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1 Comparisons with Prior Teleoperation Systems1

In this section, we compare our system with various prior teleoperation systems, as listed in Table. 1.2

We conduct our analysis from two critical perspectives of teleoperation: actuation and perception.3

The specifics of these comparisons are discussed below.4

Actuation. Various approaches have been studied for teleoperating robots through human commands,5

including visual tracking, motion-capture devices, and joint copying through customized hardware.6

While using motion-capture gloves for teleoperation seems the most intuitive, the commercially7

available gloves are not only costly but also unable to provide wrist pose estimations. The joint8

copying method has drawn significant attention recently, following the success of ALOHA[1]. This9

method offers precise and dexterous control. Historically, this method was considered costly, requiring10

using an additional pair of identical robotic arms for teleoperation; nonetheless, this issue has been11

mitigated by the adoption of low-cost exoskeleton devices to transmit commands[2]. Despite their12

simplicity, joint copying systems are currently limited to using grippers and have not yet been13

extended to operate multi-finger hands. Conversely, visual tracking employs off-the-shelf hand pose14

extractors to track finger movements, but relying solely on RGB or RGBD images can lead to noisy15

and imprecise data. The recent surge in VR technology has led to the development of teleoperation16

systems that utilize VR tracking. VR headset manufacturers often integrate built-in hand-tracking17

algorithms that fuse data from diverse types of sensors, including multiple cameras, depth sensors,18

and IMUs. Hand-tracking data collected through VR devices are generally considered more stable19

and accurate than self-developed vision-tracking systems, while the latter only utilize a subset of the20

mentioned sensors (RGB+RGBD[3], Depth+IMU[4], etc.).21

Perception. While being the other critical component of teleoperation, perception has been consider-22

ably less explored than actuation within this field. Most existing teleoperation systems require the23

operators to directly observe the robot’s hands using their own eyes. While direct viewing provides24

the operators with depth sensing, leveraging humans’ inherent capability for stereoscopic vision,25

it restricts the system to be non-remote, necessitating the physical presence of the operator. Some26

teleoperation systems circumvent this by streaming RGB images, enabling remote control[3, 5].27

However, if the operator opts for remote controlling by watching an RGB stream, the benefits of depth28

sensing provided by the human eye are lost. Despite being capable to provide both remote controlling29

and depth sensing, these two features are mutually exclusive in these systems. OPEN TEACH[6]30

merges the two in a mixed-reality fashion, yet it still requires the operator to be in proximity to31

the robot, otherwise the depth sensing is unavailable. Prior to Open-TeleVision, no system offered32

both remote control and depth sensing simultaneously: the operator is forced to choose between33

either direct viewing, which demands physical presence, or RGB streaming, which abandons depth34

information. Our system is the first to provide both functionalities within a single setup.35
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Teleop System Actuation Hand Bimanual Perception Remote Depth

OPEN TEACH[6] VR Tracking ✓ ✓ Direct View+RGB ✗ ✓
HATO[7] VR Tracking ✓ ✓ Direct View ✗ ✓
AnyTeleop[3] RGB(D) Tracking ✓ ✗ Direct View/RGB ✓ ✓
Telekinesis[5] RGB Tracking ✓ ✗ Direct View/RGB ✓ ✓
Transteleop[4] IMU+Depth ✓ ✗ Direct View ✗ ✓
ALOHA[1] Joint Copy ✗ ✓ Direct View ✗ ✓
AirExo[2] Joint Copy ✗ ✓ Direct View ✗ ✓
GELLO[8] Joint Copy ✗ ✓ Direct View ✗ ✓
Mobile ALOHA[9] Joint Copy ✗ ✓ Direct View ✗ ✓
DexCap[10] SLAM+Mocap ✓ ✓ Direct View ✗ ✓

Open-TeleVision VR Tracking ✓ ✓ Stereo ✓ ✓

Table 1: Comparing Open-TeleVision’s capabilities with prior teleoperation systems.

2 Discussion of Visual Occlusion36

To support our proposed assumption that the unsatisfactory performance observed in GR-1 Can37

Sorting task stems from visual occlusion caused by GR-1’s gripper end-effector, we performed a38

controlled experiment. In the new experiment, we added color labels to the cans to mitigate the39

occlusion factor, as depicted in Fig. 1 left. The other settings are identical to those described in the40

GR-1 Can Sorting task in the article. Results are recorded in Table. 2.41

Baselines GR-1 Can Sorting

Pick(new) Pick(old) Place(new) Place(old)

Ours 0.97 0.87 1.00 0.60
ResNet 0.90 0.83 0.97 0.50
Mono 0.47 0.73 0.93 0.63

Table 2: Success rate for GR-1 Can Sorting, under identical settings and number of trials as outlined
in Tab. 1. Columns marked as (old) contain the original results using unlabeled cans, while the
columns marked as (new) contain the results of the new experiment using labeled cans.
The results indicate a substantial improvement in the success rate of the placing task across all three42

baselines, achieved by using labeled cans. Ours reached a 100% accuracy rate in the placement,43

compared to the previous 0.60; notable gains have also been observed in the other baselines, with44

ResNet improving from 0.50 to 0.97, and textitMono improving from 0.63 to 0.93. On the other hand,45

while success rates of picking have also increased for Ours and ResNet, Mono did not exhibit similar46

improvements. This disparity further validates our claim that a successful can-picking requires spatial47

information from stereo images.48

Figure 1: Left: Figure depicting labeled cans.
Right: number of successful pickings heatmap
with 5 trials at each location.

As with H1 in Sec. 3.2, we performed an ex-49

periment to evaluate the model’s generalization50

capability with Can Sorting on GR-1 with la-51

beled cans. Its results are similarly collected52

from a 4x4 grid (the same as Fig. 5 left) with53

each cell measuring 3 cm. Generalization results54

are shown in the heatmap in Fig. 1 right. The55

results suggest that our model can easily adapt56

to most of the random locations covered in our57

experiment, reaching 100% grasping accuracy58

in nearly all locations on the grid. The results59

as shown here for GR-1 Can Sorting are also60

notably better than the results as shown in Fig. 5 for H1 Can Sorting. The difference may also be61
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attributed to differences in end-effector morphologies. Grasping a soda can, which requires less62

dexterity and more tolerance, is better suited to grippers than to robotic hands.63

3 Dexterous Hand64

Figure 2: Close-
up of the Inspire
Hand [11].

For H1 robot’s setup, the anthropomorphic hands we used are provided by65

Inspire Robots [11]. A close-up of one of the Inspire Hands is shown in66

Fig. 2. Each hand has five fingers and 12 DoFs, among which 6 are actuated67

DoFs: two actuated DoFs are on the thumb and one on each of the remaining68

fingers. Each non-thumb finger possesses a single actuated revolute joint at69

the metacarpophalangeal (MCP) joint, serving as the entire finger’s actuating70

DoF. The proximal interphalangeal (PIP) joints of these four fingers are driven71

by the MCP joints through linkage mechanisms, adding four underactuated72

DoFs. The thumb is equipped with two actuated DoFs at the carpometacarpal73

(CMC) joint. The thumb’s MCP and interphalangeal (IP) joints are also driven74

by linkage mechanisms, contributing to additional two underactuated DoFs.75

4 Experimental Details and Hyperparameters76

4.1 Experimental Details77

Tasks Average Episode Length (s) Number of Episodes

H1 Can Sorting 93±5 10
GR-1 Can Sorting 61±5 10

Can Insertion 84±7 20
Folding 44±5 20

Unloading 93±6 20

Table 3: Details about collected demonstration data for each task.

More experimental details are listed in Tab. 3. All tasks, with the exception of Can Sorting (both H178

Can Sorting and GR-1 Can Sorting), use 20 human demonstrations for training. In contrast, only79

10 demonstrations are used for Can Sorting. This choice is primarily due to its repetitive nature:80

each episode consists of 10 (6 for GR-1 Can Sorting) individual can-sortings. Consequently, 1081

demonstrations encompass 100 individual sorting rollouts, providing ample data for training.82

4.2 Hyperparameters83

The hyperparameters employed for training the ACT [1] models are detailed in Table. 4. While the84

majority of these hyperparameters are consistent across all baselines and all tasks, there are a few85

exceptions, including chunk size and temporal weighting. The detailed explanations are as follows.86

KL weight 10
chunk size 60
hidden dimension 512
batch size 45
feedforward dimension 3200
epochs 25000
learning rate 5e-5
temporal weighting 0.01

Table 4: Hyperparameters of ACT.
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The definition of chunk size in the action chunking operation is outlined in the original ACT paper[1].87

We use a chunk size of 60 for all tasks, with the exception of Can Insertion, in which we use a chunk88

size of 100. Using a chunk size of 60 in our setup effectively provides the robot with approximately89

one second of memory, correlating with our inference and action frequency of 60Hz. Nonetheless,90

we noticed that in Can Insertion task, using a larger chunk size, which corresponds to incorporating91

more historical actions, proves to be advantageous for the model to perform correct action sequences.92

The definition of temporal weighting in the temporal aggregation operation is outlined in the original93

ACT paper[1], where an exponential weighting scheme wi = exp(−m ∗ i) is employed to assign94

weights to actions at different timesteps. w0 is the weight for the oldest action, adhering to ACT’s95

setting. m is the temporal weighting hyperparameter mentioned in Table. 4. As m decreases, greater96

emphasis is placed on more recent actions, rendering the model more reactive but less steady. We97

found that using a temporal weight m of 0.01 reaches a satisfactory balance between responsiveness98

and stability for most tasks. However, for Unloading and Can Sorting tasks, we adjust this parameter99

to cater to their specific needs. For unloading, m is set as 0.05, ensuring greater stability during100

in-hand passing; for Can Sorting, m is set as 0.005, providing quicker movements.101

5 Additional Teleoperation Experiments102

In Fig. 3, we include more teleoperation tasks that our system is capable of. The Wood-board Drilling103

task shows that our system can operate heavy-weight (1kg) tools that are designed for humans, thanks104

to its compatibility with dexterous hands, and can apply sufficient force to the wood board to drill it105

through. Such a task is virtually impossible for the grippers. The Earplugs Packing task demonstrates106

that our system is dexterous and responsive enough to perform agile bimanual arm-hand coordination.107

The Pipette task demonstrates that our system is also capable of precise actions. This is also a task108

that is extremely hard or impossible for the grippers to achieve, as the usage of a pipette is specialized109

for anthropomorphic hands. Even though the motors on H1 humanoid robot are quasi-direct-drive110

motors with planetary reducers, which are known to have gear clearance and far less accuracy and111

stiffness, our system can still achieve high-precision with human operators in the loop.112

4



(a) The robot holds a wood board of thickness 2cm with the left hand and uses an electric drill to drill 2 holes on
the board. This task requires precise control of the drill trigger using the index finger. Furthermore, our system
enables fine control of the hand so that after drilling the first hole, the robot can let the board slide in hand to
leave space for the second drilling.

(b) The robot picks randomly placed earplugs on the table and places them into randomly placed latch boxes.
The robot needs dexterous bimanual in-hand manipulation and adjustments to properly close the latch box.

(c) The robot utilizes its thumb DoF to control a pipette to transfer liquid from a petri dish to a centrifuge tube.
The diameter of the tube is only 1.5cm so it requires high precision to complete the task.

Figure 3: Additional teleoperation experiments to show our system’s reliability and precision for a
wide variety of tasks.
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