
Graph Machine Learning for Assembly Modeling

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

Assembly modeling refers to the design engineering process of composing assem-2

blies (e.g., machines or machine components) from a common catalog of existing3

parts. There is a natural correspondence of assemblies to graphs which can be4

exploited for services based on graph machine learning such as part recommenda-5

tion, clustering/taxonomy creation, or anomaly detection. However, this domain6

imposes particular challenges such as the treatment of unknown or new parts,7

ambiguously extracted edges, incomplete information about the design sequence,8

interaction with design engineers as users, to name a few. Along with open research9

questions, we present a novel data set.10

1 Assembly Modeling11

Assemblies are groups of parts that make up a product (see Figure 1). In computer-aided design12

(CAD), assembly modeling refers to designing a new product based on existing parts – think of a13

cabinet that consists of screws, doors and hinges, or a bike that consists of a frame, wheels, etc [1].14

The connection type (e.g., welding or fastening using bolts) may contain geometric information or15

constraints that are also part of the assembly model. By its very nature, assembly modeling gives16

rise to a number of interesting novel applications for graph machine learning. Note that assembly17

modeling in this paper refers to the act of (iteratively) designing a new product using the same library18

of existing parts whereas other lines of work emphasize the computer vision perspective of perceiving19

physical parts (e.g. [2]) or the 3D perspective of constraining pairs of parts according to their position20

and relative movement (e.g., [3]) – also using geometric deep learning. Our goal is to support design21

engineers, e.g., by suggesting next parts to insert or categorizing the existing parts by their usage.22

Some challenges that manufacturing companies face are:23

• Assemblies similar to existing ones frequently need to be designed and adjusted – in accordance24

to customer specifications (e.g., in special mechanical engineering).25

• Knowledge about proven part combinations (e.g., particular hinges and doors, screws and26

bolts, . . .) is available to senior design engineers and may follow a desirable part management27

but not made explicit and enforced in CAD software.28

• Assembly models are produced in an arbitrary sequence which depends on the designer’s29

individual preferences (e.g., start working on the front or back wheel of a bicycle is arbitrary);30

moreover, this insertion ordering is not stored in the final design by common CAD tools.31

• Extracting a useful graph structure from CAD assembly models to begin with is not obvious.32

Although design engineers can define so-called “mates” relations between parts in a design33

to, e.g., define the rotation of a hinge, they are sometimes used for convenience in the CAD34

tool (cf. grouping elements) instead of actually denoting a physical connection or meaningful35

co-occurrence that could be reused.36

In this extended abstract, we highlight opportunities for the graph machine learning community to37

work on CAD assembly modeling as a novel application along with an accompanying assembly38

data set [4]. Due to the symmetry properties in the data, graph ML is particularly suitable: as the39

CAD parts have no inherent order and their insertion sequence is not given, permutation invariance is40

crucial e.g., for part recommendation.41

Submitted to the First Learning on Graphs Conference (LoG 2022). Do not distribute.

Graph Machine Learning for Assembly Modeling

Figure 1: Assembly models (here, a jaw of a gripper) contain the structure of the included parts.
Multiple instances of the same part type (here, A, B, C, D) may occur multiple times.

Formally, in our problem setting we assume a set of part types P (e.g., a particular type of screw,42

hinge, etc.) serving as vocabulary on which a data set of N assemblies {Ai}Ni=1 is based. An43

assembly Ai specifies its containing parts (multiple instances of the same type are possible) as nodes44

NAi , and information about connected parts as edges EAi ⊆ NAi ×NAi . Each part p ∈ NAi is an45

instance of a part type, referred to as T (p) ∈ P . Consequently, each assembly is represented as an46

undirected, unweighted graph where the nodes are heterogeneous (different part types) and the edges47

are homogeneous (only one type of edges – expressing connectivity in a design – is allowed). The48

parts can be represented by an one-hot encoding or pretrained embeddings which may get extended49

in the future by additional features denoting geometric information, their material (steel, aluminium,50

or plastics), or properties of the parts such as conductivity or temperature resistance.51

2 Graph ML Use Cases in Assembly Modeling52

Given a data collection of assemblies as described, there are several application scenarios for graph53

machine learning. With respect to the distinction into structural (graph structure is explicit as in54

molecule generation) and non-structural scenarios (graphs are implicit and derived from text or55

images) given in [5], the proposed applications fall into a “semi-structural” category. The extraction56

of edges is a vital challenge of this application scenario as some CAD mates can be extracted57

canonically whereas others may have been defined by designers out of convenience with no actual58

meaning, so that some edges may need to be extracted from, e.g., geometric proximity.59

2.1 Part Recommendation60

In assembly modeling, design engineers can choose from a variety of existing parts, making selecting61

the right ones a cumbersome task. Past assemblies contain information both on the collection of62

used parts and on their combination to solve a specific task. We assume that parts which are used63

together frequently are causally related and, therefore, parts that are likely to be inserted can be64

predicted using graph machine learning. In previous work [6], recommending next required parts65

during construction based on GNNs has already been investigated showing promising results – i.e.,66

learning P (P | At
i) where At

i refers to the state of an assembly at time step t. For the gripper jaw67

illustrated in Figure 1, next needed parts could be a handle and a screw to continue the construction68

of the entire gripper. Formulated as a graph classification problem where each class corresponds to a69

part type, the top-k rate may be used as performance metric.70

However, the presented approach does not incorporate where to assemble the recommended part to71

the partial design. This may be acceptable for small assemblies, but becomes unwieldy for large72

assemblies with plenty of possible extension nodes. A natural next step is to predict applicable parts73

for every already added part of the assembly – i.e., learning P (P | c ∈ At
i) to localize the part74

recommendation within an assembly. Due to this autoregressive nature of part recommendation, it75

bears similarity to graph generation although the focus is on incremental steps with user interaction as76

opposed to learning an assembly distribution P (A) all at once, as will be discussed in Section 3. Since77

the main goal of part recommendation is to provide a design engineer with a small set of relevant78

parts to reduce the cognitive burden, approaches using conformal prediction [7] could prove useful.79

2

Graph Machine Learning for Assembly Modeling

2.2 Anomaly Detection of Mismatching Parts80

A second (unsupervised) use case consists of detecting anomalies in assembly models such as an81

unexpected choice of particular part types (e.g., screws from a different manufacturer) or rarely used82

substructures that could hint at an unconventional way of solving a design task. From a business83

perspective, companies might limit their procurement to a set of well-known part types (better84

contracts with manufacturers, more reliable during the product life-cycle) within their strategic part85

management. Anomalous assembly models might emerge, e.g., from starting a new model based86

on a much earlier project with some part types having become obsolete or simply a lack of experi-87

ence/knowledge on behalf of the design engineer. From a graph ML perspective, both identifying88

anomalous graphs in a database as well as identifying anomalous graph objects (nodes, edges such89

as, e.g., unexpected part types for the screws in the gripper in fig. 1) needs to be addressed [8], in90

particular to show to design engineers or procurers where and how the assembly is deviating.91

2.3 Creating a Taxonomy of Parts92

Third, using node embeddings hp of the parts {p ∈ Ai}Ni=1 such as node2vec [9], DeepWalk [10], or93

comp2vec [6] for visualization and clustering could aid companies as well in their part management.94

The availability of well-curated, hierarchical taxonomies of part types depends on the level of maturity95

of a company and traditionally requires significant manual effort. A data-driven solution that exploits96

usage patterns in assembly models could organize a company’s frequently used part types better.97

There has been an interest in making these embeddings (or latent representations) of nodes more98

interpretable to humans [11] which is what needs to be done for this task. However, the graphs99

retrieved from assemblies do not show homophily – two parts that are connected are most likely not100

similar but rather complementary (e.g., door and hinge) – which is an underlying assumption of many101

existing node embedding techniques. Here, synonymity in terms of usage (on which comp2vec is102

based) tends to be a better replacement, i.e., parts are similar if they can be used in the same contexts.103

3 Related Work104

The task of part recommendation bears some similarities to graph generation, i.e., approximating105

Pdata(G) with a parametrizable Pmodel(G | θ). The graph can be generated either all at once, for106

example using variational autoencoders or generative adversarial networks, or incrementally by so-107

called autoregressive models that predict single or multiple nodes or edges step by step – conditioned108

on an intermediate state of the graph. Since our goal is to support design engineers by presenting109

suggestions instead of taking over the whole task, we go with the second approach. During CAD110

modeling, we want to allow changes on the partial assembly by designers. Therefore, we need a model111

that can generate arbitrarily large graphs which is typically not the case for non-incremental models.112

Generating graphs with matching structural characteristics to the training data along with handling113

only one node type (i.e., |P| = 1) as done using recurrent neural networks in GRAN [12] or114

GraphRNN [13] is not sufficient for our use case: the relevant information for predicting next needed115

parts lies both in the already used parts, i.e., the node features, and the structure of the graph. The116

focus is mainly on the type of part that should be added and only secondarily where to insert it into the117

existing graph. Since these approaches only evaluate the final graph structure (in particular, in terms118

of aggregated graph statistics such as degree distributions) without incorporating its intermediate119

states, canonical numbering of nodes can be performed for generating training instances, keeping120

their number small as no node permutations need to be considered. Common choices for GRAN or121

GraphRNN are breadth-first or depth-first traversals starting from the most connected node or random122

orderings. For assemblies, however, designers can start with any part or subgraph, followed by a123

generation sequence depending on the designer’s preferences. Therefore, the authors in [6] create124

instances for every possible creation sequence of an assembly by iteratively cutting off nodes that125

serve as labels for the resulting partial assemblies. Unlike [14], in these approaches newly added nodes126

are always connected to the previous graph structure, which we want to enforce during construction.127

Molecule graph generation refers to generating valid molecules with desired chemical properties,128

incorporating various types of nodes (i.e. different atoms) and even various types of connections129

(which is not necessary for using the current representation of assemblies). While guaranteeing130

the validity of the generated graph (like in [15] concerning the chemical structure of the generated131

molecule) may be assumed to be an important aspect for assembly modeling as well, this check-up132

3

Graph Machine Learning for Assembly Modeling

turns out be not this obvious as the number of connection points of an part is typically not available133

or misleading since design engineers may adapt their geometry, e.g., by drilling holes, in order to134

assemble additional parts. However, this application domain seems to be the most similar to assembly135

modeling in terms of data representation. Nevertheless, again only the final generated graphs are136

relevant for evaluating the molecule generation model – as expounded above, also the intermediate137

steps matter for part recommendation.138

4 Open Questions139

The domain of assembly modeling imposes particular challenges that can stipulate further research in140

graph machine learning as described in detail in the following.141

How to deal with evolving data sets? Over time, the part catalogs may get updated as well as142

new catalogs and part types may be incorporated to a company’s part library. In particular at test143

time, we might be confronted with part types in assemblies that were not available during training.144

This setting confronts us with so-called attribute-missing graphs where all attributes of a subset of145

nodes are missing, opposed to attribute-incomplete graphs [16] that are composed of nodes all with146

non-empty attribute sets, typically treated by value imputation techniques either in a preprocessing147

step (e.g., [17] or [18]), or during processing the graph in the model (e.g., [19] or [20]). Methods148

based on the homophily assumption are not applicable since the assumption of connected nodes been149

similar is clearly violated in the assembly modeling use cases as connected parts typically serve150

different purposes. Initial work has been done on handling attribute-missing graphs, e.g., [16] that151

make a shared-latent space assumption on graphs resulting in a new form of GNN called SAT – its152

applicability on assembly modeling needs to be investigated.153

How to handle ambiguous edges? As introduced in Section 1, extracting a graph structure from an154

assembly model is an ambiguous task as only some mating relations may be given in the CAD system155

– some of them even serving other purposes than denoting meaningful connections (e.g., to simply156

support the designer’s workflow). Consequently, extracting a graph structure from an assembly is157

not straightforward and when based on geometric proximity of parts an computational expensive158

approach. Even in a perfect world, where all parts are connected by mates in a meaningful way, this159

graph structure may be insufficient for the learning task (as mentioned in [21] and [22]) because160

parts that are far away from each other according the graph structure may have a certain relationship161

which is relevant for recommending next parts. Graph rewiring may be a promising solution for this162

issue, transforming the initial graph structure by adding and removing edges to improve information163

processing. Moreover, due to the novelty of the application domain, it is unclear whether a graph164

structure is really helpful for solving assembly modeling tasks, possibly a set-based approach could165

perform as well – this can also be investigated using graph machine learning.166

How to improve intuitive sequence generation and interactive inference? Especially for part167

recommendation, the proposed sequence of part insertions needs to be intuitive in the eye of the168

designers that interact with the assembly modeling tool. There is not an obvious way to extract a169

sequence from a data set of graphs – as is done in generative graph models such as GraphRNN or170

GRAN. Either all possible insertion sequences (that leave the assembly connected) or a sample thereof171

need to be considered – as done in [6] – or the data sets need to be augmented with insertion sequences.172

Finally, we encourage readers to investigate the data set [4] and identify similarities with their173

preferred data sets or applicability of their methods that can address the above challenges. It contains174

graph-based pseudonymized real-world assemblies (cf. Figure 1) and prepared samples for part175

recommendation consisting of partial assemblies and next needed parts, allowing to perform all176

presented use cases.177

References178

[1] Stephen J Schoonmaker. The CAD guidebook: A basic manual for understanding and improving179

computer-aided design. CRC Press, 2002. 1180

[2] Guanqi Zhan, Qingnan Fan, Kaichun Mo, Lin Shao, Baoquan Chen, Leonidas J Guibas, Hao181

Dong, et al. Generative 3d part assembly via dynamic graph learning. Advances in Neural182

Information Processing Systems, 33:6315–6326, 2020. 1183

4

Graph Machine Learning for Assembly Modeling

[3] Benjamin Jones, Dalton Hildreth, Duowen Chen, Ilya Baran, Vladimir G. Kim, and Adriana184

Schulz. AutoMate: A Dataset and Learning Approach for Automatic Mating of CAD Assem-185

blies. ACM Trans. Graph., 40(6), dec 2021. ISSN 0730-0301. doi: 10.1145/3478513.3480562.186

URL https://doi.org/10.1145/3478513.3480562. 1187

[4] Carola Gajek. ECML22 GRAPE Data. 7 2022. doi: 10.6084/m9.figshare.20239767.v1. URL188

https://figshare.com/articles/dataset/ECML22_GRAPE_Data/20239767. 1, 4189

[5] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng190

Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and191

applications. AI Open, 1:57–81, 2020. ISSN 2666-6510. doi: https://doi.org/10.1016/j.aiopen.192

2021.01.001. 2193

[6] Carola Gajek, Alexander Schiendorfer, and Wolfgang Reif. A Recommendation System for194

CAD Assembly Modeling based on GNNs. In Joint European Conference on Machine Learning195

and Knowledge Discovery in Databases. Springer, 2022. 2, 3, 4196

[7] Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Machine197

Learning Research, 9(3), 2008. 2198

[8] Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z Sheng, Hui Xiong, and199

Leman Akoglu. A comprehensive survey on graph anomaly detection with deep learning. IEEE200

Transactions on Knowledge and Data Engineering, 2021. 3201

[9] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In202

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and203

data mining, pages 855–864, 2016. 3204

[10] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-205

sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge206

discovery and data mining, pages 701–710, 2014. 3207

[11] Ayushi Dalmia and Manish Gupta. Towards interpretation of node embeddings. In Companion208

Proceedings of the The Web Conference 2018, pages 945–952, 2018. 3209

[12] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, William L. Hamilton, David Duvenaud,210

Raquel Urtasun, and Richard Zemel. Efficient Graph Generation with Graph Recurrent Attention211

Networks. Curran Associates Inc., Red Hook, NY, USA, 2019. 3212

[13] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN:213

Generating realistic graphs with deep auto-regressive models. In Jennifer Dy and Andreas214

Krause, editors, Proceedings of the 35th International Conference on Machine Learning,215

volume 80 of Proceedings of Machine Learning Research, pages 5708–5717. PMLR, 10–15 Jul216

2018. 3217

[14] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning Deep218

Generative Models of Graphs, 2018. 3219

[15] Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf:220

a flow-based autoregressive model for molecular graph generation. 2020. doi: 10.48550/ARXIV.221

2001.09382. 3222

[16] Xu Chen, Siheng Chen, Jiangchao Yao, Huangjie Zheng, Ya Zhang, and Ivor W. Tsang. Learning223

on attribute-missing graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,224

44(2):740–757, 2022. doi: 10.1109/TPAMI.2020.3032189. 4225

[17] Joonyoung Yi, Juhyuk Lee, Kwang Joon Kim, Sung Ju Hwang, and Eunho Yang. Why not to226

use zero imputation? correcting sparsity bias in training neural networks. In 8th International227

Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.228

OpenReview.net, 2020. 4229

[18] Indro Spinelli, Simone Scardapane, and Aurelio Uncini. Missing data imputation with230

adversarially-trained graph convolutional networks. Neural Networks, 129:249–260, 2020.231

ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2020.06.005. 4232

[19] Hibiki Taguchi, Xin Liu, and Tsuyoshi Murata. Graph convolutional networks for graphs233

containing missing features. Future Generation Computer Systems, 117:155–168, 2021. ISSN234

0167-739X. doi: https://doi.org/10.1016/j.future.2020.11.016. 4235

5

https://doi.org/10.1145/3478513.3480562
https://figshare.com/articles/dataset/ECML22_GRAPE_Data/20239767

Graph Machine Learning for Assembly Modeling

[20] Jiaxuan You, Xiaobai Ma, Yi Ding, Mykel J Kochenderfer, and Jure Leskovec. Handling236

missing data with graph representation learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.237

Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,238

pages 19075–19087. Curran Associates, Inc., 2020. 4239

[21] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical240

implications, 2020. 4241

[22] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and242

Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.243

ArXiv, abs/2111.14522, 2022. 4244

6

	1 Assembly Modeling
	2 Graph ML Use Cases in Assembly Modeling
	2.1 Part Recommendation
	2.2 Anomaly Detection of Mismatching Parts
	2.3 Creating a Taxonomy of Parts

	3 Related Work
	4 Open Questions

