Explanation-based Data Augmentation for Image
Classification - Supplementary

Sandareka Wickramanayake Mong Li Lee = Wynne Hsu
School of Computing
National University of Singapore
{sandaw, leeml, whsu}@comp.nus.edu.sg

1 Links and Licences of Datasets Used

All the datasets used in our paper are publicly available and are to be used for research purposes.
To the best of our knowledge, they do not have any personally identifiable information or offensive
content. Table[T] gives the download links and licenses of these datasets.

Table 1: Download links and licences of Datasets.
Dataset Download Link and License
Caltech UCSD Birds (CUB) (I) |http://www.vision.caltech.edu/visipedia/CUB-200-2011.html|
Use is restricted to non-commercial research and educational purposes

CUB-Families (2)) https://github.com/HCPLab-SYSU/HS
Use is restricted to non-commercial research and educational purposes
Tiny ImageNet http://cs231n.stanford.edu/tiny-imagenet-200.zip

Use is restricted to non-commercial research and educational purposes

We use the samples collected in (3)) as the image repository for CUB and CUB-Families. The image set
collected in (3)) can be downloaded at https://wsnfg-sh.oss-cn-shanghai.aliyuncs.com/
web-bird.tar.gz. This image set is noisy and includes out-of-distribution samples. Sample images
are shown in FigurdT]

Cardinal

Cerulean
Warbler

Least Auklet

Figure 1: Samples images for three classes of CUB dataset collected in (3)).

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
https://github.com/HCPLab-SYSU/HS
http://cs231n.stanford.edu/tiny-imagenet-200.zip
https://wsnfg-sh.oss-cn-shanghai.aliyuncs.com/web-bird.tar.gz
https://wsnfg-sh.oss-cn-shanghai.aliyuncs.com/web-bird.tar.gz

Since (3) does not collect samples for Tiny ImageNet, we use the Flickr image hosting service via
the Flicker API to obtain 250 new samples per class using the class name as the search query. Note
that when collecting new images for Tiny ImageNet using Ficklr API, we set the API parameters
different from those used in (4) to ensure there is no overlap between the images we collect and
ImageNet-V2. The collected image set can be downloaded at https://bit.1ly/3pkd4BE. Sample
images are shown in Figurd?]

Abacus

Arabian Camel

Wooden Spoon

Figure 2: Samples images for three classes of Tiny-ImageNet dataset collected using Flickr API.

These newly collected sample sets sometimes include duplicate samples or samples very similar to
the ones in the original training dataset. Adding such samples does not contribute to improve the
classification accuracy. Hence, before selecting the samples to be added, we remove the duplicates
or samples very similar to existing training data. We consider two images are similar if the cosine
similarity between them is greater than 0.99.

2 Implementation Details

All the codes are implemented using PyTorch, and the experiments are run on NVIDIA Tesla V100
GPUs. We use publicly available source code of Snap-mix (5), WS-DAN (6), and Metaset-based (7)
to obtain results for the respective methods. For Cut-mix, we use the source code provided in the
SnapMix repository. We use code provided by (8) for the experiments of Core-set and L-loss
methods.

We utilize ResNet-34, ResNet-101 (9) and DenseNet(10) pre-trained on ImageNet(11) and fine-tune
them using the standard SGD (12) with the momentum of 0.9, weight decay of 5¢~4. We set the initial
learning rate to le~4 for the training with original data and 1e~5 for the training after augmenting
the dataset with BRACE. Subsequently, the learning rate is decayed with a cosine annealing (13).
We train the models for 50 epochs. The batch size is set as 16 for CUB and CUB-Families and
72 for Tiny-ImageNet. The same setting is used for training models on the datasets augmented
with Random and Confidence selection methods. For other data augmentation methods, the default
hyper-parameters given in the official source code were used. The meta dataset in Metaset-based (7))
was set to the original training dataset.

The number of samples added to each class c is based on the ratio of misclassifications .. We set
max_iterations = 5. Since CCNN requires an indicator vector per image for training, we extract
398 and 378 word phrases from the image descriptions of CUB and CUB-Families, respectively,
to construct these vectors depicting the concepts present in each image. The union of the indicator
vectors in the same class are called the class indicator vectors. For each dataset, we set the number of
nodes in the concept layer to be the same as the number of extracted word phrases and train CCNN
using the same hyper-parameters settings in (14): select the top 20 phrases based on tf-idf scores
as concepts for each class and set A = 0.4, = 1, = 0.5 and the joint embedding space to 24.

https://bit.ly/3pkd4BE

For new samples without image descriptions, we use the corresponding class indicator vector as the
indicator vectors.

The number of images added by each method for each dataset is shown in Table 2]

Table 2: Number of images added by each method for different datasets.

Method CUB CUB-Families Tiny ImageNet
Metaset-based 18000 18000 30000
Random 7000 2000 13000
Confidence 7000 2000 13000
Core-set 7000 2000 13000
LLoss 7000 2000 13000
BRACE 7000 2000 13000

3 Mean and Standard Deviation of Experiment Results

Table 3] shows the mean and standard deviation of classification accuracy for the black-box classifier
using ResNet-34 architecture over three runs on CUB, CUB-Families, and Tiny ImageNet.

Table 3: Performance of ResNet-34 black-box classifier with GradCAM. Mean and standard deviation
over three runs.

Method CUB CUB-Families Tiny ImageNet
Original Training Dataset ~ 85.5+0.04 82.6+£0.24 76.14+0.08
Cut-mix 85.74+0.30 85.94+0.45 77.0+£0.00
Snap-mix 87.1£0.30 86.3£0.31 77.5£0.60
WS-DAN 87.2+0.06 83.5+£0.61 76.61+0.64
Metaset-based 86.81+0.32 89.3+0.20 73.1+0.16
BRACE 87.74+0.20 90.01-0.40 78.3+0.00

Table 4] shows the mean and standard deviation of classification accuracy for the fully interpretable
CCNN on the ResNet-34 architecture over three runs on CUB and CUB-Families.

Table 4: Performance of fully interpretable CCNN classifier based on ResNet-34. Mean and standard
deviation over three trials.

Method CUB CUB-Families
Original Training Dataset =~ 84.310.14 83.8£0.13
Cut-mix 80.6+£0.72 79.0+1.23
Snap-mix 82.440.34 79.9£1.25
BRACE 86.1+0.23 88.71-0.06

Table [5] shows the the mean and standard deviation of classification accuracy of the variants of
BRACE with CCNN over three runs on CUB and CUB-Families datasets.

Table 5: Results of ablation study. Mean and standard deviation over three runs.

CUB CUB-Families
Method
Densel61 Res101 Densel61 Res101
CCNN 84.840.33 86.64+0.09 | 85.8+0.13 85.7+0.09

BRACE™® 85.9+0.25 87.140.31 | 91.240.17 91.4+0.19
BRACE™? 86.3+0.41 87.6+0.49 | 91.340.26 91.6+0.10
BRACE 86.8+0.49 88.4+0.08 | 91.9+0.20 92.240.05

4 Paired T-test on the Experimental results

We conducted a paired t-test on classification accuracy achieved by BRACE and each baseline method
for different datasets when post-hoc explanations are used and when explanations from CCNN are

used. The null hypothesis is that BRACE and a given baseline method have the identical average
classification accuracy for the given dataset. Results are shown in Tablg6|and Tabld7] We observe
that p-value is consistently below 0.05 except for one case (comparison with WS-DAN on CUB)
indicating that accuracy improvement achieved by BRACE is statistically significant.

Table 6: P-values of the paired t-test on the results when post-hoc explanations are used.

Method CUB CUB-Families Tiny ImageNet
Original Training Dataset 0.008 0.002 0.0004
Cut-mix 0.015 0.008 0.0007
Snap-mix 0.043 0.001 0.041
WS-DAN 0.079 0.002 0.039
Metaset-based 0.044 0.027 0.0007

Table 7: P-values of the paired t-test on the results explanations from CCNN are used.

Method CUB CUB-Families
Original Training Dataset 0.0007 0.001
Cut-mix 0.006 0.0005
Snap-mix 0.004 0.002

5 Classification Accuracy Comparison with State-of-the-art Methods on CUB
Dataset

In this section, we compare performance of BRACE and state-of-the-art methods on CUB dataset.
For a fair comparison we consider the state-of-the-art methods that use ResNet-101 as their backbone.
Table[8]shows the performance comparison for black-box classifiers and Table[9shows the comparison
for fully interpretable classifiers. We observe that BRACE outperforms the existing techniques in
both black-box as well as fully interpretable classification scenarios.

Table 8: Comparison of classification accuracy with the state-of-the-art black-box classifiers on CUB
dataset.

Model Accuracy
MAMC (15) 86.5
DBT-Net (16) 88.1
Cut-mix (17) 87.9

API-Net (18) 88.6
Snap-mix (3)) 88.7
BRACE 89.2

Table 9: Comparison of classification accuracy with the state-of-the-art fully interpretable classifiers
on CUB dataset.

Model Accuracy
CAM (19) 85.7
ProtoPNet (20) 72.6
CI-GC (21) 77.6
CCNN (14) 86.6
BRACE 88.4

LLoss Coreset Random Confidence

o e

om ox0

Proporton of checkists ncluding Bank Swallow

(a) Blue Grosbeak

Figure 3: Comparison of samples selected by L-loss, Core-set, Random and Confidence methods.

Table 10: Comparison of classification accuracies using post-hoc explanation.

Method CUB CUB-Families Tiny ImageNet
Dense-161 Res-101 | Dense-161 Res-101 | Dense-161 Res-101

Original dataset 86.6 87.4 86.5 85.4 80.1 81.3
Core-set 84.8 85.9 87.2 88.6 80.2 77.8
L-loss 85.2 84.8 86.5 88.4 78.3 77.4
Random 86.5 86.4 87.0 88.3 80.3 76.8
Confidence 87.3 87.0 86.5 86.6 80.6 81.3
BRACE(utility) 88.0 89.2 93.0 91.2 81.1 81.7

6 Comparison of Selection Methods

Table [10] shows the classification accuracies for ResNet-101 and DenseNet-161 based classifiers
using post-hoc explanation. We see that Brace(utility) has the greatest improvement in accuracy
in all datasets. The results for L-loss and Core-set are mixed when compared to Random and
Confidence methods. This is because both L-loss and Core-set tend to select more noisy images (e.g.,
out-of-distribution images) than Random and Confidence leading to lower performance accuracy. We
calculate the percentage of noisy images selected by each method in the top 1000 images. The results
are shown in Table[T1]

Table 11: Percentage of noisy images in the top 1000 images selected by different selection methods
for CUB dataset.

Method Percentage of noisy images
Random 17.6
Confidence 0.0
Core-set 21.0
L-loss 88.5

We see that both L-loss and Core-set tend to select more noisy images as compared to Random and
Confidence leading to lower performance accuracy. Sample images selected by each method are
given in Figure[3]

In Figure [l we show samples selected by BRACE(utility), Random, and Confidence selection meth-
ods for two more categories of the CUB-Families dataset, namely "Cuculidae" and "Icteridae". We
observe that BRACE(utility) has selected the samples most similar to the images in the subcategories
that have been removed. This assures us that BRACE(utility) can select samples containing concepts
of the under-represented regions. In contrast, Confidence has selected samples similar to those are
already in the training dataset, and Random has even chosen out-of-distribution samples.

7 Societal Impact

In this work, we propose BRACE, which utilizes explanation mechanisms to augment training
datasets to increase classification accuracy. Experiment results indicate that BRACE improves the
generalizability of classifiers and enables them to correctly classify more diverse images. Hence,
BRACE will contribute to increasing the adaption of Al systems in the real world. However, the
increased adaption of such systems might make some jobs obsolete. This can be identified as a
potential indirect negative social impact of this work.

Category Example current Example removed Samples selected by method
train images images

Random Confidence

Cuculidae

Icteridae

Figure 4: Comparison of samples selected by different methods.

References

[1] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “Caltech-uscd birds-200-2011
dataset,” California Institute of Technology, 2011.

[2] T. Chen, W. Wu, Y. Gao, L. Dong, X. Luo, and L. Lin, “Fine-grained representation learning
and recognition by exploiting hierarchical semantic embedding,” in ACM MM, 2018.

[3] C.Zhang, Y. Yao, H. Liu, G.-S. Xie, X. Shu, T. Zhou, Z. Zhang, F. Shen, and Z. Tang, “Web-
supervised network with softly update-drop training for fine-grained visual classification,” in
AAAI 2020.

[4] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do imagenet classifiers generalize to
imagenet?,” in ICML, 2019.

[5] X. W. Shaoli Huang and D. Tao, “Snapmix: Semantically proportional mixing for augmenting
fine-grained data,” in AAAI, 2021.

[6] T.Hu, H. Qi, Q. Huang, and Y. Lu, “See better before looking closer: Weakly supervised data

augmentation network for fine-grained visual classification,” arXiv preprint arXiv:1901.09891,
2019.

[7] C.Zhang, Y. Yao, X. Shu, Z. Li, Z. Tang, and Q. Wu, “Data-driven meta-set based fine-grained
visual recognition,” in ACM-MM, 2020.

[8] K. Kim, D. Park, K. I. Kim, and S. Y. Chun, “Task-aware variational adversarial active learning,”
in CVPR, 2021.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in CVPR,
2016.

[10] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional
networks,” in CVPR, 2017.

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in CVPR, 2009.

[12] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of mathematical
statistics, 1951.

[13] I Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm restarts,” ICLR, 2016.

[14] S. Wickramanayake, W. Hsu, and M. L. Lee, “Comprehensible convolutional neural networks
via guided concept learning,” in IJCNN, 2021.

[15] M. Sun, Y. Yuan, F. Zhou, and E. Ding, “Multi-attention multi-class constraint for fine-grained
image recognition,” in ECCV, 2018.

[16] H. Zheng, J. Fu, Z.-J. Zha, and J. Luo, “Learning deep bilinear transformation for fine-grained
image representation,” NeurIPS, 2019.

[17] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Regularization strategy to
train strong classifiers with localizable features,” in ICCV, 2019.

[18] P. Zhuang, Y. Wang, and Y. Qiao, “Learning attentive pairwise interaction for fine-grained
classification,” in AAAI, 2020.

[19] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for
discriminative localization,” in CVPR, 2016.

[20] C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, and J. K. Su, “This looks like that: deep learning
for interpretable image recognition,” in NeurIPS, 2019.

[21] V. Pillai and H. Pirsiavash, “Explainable models with consistent interpretations,” in AAAI, 2021.

ChecKklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 6 of the main text

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Please
check the Section(7]

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Please check
the Section 21

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Please check the Section

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Please check Section@

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Please check the Section

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] Please check the
Section/[I]

(b) Did you mention the license of the assets? [Yes] Please check the Section|[I]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
Please check the Section[I]

(d) Did you discuss whether and how consent was obtained from people whose data you're
using/curating? [Yes] Please check the Section|[I]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Please check the Section

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

	Links and Licences of Datasets Used
	Implementation Details
	Mean and Standard Deviation of Experiment Results
	Paired T-test on the Experimental results
	Classification Accuracy Comparison with State-of-the-art Methods on CUB Dataset
	Comparison of Selection Methods
	Societal Impact

