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1 Comparisons with Prior Teleoperation Systems

In this section, we compare our system with various prior teleoperation systems, as listed in Table. 1.
We conduct our analysis from two critical perspectives of teleoperation: actuation and perception.
The specifics of these comparisons are discussed below.

Actuation. Various approaches have been studied for teleoperating robots through human commands,
including visual tracking, motion-capture devices, and joint copying through customized hardware.
While using motion-capture gloves for teleoperation seems the most intuitive, the commercially
available gloves are not only costly but also unable to provide wrist pose estimations. The joint
copying method has drawn significant attention recently, following the success of ALOHA[1]. This
method offers precise and dexterous control. Historically, this method was considered costly, requiring
using an additional pair of identical robotic arms for teleoperation; nonetheless, this issue has been
mitigated by the adoption of low-cost exoskeleton devices to transmit commands[2]. Despite their
simplicity, joint copying systems are currently limited to using grippers and have not yet been
extended to operate multi-finger hands. Conversely, visual tracking employs off-the-shelf hand pose
extractors to track finger movements, but relying solely on RGB or RGBD images can lead to noisy
and imprecise data. The recent surge in VR technology has led to the development of teleoperation
systems that utilize VR tracking. VR headset manufacturers often integrate built-in hand-tracking
algorithms that fuse data from diverse types of sensors, including multiple cameras, depth sensors,
and IMUs. Hand-tracking data collected through VR devices are generally considered more stable
and accurate than self-developed vision-tracking systems, while the latter only utilize a subset of the
mentioned sensors (RGB+RGBD[3], Depth+IMU[4], etc.).

Perception. While being the other critical component of teleoperation, perception has been consider-
ably less explored than actuation within this field. Most existing teleoperation systems require the
operators to directly observe the robot’s hands using their own eyes. While direct viewing provides
the operators with depth sensing, leveraging humans’ inherent capability for stereoscopic vision,
it restricts the system to be non-remote, necessitating the physical presence of the operator. Some
teleoperation systems circumvent this by streaming RGB images, enabling remote control[3, 5].
However, if the operator opts for remote controlling by watching an RGB stream, the benefits of depth
sensing provided by the human eye are lost. Despite being capable to provide both remote controlling
and depth sensing, these two features are mutually exclusive in these systems. OPEN TEACH[6]
merges the two in a mixed-reality fashion, yet it still requires the operator to be in proximity to
the robot, otherwise the depth sensing is unavailable. Prior to Open-TeleVision, no system offered
both remote control and depth sensing simultaneously: the operator is forced to choose between
either direct viewing, which demands physical presence, or RGB streaming, which abandons depth
information. Our system is the first to provide both functionalities within a single setup.
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Teleop System Actuation Hand Bimanual Perception Remote  Depth

OPEN TEACH]6] VR Tracking Direct View+RGB X
HATO[7] VR Tracking Direct View X
AnyTeleop[3] RGB(D) Tracking X Direct View/RGB
Telekinesis[5] RGB Tracking X Direct View/RGB
Transteleop[4] IMU+Depth X Direct View X
ALOHA[1] Joint Copy X Direct View X
AirExo[2] Joint Copy X Direct View X
GELLO[8] Joint Copy X Direct View X
Mobile ALOHA[9] Joint Copy X Direct View X
DexCap[10] SLAM+Mocap Direct View X
Open-TeleVision VR Tracking Stereo

Table 1: Comparing Open-TeleVision’s capabilities with prior teleoperation systems.

2 Discussion of Visual Occlusion

To support our proposed assumption that the unsatisfactory performance observed in GR-1 Can
Sorting task stems from visual occlusion caused by GR-1’s gripper end-effector, we performed a
controlled experiment. In the new experiment, we added color labels to the cans to mitigate the
occlusion factor, as depicted in Fig. 1 left. The other settings are identical to those described in the
GR-1 Can Sorting task in the article. Results are recorded in Table. 2.

GR-1 Can Sorting

Baselines

Pick(new) Pick(old) Place(new) Place(old)
Ours 0.97 0.87 1.00 0.60
ResNet 0.90 0.83 0.97 0.50
Mono 0.47 0.73 0.93 0.63

Table 2: Success rate for GR-1 Can Sorting, under identical settings and number of trials as outlined
in Tab. 1. Columns marked as (old) contain the original results using unlabeled cans, while the
columns marked as (new) contain the results of the new experiment using labeled cans.

The results indicate a substantial improvement in the success rate of the placing task across all three
baselines, achieved by using labeled cans. Ours reached a 100% accuracy rate in the placement,
compared to the previous 0.60; notable gains have also been observed in the other baselines, with
ResNet improving from 0.50 to 0.97, and textitMono improving from 0.63 to 0.93. On the other hand,
while success rates of picking have also increased for Ours and ResNet, Mono did not exhibit similar
improvements. This disparity further validates our claim that a successful can-picking requires spatial
information from stereo images.

As with H1 in Sec. 3.2, we performed an ex-
periment to evaluate the model’s generalization
capability with Can Sorting on GR-1 with la-
beled cans. Its results are similarly collected
from a 4x4 grid (the same as Fig. 5 left) with
each cell measuring 3 cm. Generalization results
are shown in the heatmap in Fig. | right. The
results suggest that our model can easily adapt

to most of the random locations covered in our Figure 1: Left: Figure depicting labeled cans.
experiment, reaching 100% grasping accuracy Right: number of successful pickings heatmap
in nearly all locations on the grid. The results with 5 trials at each location.

as shown here for GR-1 Can Sorting are also
notably better than the results as shown in Fig. 5 for HI Can Sorting. The difference may also be
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attributed to differences in end-effector morphologies. Grasping a soda can, which requires less
dexterity and more tolerance, is better suited to grippers than to robotic hands.

3 Dexterous Hand

For H1 robot’s setup, the anthropomorphic hands we used are provided by
Inspire Robots [11]. A close-up of one of the Inspire Hands is shown in
Fig. 2. Each hand has five fingers and 12 DoFs, among which 6 are actuated
DoFs: two actuated DoFs are on the thumb and one on each of the remaining
fingers. Each non-thumb finger possesses a single actuated revolute joint at
the metacarpophalangeal (MCP) joint, serving as the entire finger’s actuating
DoF. The proximal interphalangeal (PIP) joints of these four fingers are driven
by the MCP joints through linkage mechanisms, adding four underactuated
DoFs. The thumb is equipped with two actuated DoFs at the carpometacarpal
(CMC) joint. The thumb’s MCP and interphalangeal (IP) joints are also driven

by linkage mechanisms, contributing to additional two underactuated DoFs. i . !

4 Experimental Details and Hyperparameters Figure 2: Close-
up of the Inspire
4.1 Experimental Details Hand [11].
Tasks Average Episode Length (s) Number of Episodes
H1 Can Sorting 93+5 10
GR-1 Can Sorting 61+5 10
Can Insertion 84+7 20
Folding 4445 20
Unloading 9346 20

Table 3: Details about collected demonstration data for each task.

More experimental details are listed in Tab. 3. All tasks, with the exception of Can Sorting (both H1
Can Sorting and GR-1 Can Sorting), use 20 human demonstrations for training. In contrast, only
10 demonstrations are used for Can Sorting. This choice is primarily due to its repetitive nature:
each episode consists of 10 (6 for GR-1 Can Sorting) individual can-sortings. Consequently, 10
demonstrations encompass 100 individual sorting rollouts, providing ample data for training.

4.2 Hyperparameters

The hyperparameters employed for training the ACT [1] models are detailed in Table. 4. While the
majority of these hyperparameters are consistent across all baselines and all tasks, there are a few
exceptions, including chunk size and temporal weighting. The detailed explanations are as follows.

KL weight 10
chunk size 60
hidden dimension 512
batch size 45
feedforward dimension 3200
epochs 25000
learning rate 5e-5
temporal weighting 0.01

Table 4: Hyperparameters of ACT.
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The definition of chunk size in the action chunking operation is outlined in the original ACT paper[1].
We use a chunk size of 60 for all tasks, with the exception of Can Insertion, in which we use a chunk
size of 100. Using a chunk size of 60 in our setup effectively provides the robot with approximately
one second of memory, correlating with our inference and action frequency of 60Hz. Nonetheless,
we noticed that in Can Insertion task, using a larger chunk size, which corresponds to incorporating
more historical actions, proves to be advantageous for the model to perform correct action sequences.

The definition of temporal weighting in the temporal aggregation operation is outlined in the original
ACT paper[1], where an exponential weighting scheme w; = exp(—m * i) is employed to assign
weights to actions at different timesteps. wy is the weight for the oldest action, adhering to ACT’s
setting. m is the temporal weighting hyperparameter mentioned in Table. 4. As m decreases, greater
emphasis is placed on more recent actions, rendering the model more reactive but less steady. We
found that using a temporal weight m of 0.01 reaches a satisfactory balance between responsiveness
and stability for most tasks. However, for Unloading and Can Sorting tasks, we adjust this parameter
to cater to their specific needs. For unloading, m is set as 0.05, ensuring greater stability during
in-hand passing; for Can Sorting, m is set as 0.005, providing quicker movements.

S Additional Teleoperation Experiments

In Fig. 3, we include more teleoperation tasks that our system is capable of. The Wood-board Drilling
task shows that our system can operate heavy-weight (1kg) tools that are designed for humans, thanks
to its compatibility with dexterous hands, and can apply sufficient force to the wood board to drill it
through. Such a task is virtually impossible for the grippers. The Earplugs Packing task demonstrates
that our system is dexterous and responsive enough to perform agile bimanual arm-hand coordination.
The Pipette task demonstrates that our system is also capable of precise actions. This is also a task
that is extremely hard or impossible for the grippers to achieve, as the usage of a pipette is specialized
for anthropomorphic hands. Even though the motors on H1 humanoid robot are quasi-direct-drive
motors with planetary reducers, which are known to have gear clearance and far less accuracy and
stiffness, our system can still achieve high-precision with human operators in the loop.



Wood-board
Drilling

(a) The robot holds a wood board of thickness 2cm with the left hand and uses an electric drill to drill 2 holes on
the board. This task requires precise control of the drill trigger using the index finger. Furthermore, our system
enables fine control of the hand so that after drilling the first hole, the robot can let the board slide in hand to
leave space for the second drilling.

Earplugs
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(b) The robot picks randomly placed earplugs on the table and places them into randomly placed latch boxes.
The robot needs dexterous bimanual in-hand manipulation and adjustments to properly close the latch box.

Pipette

(c) The robot utilizes its thumb DoF to control a pipette to transfer liquid from a petri dish to a centrifuge tube.
The diameter of the tube is only 1.5¢m so it requires high precision to complete the task.

Figure 3: Additional teleoperation experiments to show our system’s reliability and precision for a
wide variety of tasks.
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