional) generative model qθ0
(s0) at the coarsest level

l = 0, consists of a VAN with 3 masked convolutional layers with 12 kernels of the size of K = 13.

For the conditional models {qθl
(sl|s≤l−1)}L−1

l=1 , we define one ”block” as two consecutive levels,
which correspond to upsampling from lattice size Nl × Nl to Nl+2 × Nl+2 = 2Nl × 2Nl for
l ∈ {0, 2, 4, · · · , L− 2}. Each block takes as input a coarser configuration s≤l of size Nl ×Nl and
embeds it into a 2Nl × 2Nl configuration where all unsampled entries for the levels l + 1 and l + 2
are set to 0. Then, the spins sl+1 and sl+2 are sampled sequentially according to the output of a
standard CNN that takes as input the embedded configuration. Each conditional CNN (conditional
VAN) of RiGCS has one hidden layer with 12 kernels of the sizes of K = 5 and K = 3, respectively,
for the hidden and output layers, making its receptive field size 7× 7. Within each block, we use the
same CNN architecture for both levels. The same architecture applies to all blocks except the last.
In the last level, i.e., l = L, RiGCS performs the HB sampling because the target Hamiltonian has
only nearest-neighbor interactions by assumption.

Similarly to the VAN (see Appendix G.1), the conditional VAN uses a sigmoid activation in the final
layer, such that the output is bounded as ŝv ∈ (0, 1). With this output, the spin is drawn from the
Bernoulli distribution:

qθ(s
l
v|sl<v, s

<l) = ŝ l
vδslv,+1 + (1− ŝ l

v)δslv,−1.

During the training procedure described in Section 3.3, the weights in each block are initialized with
those of the conditional VANs in the coarser block.

G.4 TRAINING

All the generative neural samplers (RiGCS, VAN, HAN) used in our experiments are trained by
minimizing the reverse Kullback-Leibler (KL) divergence

min
θ

KL(qθ(s)∥p(s)) (41)

with the gradient estimator

∇θKL(qθ(s)∥p(s)) = Es∼qθ

[(
βH(s) + log qθ(s)

)
∇θ log qθ(s)

]
.

In order to make the variance of the estimator more stable, we leverage a control variates
method (Mnih & Gregor, 2014) as suggested in Wu et al. (2019). We use the ADAM opti-
mizer (Kingma & Ba, 2015) with learning rate 0.001 and standard βs for training all models.

We trained VANs for 50000 gradient updates (steps) with batch size 100, and HANs for 100000
gradient updates with batch size 1000. For RiGCS, training is performed for a total of 3000 steps for
each sequential (upscaled) target lattice. When training on a target lattice NL = N , the pretraining
phase involves training at coarser levels as follows: 2000 steps for level L− 2, 1500 steps for level
L− 4, and 1000 steps for all previous levels, except for the coarsest one which is always trained for
500 steps.
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Figure 7: Relative estimation error for the internal energy (left) and absolute magnetization (right).
The vanilla VAN cannot be trained for N ≥ 64 in reasonable time. Note that, unlike in Figure 3
(left), we used the MC estimators by the Cluster-AIS Ucls and mcls as the reference values, as the
ground truth cannot be computed analytically.
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Figure 8: Total training time (left) and sampling time (right) for different lattice sizes.

G.5 SAMPLING

We computed the MC estimates with one million samples for the Cluster(-AIS), HAN and RiGCS.
For VAN and MLMC-HB we used 100k samples. For the largest lattice considered in this work,
i.e., 128 × 128, Cluster-AIS sampled only 500k configurations due to its high computational costs.
Errors are estimated using an automatic differentiation method introduced in Ramos (2019) and
implemented by Joswig et al. (2023).

H ADDITIONAL NUMERICAL RESULTS

H.1 NON-THERMODYNAMIC OBSERVABLE ESTIMATION

Figure 7 shows additional numerical results of estimating the internal energy and the magnetization,
where the estimators by the cluster method are used as the reference values. Consistently with the
EMDM and ESS shown in Figure 4, our RiGCS provides unbiased estimates with lowest variances
compared to other generative neural samplers.

H.2 COMPUTATION TIME

Figure 8 shows empirical training (left) and sampling (right) time. For all models (RiGCS and the
baselines), we used a single NVIDIA A100 GPU with 80 GB of memory.

H.3 ABLATION STUDY: TRANSFORMER ARCHITECTURE FOR CONDITIONAL VAN

In order to investigate the impact of different neural network architectures for the conditional VAN
used in RiGCS, we compared the performances between CNN- and transformer-based neural net-
works. For the latter, we replaced the CNN of our proposed implementation with a transformer
(encoder only) with 5 multi-head attention block (8 heads) and 1024 neurons in the feed-forward
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Figure 9: Comparison between a CNN-based RiGCS (purple) and a transformer-based RiGCS (or-
ange). Both CNN and transformer refer to the type of neural network architectures used for the
conditional models in RiGCS. Both models use our proposed warm-start technique for training for
the target (finest) lattice size of 16× 16.

networks. However, for the unconditional VAN at the coarsest level l = 0, we kept using the Pix-
elCNN. Figure 9 displays the results of sequential training with model transfer up to lattices of size
16 × 16. Note that, unlike in Figure 3 (right), the plot shows all training procedure including the
pretraining phase. Specifically, the initial phase (steps: 1 to 1001) corresponds to training of the un-
conditional VAN at l = 0, the second (steps: 1002 to 11002) and the third (steps: 11003 to 21003)
phases involve training of the conditional VANs at l = 1, 2, respectively, and the last phase (steps:
21004 to the end of training) corresponds to training of the full RiGCS for the target lattice of size
16× 16.

We observe that, except the initial phase, where both RiGCS models use the same unconditional
VAN with PixelCNN, RiGCS with CNN (purple) clearly outperforms RiGCS with Transformer
(orange). This result is consistent with recent work (Abbott et al., 2023; Liu et al., 2024), where
transformer-based architectures do not appear to be well-suited for lattice simulations of physical
systems, despite their great success across various domains. The reasons for this remain to be
theoretically understood.

H.4 PRELIMINARY EXPERIMENT FOR LATTICE QUANTUM FIELD THEORIES

To further validate our approach, we tested RiGCS on another popular benchmark in computational
physics: the ϕ4 scalar field theory. This field theory, when discretized on a lattice, serves as an
important benchmark for validating sampling algorithms. In fact, it has been extensively studied
in the literature (Albergo et al., 2019; Nicoli et al., 2021) for benchmarking the performance of
generative models (e.g., normalizing flows) with continuous degrees of freedom. The ϕ4 field theory
belongs to the same universality class as the Ising model (i.e., as discussed in Appendix C, they share
the same critical exponents). Despite being recognized as a toy model in the 2-dimensional lattice,
the ϕ4 theory is of high-relevance to physicists for the following reasons. In the standard model of
particle physics, the field of the Higgs boson possesses the same type of interaction as described
by the ϕ4 lattice field theory. Moreover, the ϕ4 scalar field theory exhibits spontaneous symmetry
breaking of the Z2 invariance, which is a property central to the Higgs mechanism as well.

Configurations of the scalar field theory are sampled from the Boltzmann distribution

p(ϕ) =
e−S[ϕ]

Z
,
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Figure 10: Effective Sample Size (ESS) for different lattice sizes for the ϕ4 theory, after 5k steps of
training for N = {4, 8, 16} and 10k for N = 32. Blue squares and magenta circles refer to the plain
VAN (baseline) and RiGCS (ours), respectively. The plain VAN can be trained in reasonable time
only up to 16× 16 lattices, and RiGCS consistently achieves a higher ESS than VAN.

where Z is the unknown partition function, and S[ϕ] is the action—a functional describing the
physics of the system in the Lagrangian formalism. For the ϕ4 theory, the action reads

S[ϕ] =
∑
v

[
−2κ

D∑
µ=1

ϕvϕv+µ + (1− 2λ)ϕ2
v + λϕ4

v

]
, (42)

where κ is the hopping parameter controlling the nearest-neighbor interactions, and λ is the bare
coupling parameter determining the strength of the quartic self-interactions. The index µ labels the
basis vectors in the D-dimensional space.

In the limit of λ→∞, the self-interaction terms enforce ϕv → ±1, effectively reducing the field to
discrete spin values sv = ±1 (Vierhaus, 2010; Wolff, 2009). The resulting effective action in this
limit corresponds to the ferromagnetic Ising Hamiltonian

SE [s] = H(s) = −β
∑
⟨v,v′⟩

svsv′ , for β = 2κ. (43)

In the limit of λ → 0, the quartic interaction vanishes, and the theory reduces to a free (Gaussian)
field theory. We refer to Vierhaus (2010); Wolff (2009) for further details on the connection between
the Ising model and the ϕ4 theory.

The architecture of RiGCS used in our preliminary experiment for simulating the ϕ4 theory closely
follows that for the Ising model used in the main paper, with a few key differences outlined below.
As in the Ising case, we use a PixelCNN (plain VAN) at the coarsest level, and conditional CNNs
at the intermediate levels. However, unlike for the Ising model, we also use the conditional CNN,
instead of the HB sampler, at the finest level. For sampling continuous variables, we use Gaussian
Mixture Models (GMMs), following the approach by Faraz et al. (2025). Specifically, at level l,
GMM represents the conditional probability density for a new site ϕl

v in the configuration as

qθl
(ϕl

v|ϕl
<v,ϕ

<l) =

H∑
h=1

πl
h,vN (ϕl

v|µl
h,v, σ

l
h,v).

Here, πl
h,v = πh(ϕ

l
<v,ϕ<l;θl), µ

l
h,v = µh(ϕ

l
<v,ϕ<l;θl), and σl

h,v = σh(ϕ
l
<v,ϕ<l;θl) are neural

networks, which are parameterized with θl, and represent the mixing coefficient, the mean, and the
standard deviation of the h-th Gaussian component, respectively. We set H = 3.

We perform sequential training similar to the Ising model case with a minor modification: since
we use conditional CNN at the finest level, all HB blocks in Figure 2 are replaced with conditional
CNNs parameterized by θL′ . More specifically, the HB block at level 2 is replaced with θ2, which
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is initialized randomly. The trained θ2 is transferred to θ2 and θ4 (substituted for HB) at Level 4.
We continue this model transfer to Level 6 and higher.

We conducted preliminary experiments for comparing the performance of VAN and RiGCS in sam-
pling configurations for the ϕ4 theory at the critical point. We evaluated the Effective Sample Size
(ESS) for lattices up to 32 × 32, and plotted the results in Figure 10. We observe that RiGCS
again consistently outperforms the plain VAN (Wu et al., 2019), always converging to a higher ESS.
Furthermore, for lattices larger than 32 × 32, the plain VAN could not be trained due to excessive
computational costs, while RiGCS can be trained with reasonable computational costs. This further
highlights the superior performance and efficiency of RiGCS. We note that the VAN architecture—
which is particularly suited for sampling discrete variables—is not necessarily an optimal choice for
sampling continuous variables. Exploring RiGCS with more suitable base generative samplers, e.g.,
normalizing flows, for continuous systems is a promising direction future research.
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