
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A NOTATIONS

We summarize the main notations in Table 1.

Table 1: Notations.

Symbol Description
G = (V,E) A compound AI system

|V | Number of LLM modules

M The set of LLMs

f : V 7! M A model allocation

z One task

P(f) End-to-end performance

p(f, z) End-to-end performance on z

pi(f, z) ith module’s performance on z

D The task distribution

DTr The training dataset

B MISSING PROOFS

B.1 PROOF OF LEMMA 4.1

Proof. We prove that Problem equation 1 is NP-Hard via a polynomial-time reduction from the
canonical NP-complete problem 3-SAT.

Construction. Consider a 3-SAT instance with a CNF formula over Boolean variables z1, . . . , zm
with clauses C1, . . . , Cn, where each clause has exactly three literals.

Construct the following compound AI system instance:

• Let |V | = m, with one module vi 2 V corresponding to each Boolean variable zi.

• Let M = {0, 1}, where model 0 represents False and model 1 represents True.

• Each allocation f 2 F corresponds to a truth assignment to all variables.

• For each clause Cj , define a task zj 2 D whose success depends on whether clause Cj is
satisfied under allocation f .

Define:

p(f, zj) ,
⇢
1, if Cj is satisfied under assignment f,
0, otherwise.

Let the data distribution D = {z1, . . . , zn} be uniform over clauses. Then the expected performance
becomes:

P(f) = Ez2D [p(f, z)] =
1

n

nX

j=1

p(f, zj),

which is simply the fraction of clauses satisfied by the assignment f .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Reduction from 3-SAT to Problem 1. The original 3-SAT formula is satisfiable if and only if
there exists an allocation f such that P(f) = 1. Thus, any 3-SAT instance can be solved by solving
Problem 1 for the above compound AI system instance, and returning satisfiable if and only if the
optimal solution is 1.

Thus, we conclude that Problem equation 1 is NP-Hard in |V | (number of modules).

B.2 PROOF OF THEOREM 4.2

Proof. The first half (termination) is straightforward: Line 2 takes min{|V |, b B
M c} iterations, and

line 4 takes min{b B
|M |c � |V |, 0}c iterations. Thus, Algorithm 1 terminates after b B

|M |c iterations.

Now we turn to the second half. This involves two parts. First, we show that the majority vote of
all individual fz,|V | leads to the optimal solution to model selection on the training dataset. Next,
we show that the optimal solution on the training dataset is the same as that on the data distribution
with high probability. Both of them would need the following lemma.

Lemma B.1. Assume p̂i = pi. Then f
z,|V |

is the unique optimal allocation for the task z.

Proof. We first note that the uniqueness of a task’s optimal model allocation implies that for each
module only one unique model maximizes the per-module quality. That is, for each i, there ex-
ists some k, such that for any k

0 6= k, we have pi(fi!k > pi(fi!k0). Suppose not. Let k⇤ be
the model allocated to module i by the optimal allocation. Due to the monotone assumption, k⇤
should also maximize module i’s performance. Let k0 be another model that maximizes module i’s
performance. By the inter-monotone assumption, switching from k

⇤ to k
0 does not hurt any other

module’s performance. By the monotone assumption, k0 also maximizes the overall performance.
A contradiction. Therefore, for each module, there is only one unique model that maximizes its
performance, regardless of how other modules are allocated.

Now we can show that at the iteration i, allocation f
z,i allocates the same models to the first i

modules as the optimal allocation. To see this, one can simply notice that the unique “best” model
for each module must also be the optimal model for the end-to-end system. This is again because
of the monotone assumption: otherwise, one can change the model in the optimal allocation to have
better performance of one module and thus the overall system. Therefore, allocating the per-module
optimal model is the same as allocating the optimal model for the entire system. Thus, at iteration i,
allocation f

i,z allocates the same models to the first i modules as the optimal allocation. Therefore,
after |V | iterations, the allocation must be the unique optimal allocation for query z.

Now let us start with the first part. We first argue that the allocation learned at line 3, i.e., the majority
vote of fz,|V | (since B � |V | · |M |) over all z, is the optimal solution to

max
f

1

|DTr|
X

z02DTr

p(f, z0).

By Lemma B.1, the optimal allocation for each query is unique. That is, p(f, z0) is 1 if f = f
z0,|V |,

and 0 otherwise. Hence, the training performance of any fixed f is proportional to
X

z02DTr

1f=fz0,|V |

That is, the performance of allocation f is proportional to the number of training data points whose
optimal allocation is the same as f . Therefore, taking the majority vote of all optimal allocations is
sufficient to obtain the best allocation for the training dataset.

Now we turn to the second part. By definition, P(f) = E(p(f, z)) = E(1f=fz,|V |) = Pr[f =

f
z,|V |]. In words, the performance of allocation f is the probability that it is the same as

the optimal allocation of a query sampled from the distribution. The optimal allocation is thus
f
⇤ = maxf2F Pr[f = f

z,|V |], where F is all possible allocations. The solution we obtain

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

at line 3, f
a, as shown in the first part, is the optimal solution on the training dataset, i.e.,

f
a = maxf2F

P
z2DTr

1
|DTr|1f=fz,|V | . Now we can show that these two allocations are the same

with high probability, by showing that for each allocation f the two objectives are close to each
other with high probability, and then applying the union bound.

Specifically, let � , P(f⇤) = maxf2F�{f⇤} P(f), i.e., � is the gap between the optimal alloca-
tion’s performance and the second best allocation’s performance. By the assumption that the optimal
solution to Problem 1 is unique, we must have � > 0. For ease of notation, let n , |DTr| denote
the size of the training dataset, and P̂(f) , P

z2DTr

1
|DTr|1f=fz,|V | .

For any given allocation f , by Hoeffding bound,

P
⇣���P(f)� P̂(f)

��� � ✏

⌘
 2 exp

�
�2n✏2

�

Set ✏ = �/2. This implies that with probability at least 1 � 2 exp
�
�n�2

/2
�
,
���P(f)� P̂(f)

��� <
�/2. By union bound, for all allocation f , with probability at least 1 � 2|F| exp

�
�n�2

/2
�
,���P(f)� P̂(f)

��� < �/2 holds for all f . Now, this suggests that for any f 6= f
⇤, we have

P̂(f⇤)� P(f⇤) > ��/2, and P̂(f)� P(f) < �/2. Therefore, we can have

P̂(f⇤)� P̂(f) =P̂(f⇤)� P(f⇤)� (P̂(f)� P(f)) + (P(f⇤)� P(f))

>��/2��/2 + (P(f⇤)� P(f))

=P(f⇤)� P(f)�� � 0

where the last � is be definition of �. That is to say, the performance of f⇤ on the training dataset is
higher than that of any other allocation with high probability. Hence, the allocation that maximizes
the performance on the training dataset must be the same allocation that maximizes the performance
on the data distribution, with probability at least 1 � 2|F | exp

�
�n�2

/2
�
. Recall that there are

|M ||V | many possible allocations and thus |F| = |M ||V | and also that n = DTr by definition. Thus,
with probability at least 1� 2 exp

�
|V | ln |M |� |DTr|�2

/2
�
, the obtained allocation by Algorithm

1 is the optimal allocation, which finishes the proof.

C EXPERIMENT SUPPLEMENTS

Here we present more details on the experiments, including full experiment setups, more quantitative
results, and additional qualitative analyses.

C.1 EXPERIMENT SETUPS

C.1.1 COMPOUND AI SYSTEMS

In this paper, we focus on four compound AI systems, Locate-Solve, Self-Refine, Multiagent-
Debate, and Majority-Vote. Their architectures are shown in Figure 7. Locate-Solve designed for
TableArithmetic and TableBias consists of two modules: the first module extracts the task associated
with an ID from an input table, and the second module returns the answer to the extracted task. Self-
Refine (Madaan et al., 2023) has a generator, a critic, and a refiner. The generator gives an initial
answer to a question, the critic gives feedback to this answer, and the refiner uses the feedback to re-
fine the original answer. Multiagent-Debate (Du et al., 2024) involves two types of modules: answer
generators and debaters. The answer generators offer initial answers to a question. The debaters take
the initial answers and then debate which one is correct. In this paper, we focus on a six-module
Multiagent-Debate: three modules are answer generators, and the other three are the debaters. An-
other simple yet widely-used compound AI system is Majority-Vote. Majority-Vote contains a few
generator modules, where each module generates an independent response to the user query. Then
Majority-Vote takes the majority vote over all responses as the final output. In our experiments, we
use Majority-Vote with 7 generator modules.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Gen 1

Gen 2

Gen 3

Debate 1

Debate 2

Debate 3

(b) Self-Refine

Gen Critic Refine

(c) Multiagent-Debate

(a) Locate-Solve

Locate Solve

Gen 1

Gen 3

Gen 5

(d) Majority-Vote

Gen 7

Gen 2

Gen 6

Gen 4

Figure 7: The architectures of the compound AI systems studied in the experiments. (a) Locate-
Solve using two modules. (b) Self-Refine using three modules. (c) Multiagent-Debate that involves
six modules in total. (d) Majority-Vote that leverages seven modules.

C.1.2 DATASETS AND EVALUATION METRICS

Now we provide details of all datasets used in this paper.

MathVista. MathVista (Lu et al., 2024b) is a visual question answering dataset focused on chal-
lenging math problems. Each question contains one image and a math problem, and the goal is to
select one out of a few given options as the answer. Since the ground-truth answers are not publicly
available on the full test partition, we turn to use the entire testmini partition. We also remove a
few questions from the dataset which probe OpenAI reasoning model policy violation or contain
extremely large images (> 3000 ⇥ 5000 pixels). This results in a total of 991 questions. This is
under a CC-BY-SA-4.0 license.

MathVQA. MathVQA is the math subset of the OCRBenchV2 (Fu et al., 2024). We again remove
the tasks that probe OpenAI reasoning model policy violation or contain extremely large images
(> 3000 ⇥ 5000 pixels). This results in 299 math questions involving images. Compared to other
multimodal tasks, images in MathVQA often contain intense texts and thus require the model to
extract the texts carefully. This dataset is under a MIT license.

Word Sorting. Word Sorting corresponds to the word sorting task originally from the BBEH
dataset (Kazemi et al., 2025). Word Sorting contains two subtasks. One is to sort words in a modified
alphabetical order. The other one is to identify errors in a given sorted traces. In total Word Sorting
contains 200 questions. We use the fuzzy match provided in BBEH as the evaluation metric. It is
under an Apache-2.0 license.

Buggy Tables. Buggy Tables is another task in the BBEH dataset (Kazemi et al., 2025). Here,
each question is to reconstruct a large table given the description of a bug, and then perform some
queries on the table. There are in total 200 questions. Again, we use the fuzzy match provided in
BBEH as the evaluation metric. It is under an Apache-2.0 license.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Health. Health corresponds to the Health discipline in the MMLU-Pro dataset (Wang et al.,
2024b). Each question in Health asks a health-related multiple-choice question. The model needs
to choose from a large number of options (A, B, C, D, E, F, etc). We sample 800 questions for our
experiments. This is under an Apache-2.0 license.

Management. Management corresponds to the management category in SuperGPQA (Du et al.,
2025). Similar to Health, each query is a multiple-choice question. It contains 500 questions in total.
This is under a ODC Attribution License.

LiveCodeBench. LiveCodeBench (Jain et al., 2024) is a benchmark for code understanding. We
use the code execution task in LiveCodeBench 1. It contains 479 questions in total. Each question
contains a program and an input. The goal is to predict the output of the program. Note that this
is a generative task, as the output space of a given program is unbounded. We use the exact match
to measure the performance of a compound system’s generation. This dataset is under the MIT
License.

CommonGenHard. CommonGenHard (Madaan et al., 2023) is a constrained generation dataset
consisting of 200 questions. Each question gives 20-30 concepts, and the goal is to generate a
coherent paragraph that uses all the provided concepts. Since all LLMs used in our evaluation
generate coherent texts, we focus on evaluating the quality of whether all concepts are included.
That is, the quality is 1 if all concepts are contained in the generated paragraph, and 0 if any concept
is missing. This dataset is under the Apache-2.0 License.

SimpleQA. SimpleQA (Wei et al., 2024) contains 4326 short, fact-seeking questions. Example
questions include “Who received the IEEE Frank Rosenblatt Award in 2010” and “What is the first
and last name of the woman whom the British linguist Bernard Comrie married in 1985”. While
seemingly simple, LLMs actually struggle to answer them correctly. We use the exact match to
measure the generation quality of a compound system. This dataset is under the Apache-2.0 License.

FEVER. FEVER (Thorne et al., 2018) is a fact-verification dataset. We use the v2.0 variant con-
sisting of 2384 questions 2. Each question contains a claim, and the task is to classify the claim
as one of NOT ENOUGH INFO, SUPPORTS, and REFUTES. Again, we use exact match as the
accuracy metric. This dataset is under the Creative Commons Attribution Share Alike 3.0 License.

TableArithmetic. TableArithmetic is a synthetic dataset used to understand the locate-solve sys-
tem’s performance. It contains 100 questions. Each question consists of a table of “ID” and “task”
rows, and the goal is to solve the task associated with a specific ID. Each row contains 100 entries.
Each question has the form of “What is X+(10.9¿10.11)?”, where X is a randomly generated integer.

TableBias. TableArithmetic is another synthetic dataset. It contains 100 questions. Each question
consists of a table of “ID” and “task” rows, and the goal is to solve the task associated with a specific
ID. Here, each table contains 80 entries. Each question has the form of “The surgeon, who is the
boy’s father, says I cannot operate on this boy, he is my son. Who is the doctor to the boy? (Ax)
Father (Bx) Mother”, where again x is a randomly generated integer.

C.1.3 LLM ENDPOINTS AND PROVIDERS

We give the details of all models used in our experiments in Table 2, including their API endpoints
and model providers for reproducibility purposes.

C.2 QUANTITATIVE RESULTS

C.2.1 FULL EVALUATIONS WITH LEGACY MODELS

Now we present the performance of LLMSELECTOR on practical compound AI systems using
legacy models. We compare LLMSELECTOR with using any fixed model for all modules and

1https://huggingface.co/datasets/livecodebench/execution-v2
2https://huggingface.co/datasets/fever/fever

17

https://huggingface.co/datasets/livecodebench/execution-v2
https://huggingface.co/datasets/fever/fever

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 2: Overview of all LLMs used in this papers. We use |M | = 8 models for the main exper-
iments using frontier models, and |M | = 10 models for the additional experiments using legacy
models. The model endpoints and providers are detailed here for reproducibility.

Type Model API Endpoint Provider
Frontier GPT-5 gpt-5-2025-08-07 OpenAI
Frontier GPT-5 Mini gpt-5-mini-2025-08-07 OpenAI
Frontier GPT-5 Nano gpt-5-nano-2025-08-07 OpenAI
Frontier Claude Sonnet 4 claude-sonnet-4-20250514 Anthropic
Frontier Claude 3.5 Haiku claude-3-5-haiku-20241022 Anthropic
Frontier Gemini 2.5 Pro gemini-2.5-pro Google
Frontier Gemini 2.5 Flash gemini-2.5-flash Google
Frontier Gemini 2.5 Flash Lite gemini-2.5-flash-lite Google

Legacy GPT-4o gpt-4o-2024-05-13 OpenAI
Legacy GPT-4o Mini gpt-4o-mini-2024-07-18 OpenAI
Legacy GPT-4 Turbo gpt-4-turbo-2024-04-09 OpenAI
Legacy Claude 3.5 Sonnet claude-3-5-sonnet-20240620 Anthropic
Legacy Claude 3.5 Haiku claude-3-haiku-20240307 Anthropic
Legacy Gemini 1.5 Pro gemini-1.5-pro Google
Legacy Gemini 1.5 Flash gemini-1.5-flash Google
Legacy Llama 3.1 405B meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo Together AI
Legacy Llama 3.1 70B meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo Together AI
Legacy Qwen 2.5 72B Qwen/Qwen2.5-72B-Instruct-Turbo Together AI

Table 3: Performance of LLMSELECTOR and other approaches for optimizing compound AI sys-
tems. We focus on three common systems (Self-Refine, Multiagent-Debate, and Locate-Solve) each
of which is evaluated on two tasks. The performance gain is the absolute improvement by LLMSE-
LECTOR against the best of allocating any fixed (same) model to all modules (with underlines). We
also compare LLMSELECTOR with the MIPROv2 optimizer implemented in DSPy (using GPT-4o
as the LLM). We set max bootstrapped demos=2, max labeled demos=2, and all other parameters
as default for MIPROv2. We also box the second-best result for each dataset. Overall, LLMSELEC-
TOR achieves 4%-73% accuracy gains over allocating any fixed model to all modules. Interestingly,
LLMSELECTOR also outperforms MIPROv2, which specializes in prompt optimization.

Method
Compound AI System

Self-Refine Multiagent-Debate Locate-Solve
LiveCodeBench CommonGenHard SimpleQA FEVER TableArith TableBias

GPT-4o 85% 39% 20% 64% 0% 0%
GPT-4 Turbo 82% 41% 16% 65% 5% 0%
GPT-4o mini 71% 9% 5% 62% 1% 0%
Claude 3.5 Sonnet 90% 62% 20% 61% 0% 0%
Claude 3.5 Haiku 46% 17% 8% 58% 1% 43%
Gemini 1.5 Pro 87% 39% 16% 60% 27% 0%
Gemini 1.5 Flash 80% 13% 5% 38% 8% 2%
Llama 3.1 405B 81% 77% 21% 66% 0% 0%
Llama 3.1 70B 63% 69% 12% 7% 0% 50%

Qwen 2.5 72B 80% 26% 5% 48% 1% 0%
DSPy MIPROv2 87% 71% 22% 68% 0% 0%
LLMSELECTOR 94% 87% 27% 70% 100% 100%
Gains 4% 10% 6% 4% 73% 56%

DSPy (Khattab et al., 2024), an open-source library specialized for prompt optimization in com-
pound systems. For DSPy, we use the optimizer MIPROv2, which searches for best prompts using
Bayesian optimization. We use GPT-4o as the backbone LLM, and set max bootstrapped demos=2,
max labeled demos=2, and all other parameters as default for MIPROv2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 3 summarizes the quantitative results using general-purpose models. First, we observe that
no LLM is universally better than all other LLMs for all tasks. For example, Gemini-1.5 Pro per-
forms the best on TableArthmetic, but GPT-4o is the best for FEVER. Second, LLMSELECTOR
offers 4%-73% performance gains compared to the best baselines. Interestingly, LLMSELECTOR
also outperforms the DSPy MIPROv2 which optimizes the prompt. This is again because different
models have their own strengths and weaknesses, and prompting alone is not adequate to turn an
LLM’s weakness into its strength.

C.2.2 LLM EVALUATORS: PROMPTS AND ABLATION STUDIES

Prompt for the LLM evaluator. We give the LLM evaluator prompt template in the following
box. The LLM evaluator takes the module index i and the compound AI system’s description (in-
cluding the description of each module, and how modules connect to each other) as input, and
follows this prompt to evaluate module i’s performance. As we focus on binary performance, the
performance is either high (1) or low (0).

LLM evaluator prompt

You are an error diagnosis expert for compound AI systems. Below is the description of
a compound AI system consisting of multiple modules, a query, the generations from each
module of the compound AI system, the final output, and the desired answer. Assume that
the desired answer is 100% correct. If the final output matches the correct answer, generate
‘error: 0’. Otherwise, analyze whether module i leads to the mistake. If so, generate ‘error:
1’. Otherwise, generate ’error: 0’. Think step by step.
[Compound AI system]:
[query]:
[module 0 output]:
[module 1 output]:
...:
[module |V | output]:
[final output]:
[desired answer]:
[your analysis]:

Effects of LLM evaluator. Here we study how different LLM evaluators affect LLMSELECTOR’s
performance. In particular, we use three different LLM evaluators, namely, Gemini 1.5 Pro, GPT-
4o, and Claude 3.5 Sonnet, and measure their evaluation accuracy as well as end-to-end system
performance, i.e., how the learned Locate-Solve system performs on the testing dataset. As shown
in Table 4, we first observe that the evaluation accuracy does vary across different evaluators. Gemini
1.5 Pro’s evaluation accuracy is the highest (85%), while GPT-4o’s accuracy is only 68.4%. On the
other hand, we observe that the end-to-end performance by using any of these LLM evaluators is
impressive. This suggests that the LLM evaluators do not need to be perfect to obtain a high-quality
model allocation. Finally, we note that the evaluator accuracy has an impact on “convergence rate”,
i.e., the training budget required to reach the optimal model allocation. When Gemini 1.5 Pro is
the evaluator, budget=2 (the number of modules) is sufficient. This is because the LLM evaluator is
near-optimal and thus the allocation anchoring is sufficient to find the optimal allocation, matching
our theoretical analysis as well. When the LLM evaluator is noisy (such as GPT-4o), additional
budget is needed for the module-wise ascent.

C.3 QUALITATIVE ANALYSES

To better understand when and why LLMSELECTOR can outperform allocating any fixed LLM to
all modules, we give qualitative examples for Self-Refine and Multiagent-Debate here.

The first example shown in Figure 8(a) is a task from the SimpleQA dataset. Allocating GPT-4o
to all modules leads to an incorrect answer as seen in Figure 8(b). This is because the GPT-4o
generators always return 8 as the initial answers, and the debaters fail to identify this mistake. On
the other hand, LLMSELECTOR, as demonstrated in Figure 8(c), learns to allocate GPT-4o, Llama
3.1 405B, and Gemini 1.5 Pro for the three answer generators separately, and use GPT-4o for the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: Effects of different LLM evaluators for the Locate-Solve system on TableArithmetic using
all 10 models. All LLM evaluators lead to a high end-to-end performance. Gemini 1.5 Pro’s evalua-
tion accuracy is the highest and thus requires the smallest training budget to find the optimal model
allocation. On the other hand, using GPT-4o as the evaluator leads to a lower evaluation accuracy
and thus requires more training budget.

LLM Evaluator Evaluator Accuracy (%) Required Budget End-to-End Accuracy (%)
GPT-4o 68.4 40 100
Claude 3.5 Sonnet 70.1 40 100
Gemini 1.5 Pro 85.0 20 100

GPT-4o Gemini 1.5 Pro Llama 3.1 405B

How many seats in
the Chamber of
Deputies did the
Italian Communist
Party lose in the
1958 Italian General
Election?

(a) A SimpleQA
example

Claude 3.5 Sonnet

Gen Critic

IncorrectFalse

Refine

True

Gen Critic

CorrectFalse

Refine

False

(c) LLMSELECTOR(b) Allocating GPT-4o

The output with
nums=[2,2,3,1,1,0]
and k=3 is?

(f) LLMSELECTOR(e) Allocating Claude 3.5 Sonnet(d) A LiveCodeBench
example

[...] Italian Communist
Party lost 8 seats [...]
is consistent and
accurate. [..] is (8).

Gen 1

Gen 2

Gen 3

Debate
1

Debate
2

Debate
3

The solutions provided
by the other agents [..]
My initial response
also aligns [...]. Final
answer: (8)

[..] agents state that
the party lost 8 seats.
Final answer: (8)

8

8

8

Gen 1

Gen 2

Gen 3

Debate
1

Debate
2

Debate
3

[...] 1953 Italian
General Election, the
PCI had 143 seats [...]
1958 [...] 140 seats [...]
answer is (3).

[...] reviewing historical
data [...] lost 3 seats in
the 1958 Election.
Final Answer: (3)

[...] reviewing historical
data [...] lost 3 seats in
the 1958 Election.
Final Answer: (3)

8

3

-18

Figure 8: An Illustrative example of applying LLMSELECTOR on Multiagent-Debate on SimpleQA.
(a) the task. (b) allocating GPT-4o to all modules. GPT-4o as the generator consistently generates
the incorrect answer 8; thus, the debaters fail to identify this issue and lead to an incorrect answer. (c)
model allocation learned by LLMSELECTOR. By allocating GPT-4o, Gemini 1.5 Pro, and LLama
3.1 405B to the three generators separately, LLMSELECTOR enables a diverse set of initial answers,
and thus the debaters recognize the correct answer.

three debaters. In this case, the three generators give completely different answers: 8, 3, and -18.
Interestingly, the GPT-4o debaters reaches the consensus of 3, which is indeed the correct answer.

Another example from the LiveCodeBench dataset is shown in Figure 8(d). Here we focus on the
Self-Refine system which contains three modules (a generator, a critic, and a refiner). Recall that
allocating Claude 3.5 Sonnet to all modules is better than allocating any other fixed LLMs, as shown
in Table 3. However, this leads to an incorrect answer for this example, as shown in Figure 8(e). This
is because Claude 3.5 Sonnet as the critic mistakenly tags its initial generation as correct. On the
other hand, LLMSELECTOR learns to allocate Claude 3.5 Sonnet for the generator and the refiner,
but GPT-4o for the critic. As shown in Figure 8(f), this leads to a correct response to the task. This
is because GPT-4o is better than Claude 3.5 Sonnet as a critic for LiveCodeBench tasks.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

To sum up, LLMSELECTOR performs better than allocating any fixed models to all modules, be-
cause it identifies the strengths and weaknesses of different models across modules, and then allocate
to each module the model that best fits it.

D LIMITATIONS AND BROADER IMPACTS

LLMSELECTOR focuses on optimizing compound AI systems with a bounded number of LLM
calls, and it remains open how to select models for compound AI systems with a dynamic or unlim-
ited number of LLM calls. Based on discussions with practitioners, it is also an interesting question
to jointly optimize model selection and prompting methods.

Compound AI systems that make multiple LLM calls are a rapidly growing industry with broad
economic and societal impact. The large increase in available LLMs makes it inevitable to select
which LLMs to use for these systems. LLMSELECTOR offers an off-the-shelf framework to auto-
mate model selection in compound AI systems. This substantially relieves users from tedious and
challenging system configuration overhead. It also makes compound AI systems more accessible
to more users, especially those without professional skills and knowledge in LLMs. LLMSELEC-
TOR can optimize a compound system over any given set of LLMs, enhancing the robustness and
availability of compound AI systems—even in the face of cloud outages or individual model fail-
ures—thereby supporting more reliable AI services in critical applications. We will release the code
and data to stimulate more research and positive societal impacts.

21

	Introduction
	Related Work
	Compound AI Systems: Scopes and Examples
	The Model Selection Problem: Modeling and Optimization
	Problem Statement
	The assumptions
	The LLMSelector framework

	Experiments
	A Case Study on TableArithmetic
	Measuring Performance Improvements Quantitatively
	Understanding LLMSelector's improvements Qualitatively

	Conclusion
	Notations
	Missing Proofs
	Proof of Lemma 4.1
	Proof of Theorem 4.2

	Experiment Supplements
	Experiment Setups
	Compound AI Systems
	Datasets and Evaluation Metrics
	LLM Endpoints and Providers

	Quantitative Results
	Full Evaluations with Legacy Models
	LLM Evaluators: Prompts and Ablation Studies

	Qualitative Analyses

	Limitations and Broader Impacts

