
Your representations are in the network: composable and parallel adaptation for large scale models

Appendix559

Below we provide additional details and results which are not presented in the main manuscript.560

A Continual Learning with Open-InCA561

With the Open-InCA adapter, each class prediction is isolated using a different dedicated query and562

classifier vector. For continual learning tasks, in addition to running multiple adapters in parallel as563

presented for multi-task results in Table 4, Open-InCA enables an even more granular composition of564

adapter sub-tasks. Recall the Open-InCA adapter architecture is defined as565

[v
1
cross(z), . . . , v

c
cross(z)] := cross-attn✓([z

1
, . . . , z

T
], [q1, . . . , qc])

Open-InCA✓(z) := diag-head✓ �LN([v
1
cross(z), . . . , v

c
cross(z)])

With LN being LayerNorm. Due to the properties of each operator, each class prediction can be566

computed separately as567

Open-InCA(z)i = hWi,LN(cross-attn✓([z
1
, . . . , z

T
], [qi]))i.

Because of this property we can remove a class prediction or add a new class prediction without any568

effects on other model predictions (as long as the parameters of cross-attn and LN remain fixed). As569

presented in Sec. 4 we use “query-only-training” which trains new adapter classes while freezing570

cross-attn,LN and enabling compatibility between task predictions.571

When training with “query-only-training” the softmax function, softmax(u) =
exp(u

k
)Pc

i=1 exp(u
i)

,572

indirectly combines predictions from all classes due the normalization in the denominator, which573

means gradients about a particular class i will include updates from other classes j. Instead, we can574

achieve complete training separation by using a Sigmoid final activation, �(u) =
exp(u)

exp(u) + 1
, and a575

Binary Cross Entropy (BCE) loss that considers each prediction separately. Clearly in “query-only-576

training” the adapter representation capacity is reduced, since the cross-attention weights are not577

trained. We present an experiment evaluating the performance of InCA, Open-InCA and “query-only-578

training” Open-InCA in Table 6 and observe that despite the isolated and reduced parameter set in579

query-only-training of Open-InCA the method is still competitive and outperforms Linear Probing on580

most datasets.581

Next we test Open-InCA for class-incremental learning, for which we consider the Split CIFAR-100582

incremental learning benchmark. The Split CIFAR-100 dataset is trained with 10 incremental learning583

episodes each introducing 10 new classes. As in [10], we present the average episode accuracy and584

forgetting of “query-only-training” Open-InCa and additional baselines.585

In particular we evaluate Open-InCa using a ViT-B/16 along with state of the art methods L2P [69],586

LwF [43] and EWC [23]. Nonetheless, we do not apply any special routing of our learned episodic587

models and simply combine their predictions. In contrast L2P is a prompt based approach that, during588

inference, passes each new sample to an auxiliary classifier to predict its corresponding episode (in589

this case a 10-way classifier) and the corresponding episode model is up-weighted according to the590

prediction. We believe that with such an auxiliary classifier Open-InCA performance can significantly591

improve, nonetheless we observe that Open-InCa can simply leverage a larger model efficiently to592

achieve state of the art accuracy. We leave routing of samples to different learned sub-models as an593

interesting avenue for future work.594

In addition, Open-InCA has additional benefits as compared to typical class-incremental learning595

approaches:596

• Flexible incrementation With Open-InCA different episodes can naturally contain a vari-597

able number of classes and episodes can be further decomposed if needed. This is since598

one can continue adding or removing single-class predictors from the Open-InCA adapter599

architecture by introducing or removing additional qi and Wi.600

• Reduced forgetting risk With Open-InCA the ability of adding new classes without for-601

getting is built-in into the architecture, as prediction of different classes ensures that the602

Your representations are in the network: composable and parallel adaptation for large scale models

previous class predictions remain the same (0 logit regression) which reduces catastrophic603

forgetting.604

• Parameter and computation efficient The Open-InCA adapter benefits from the InCA605

approach, which is parameter efficient and computationally efficient during inference (see606

Table 4) as well as during training (see Fig. 6 for comparison with prompts).607

Method Average
Accuracy (") Forgetting (#)

LP-sequential⇤ 17.7 59.1
Full-FT-sequential⇤ 33.6 86.9

EWC [34] 47.0 33.3
LwF [43] 60.7 27.8
L2P [69] 83.8 7.6

Open-InCA (ViT-B/16) 83.0 9.1

Open-InCA (ViT-L/16) 88.3 7.1

Open-InCA (ViT-H/14) 86.1 8.2

Table 5: CIFAR-100 Class-Incremental

Learning. Split CIFAR-100 is trained with
10 episodes of 10 classes in the standard CIL
evaluation suite [69]. Average accuracy and
forgetting is reported over the 10 episodes
according with [10]. ⇤Sequential fine-tuning
results are taken from [69].

Top-1 Test Error

Dataset InCA Open-InCA Query only
Open-InCA In. LP

CUB-200 9.1 9.5 12.1 16.2
DTD 17.8 17.1 19.2 18.9

Aircrafts 15.8 18.1 38.6 50.6
MIT-67 10.1 9.4 9.1 9.7

Oxford Flowers 0.3 0.4 0.4 0.6
Oxford Pets 4.7 4.0 5.4 6.1
Stanf. Cars 8.4 8.4 22.8 29.2
Stanf. Dogs 8.1 5.7 5.3 5.3

Average 9.3 9.1 14.1 17.1

Table 6: Open-InCA adapter performance

We compare InCA, Open-InCA, “query-
training” Open-InCA and Intermediate Linear
Probing (In. LP). We observe that Open-InCA
is comparable with InCA and that “query-
training” significantly out-performs In. LP.

B Intermediate Representation Signatures608

The parallel training of InCA results in the synthesis of tens of models that can run inference with609

insignificant per-adapter marginal costs. As a result we have the ability to glean highly useful610

information about the network’s different representations and study the network inner representations611

effectively. This is especially important for recent non-convolutional based architectures that do not612

have as many inductive biases explaining some of their behavior. In this section we present results613

showing information we retrieve from the performance of InCA adapters.

Figure 4: Partial fine-tuning vs. InCA Vertical dashed lines indicate the top InCA layer; curves
show final test accuracy for different partial tuning training runs. Each mark indicates a run where all
of the pre-trained model parameters are trained up to a “freeze point” in the network’s layers. Note
partial tuning performance saturates in close proximity to the optimal InCA adapter layer. This is
aligned with our hypothesis that full fine-tuning attempts to surface existing representations already
in the network. In that case, performance improves until the tuning approach unlocks the capacity to
utilize an existing relevant representation and performance plateaus afterwards.

614

Your representations are in the network: composable and parallel adaptation for large scale models

B.1 Partial fine-tuning and adapter performance615

Below we present in detail the experiments discussed in Sec. 5, in particular regarding partial616

fine-tuning and InCA. The experiments illustrate the relationship between InCA adapters at different617

layers with partial tuning. We tune the pre-trained model starting from different “freezing points”. In618

particular for neural network f(x) = g1 � . . . gl, for each freezing point gm we consider its position m619

and all of the preceding layers and apply layer freezing to g1, . . . gm�1 (i.e. not updating gradients for620

those layers). Back-propagation is then only applied for optimizing gm, . . . gl including the network’s621

prediction “head”. In Figure 4 we show the dynamics of partial tuning, where we optimize the622

pre-trained network (ViT-L/16 DeiT pre-training) in different runs with each run having a different623

freezing point. We compile the final Top-1 Test accuracy of each freezing run to create a partial624

tuning “curve” for a single dataset. We compare the partial tuning performance curve of each dataset625

with the corresponding top layer of the InCA adapter trained on that dataset and observe that they are626

highly aligned, with datasets that prefer later InCA layers plateauing in their test accuracy earlier (at a627

later freezing point). In particular what we observe is that partial tuning performance plateaus roughly628

at the same layer where InCA identifies the top adapter representation. This is also the point at which629

partial fine-tuning is capable of harnessing that representation for the downstream task. Overall630

this gives further evidence that “your representations are in the network” and fine-tuning simply631

surfaces existing representations that are already identified by InCA. When drawing the vertical lines632

of the top InCA adapters, we refer to output layers, e.g., the adapter at block 19 means the adapter633

corresponding to the final output of block 19, or the first input of block 20.634

B.2 Task Layer Affinities635

In InCA we select top-performing adapters that “listen” to different intermediate representations of a636

neural network. In our work we observe that one is able to achieve strong and diverse transfer learning637

by utilizing intermediate representations, and that for challenging tasks it is often required to use638

intermediate representations to achieve top results. Indeed the best representation layer for an adapter639

tends to be highly robust to hyper-parameter variables of the optimization. Even more intriguingly, we640

find that this representation affinity is preserved across different pre-trainings and even architectures.641

This is, certain tasks have a strong “affinity” to a certain range of representation layers even for642

different architectural circumstances. The majority of the architectures we consider have some643

pre-trained component on one of the ImageNet datasets (aside from the CLIP ViT-L/14 model). At644

the same time, the fact that different architectures give rise to similarly helpful representations gives645

strong clues about the effect of different architectures as compared with the pre-training task during646

learning over a large diverse dataset such as ImageNet.647

In detail, we look at the best-performing InCA adapter for a fixed task on different architectures. The648

pre-trained models we consider consist of 2 different pre-trainings of the ViT-L/16 architecture (ViT-649

original and DeiT), the 384-resolution pre-training of DeiT with the resolution adjusted ViT-L/16,650

CLIP’s ViT-L/14 architecture, the SWIN-L architecture, and the convolutional based ConvNext-651

Base architecture. All of the vanilla ViTs we consider each have 24 residual transformer blocks652

so that comparing between blocks is perfectly aligned. SWIN-L and ConvNext follow the “Stage”653

breakdown of blocks, namely SWIN-L has (2,2,18,2) stage breakdown that conveniently also adds654

up to 24 blocks (hence aligned in the figure) and lastly, ConvNext follows a (3-3-26-3) + head stage655

block composition, which we rescale in the figures to fit on the same 24 block range. In addition in656

the plots we also present the test error gap of each architecture with using the InCA adapter applied657

on its final block representation. Tasks that prefer earlier layers such as Stanf. Cars and Aircraft have658

a large gap from the performance of the last layer representation adaptation and such later layers lead659

to sub-optimal results.660

We remark that the work of InCA sheds light on the inner representations learned by neural networks661

showing in some aspects performance is invariant to the architecture and more based on the pre-662

training dataset. We leave this topic for further research and find it to be an intriguing topic of663

study.664

C Efficiency Results665

InCA is highly efficient especially for large models, which is based on the isolated adapter architecture666

that does not modify the backbone. We delineate the efficiency aspects as follows:667

Your representations are in the network: composable and parallel adaptation for large scale models

Figure 5: Best-performing representation for InCA adapter for Aircraft (Top-left) MIT-67

(Top-right) and Stanf. Cars (Bottom).

• Training memory efficiency The use of a frozen pre-trained model makes the training668

much more efficient and scalable since not all of the intermediate computations need to669

be stored as done in standard training or as required by methods that compute gradient670

information using inner-layers of the network. As soon as any intermediate layer requires671

a gradient, all subsequent activations must be cached in memory after the forward pass.672

This means methods like LoRA, FitBit and VPT all require caching of all of the activation673

maps for all of the layer operations in the network since they update parameters based on674

gradients from the very early layers in the network.675

• Fast optimization Unlike typical parameter efficient methods that insert some form of train-676

able parameters in the network, InCA adapters are trained with “direct gradient” information677

coming from an isolated loss. Essentially each adapter corresponds to a very shallow neural678

network trained directly via back-propagation. This makes the training dynamics fast as679

direct gradient information about the loss easily reaches all of the adapter parameters. On680

the other hand, to update inserted parameters in the backbone, the gradient information is681

indirect and needs to be back-propagated through the backbone, with the risk of information682

loss and making the optimization more challenging, as we and the authors [32] observe683

regarding prompt tuning.684

• Efficient multi-task inference As we present in Table 4 the unchanged backbone execution685

enables efficient and parallel inference efficiency as multiple tasks can be evaluated at once.686

C.1 Computational Efficiency of InCA Compared with VPT687

In Table 7 we observe that InCA is an order of magnitude more efficient to train than VPT . For the688

results in the table we consider the VPT-Deep adaptation method, that is trained with 50 prompt689

tokens in each layer. We report calculated training times in GPU-hours of a standard Nvidia-T4 GPU690

using a ViT-L/16 architecture and accuracy numbers based on the datasets of Table 1 with the DeiT691

pre-training. For larger architectures such as ViT-H/14 (“ViT Huge”) the difference in training-time692

is even more striking, as InCA maintains good per-run training time of 2.5, VPT-Deep requires693

staggering 55.8 GPU-hours per-run for a single GPU. On ViT-H/14 this is exacerbated as we must694

reduce the batch-size of VPT significantly to fit training on a common-place single GPU (Nvidia-T4).695

We measure in terms of training InCA and VPT-Deep for the same number of epochs. This however,696

is inaccurate as InCA trains an order of magnitude faster on a per epoch basis (see Figure 6).697

Your representations are in the network: composable and parallel adaptation for large scale models

Method Mean
Test Err.

Max.
Full-FT

gap

Training time
per run

(GPU hrs.)

Hparam.
per dataset

Train time
per dataset
(GPU hrs.)

InCA 10.2 2.4 2.0 2 (parallel) 4.0 (2.4
⇤
)

VPT Deep [32] 12.3 6.8 5.8 24 139.6

Table 7: Computation costs of adaptation We adapt ViT-L/16 to CUB-200 downstream classifica-
tion with the same number of training epochs. We evaluate the training and computational costs of a
single run and training VPT-Deep and InCA for one training dataset. ⇤Training with 2 learning rates
in parallel leads to training time decreasing from 4.0 to 2.4 GPU-hours.

We attribute the difference in training time of InCA to:698

1. InCA does not require back-propagation through the whole model which gives ⇠ 50% speed699

improvement alone.700

2. InCA is robust to hyper-parameters and we optimize it using just 2 learning rates, compared701

with the hyper-parameter set of VPT (in our experiments we use 24 hyper-parameter702

configurations per dataset while using the full configuration presented in [31] takes even703

longer). In addition, with “one-to-many” training, we train the two hyperparameters of704

InCA in parallel and report the specific training time in Table 7 denoted by (⇤) for parallel705

hyper-parameter training.706

3. InCA does not increase the number of propagated tokens in the transformer (e.g. in VPT707

with 100 propagated tokens the attention matrix doubles, from ⇠ 4 ⇥ 10
4 to ⇠ 9 ⇥ 10

4708

entries).709

C.2 Optimization dynamics of InCA and VPT710

In Fig. 6 we conduct an experiment where we train InCA and state of the art prompting method711

VPT-Deep [32] for different numbers of epochs and report the final test accuracy. We observe that712

InCA trains order of magnitude faster than prompting and reaches within 95% relative test accuracy713

after 3 training epochs.714

Figure 6: Optimization Speed for training InCA and prompt tuning (VPT-Deep) on the Aircrafts
dataset. We train each method until completion with varying numbers of epochs and report the
relative final test accuracy to 50 epoch training. The shallow adapter architecture and direct gradient
signal in InCA makes the training of the adapter an order of magnitude faster (in terms of gradient
updates) than prompt tuning approaches. Both methods use batch-size 32 and take the same number
of gradient steps in each corresponding run, under the optimal learning rate.

Your representations are in the network: composable and parallel adaptation for large scale models

D Theoretical Analysis715

Empirically, we consistently observe that cross-attention as opposed to a linear or MLP-3 architecture716

enables InCA to better harness the existing model. We present a theoretical result asserting that using717

the cross-attention layer for aggregation as opposed to linear averaging, or even full-concatenation718

followed by a large dimensional linear layer is capable of learning over a strictly broader set of data719

distributions.720

We give the precise statement in Theorem D.1 and intuitively argue that cross-attention with learned721

queries has the ability to sift through irrelevant pieces of the representation that may be at variable722

positions in different data samples.723

Recall in the settings considered thus far, the extracted activation of an image data-point can be724

viewed as xi 2 Rd⇥T or T tokens e.g. xi = [x
1
i , x

2
i . . . x

T
i], with x

j
i 2 Rd. We argue that in many725

scenarios, task-pertinent information is a property of individual tokens (e.g. x
j
i) within a data-point726

xi and not a property of the overall feature map. We present the theorem below. To this end we define727

a Token-Separability (TS) notion of a dataset.728

Definition 1 (Token-separable Dataset). A dataset D = {(x1, y1), . . . (xn, yn)} with xi =729

[x
1
i , x

2
i , . . . x

T
i] 2 Rd⇥T and yi 2 {�1, 1} is said to be linearly-token-separable if there exists730

a scalar c > 0 and w 2 Rd satisfying kwk2 = 1, such that for each data point (xi, yi) 2 D there731

exists a token x
ji
i 2 xi with732

yi(hxji
i , wi+ b) � c. (1)

We define (wD, bD) and c0 as the maximum margin solution and maximum margin respectively, i.e.733

c0 = max{kwk=1,b2R} minD{yi(hxji
i , wi+ b)} for D with (wD, bD) corresponding to the selected734

c0.735

Intuitively, D is a TS-dataset if each of its data points contain a token that leads to linear separability736

(the same w shared among all points xi 2 D). One can further distinguish between aligned-TS737

Datasets, where the index ji of the linearly separating token is consistent among the n data points,738

or permutable-TS where j is dependent on i. Further TS datasets can be generalized to k-token739

separable datasets where k tokens are responsible for separability in each xi, for this theoretical740

contribution we don’t make an assumption on whether the dataset is aligned or permuted, but consider741

the setting provided by Definition 1 (i.e. not the k-separable generalization). We present an analytical742

statement for the advantage of cross-attn, the theorem is provided for binary classification via a743

scalar prediction, but can conventionally extend to C-class classification. For binary classification we744

define a prediction via the standard scalar binary aggregator as �(u) = sign(
P

i ui) that converts a745

vector into a binary prediction.746

Theorem D.1. Let D be a binary-class, token-separable dataset with max-margin cD and max-747

margin solution (wD, bD) consisting of n data points. Suppose that D is distributed such that for748

xi = (x
1
i , . . . x

T
i) with (xi, yi) 2 D are normalized for separating token x

ji
i 2 D and that the rest of749

the tokens correspond to “noise”, xk
i ⇠ N

�
0, I/d

�
, Ekxk

i k22 = 1. Furthermore assume750

cD � max

✓r
32

d

�
log(1/�) + log(2nT)

�
, 2|bD|

◆
. (2)

Then there exists a cross-attention classifier751

f(x; q, {W}, b) = �

TX

l=1

cross-attn(x, q)l + b

!
(3)

that separates D with probability at least 1 � �. In contrast, every fixed member g(x;w, b) =752

�

⇣PT
l=1 xi · w + b

⌘
of the linear classifier family will fail to separate D with probability at least753

1p
2⇡

s
s2+1 exp(�s

2
/2) where s =

p
dp

T�1
cD.754

As stated above, the failure probability of the simple linear classifier g depends on s which satisfies755

s ⇠
p
d/T . For existing architectures d, T tend to have a similar order of magnitudes, e.g. for756

ViT-B/16, d = 768, T = 196 which makes the failure probability non-negligible. Before presenting757

the proof, we make the following observation: in InCA, we use the same cross-attn layer with latent758

q, which we show can be simplified via reparameterization.759

Your representations are in the network: composable and parallel adaptation for large scale models

Observation D.2 (Query Collapse Reparameterization). A single-head cross-attention param-760

eterization with latent [q] is equivalent to the following simplified layer, cross-attn(x, q) =761 P
softmax(q

⇤x)�Wx with q
⇤ 2 Rd.762

This can be derived by decomposing the attention score which is the input to softmax.763

aj = hWqq,Wkx
ji = (Wqq)

>
(Wkx

j
) =

q
>W>

q Wkx
j
= (q

⇤
)
>
x
j
.

Where q
⇤
= q

>W>
q Wk and q

⇤ 2 Rd, hence the cross-attn layer simplifies, which is used in the764

proof.765

As our proof shows, the cross-attn layer can operate on a large data bandwidth, e.g.x 2 Rd⇥T766

while still being selective in finding task specific representations. Empirically we also observe that767

increasing the number of heads of cross-attn also improves the performance of the InCA . This is in768

part because it enables the learned latent query parameter q to identify more useful token patterns,769

and since q is fixed using more heads remain stable (as opposed to when q is a data input). We now770

present the proof of the claim.771

Proof of Theorem D.1772

Proof. The proof of the theorem has two parts A) the positive condition on the cross-attn layer and773

B) the negative condition on the linear layer (a non-separability probability lower bound). We start774

with A) and consider separability of positive and negative data samples in turn. First we simplify and775

write an equivalent cross-attention binary classifier expression for the cross-attn classifier.776

Positive result for the cross-attention model We consider a “single-head” cross-attention layer777

and by Observation D.2 we can write the cross-attn layer as follows778

cross-attn(xi; q, {W}) =
TX

j=1

softmax(hxj
i , q

⇤i) ·Wvx
j
i . (4)

Note that softmax is a function of the entire vector {hxj
i , q

⇤i}j2[1,T], however we write it in the779

form above to illustrate the summed terms. For simplicity of notation, we drop the asterisk and write780

q
⇤ 2 Rd as q. Combining cross-attn with the binary aggregator, we have aggregation over the output781

vector of the cross-attn layer.782

f(xi; q, {W}, b)

= �

✓ dX

l=1

�
cross-attn(xi; q, {W})

�
l
+ b

◆
.

Define S(xi, q) 2 R1⇥T as the computed softmax argument,783

S(xi, q) = S = softmax([hx1
i , qi, . . . hxT

i , qi]). (5)

Substituting into the classifier, we have784

f(xi; q, {W}, b) = �

✓ dX

l=1

� TX

j=1

Sj ·Wvx
j
i

�
l
+ b

◆

= �

✓ TX

j=1

Sj

dX

l=1

(Wvx
j
i)l + b

◆
.

Let u =
Pd

l=1(Wv)[l,:] be the sum of the rows of Wv. Note x
j
i can be pulled out from the inner785

summation to give786

f(x; q, u, b) = �

✓ TX

j=1

Sjhu, xj
i i+ b

◆
.

Your representations are in the network: composable and parallel adaptation for large scale models

Thus the cross-attn classifier presented is equivalent to the parameterization above. Next we consider787

the two terms in the sum, namely Sj and hu, xj
i i. We will be deriving their distribution in the case788

where a data point (xi, yi), has prediction labels yi = 1 and yi = �1 separately. We start with yi = 1789

and consider790

Sk =
exp(hxk

i , qi)PT
j=1 exp(hx

j
i , qi)

. (6)

Take ji to be the separating token for sample xi. By the assumption of the theorem for k 6= ji the791

tokens correspond to isotropic noise of expected squared norm 1, i.e. xk
i ⇠ N(0, I/d). For a fixed792

u 2 Rd with kuk2 = 1, we take ⌘k to be the distribution of the dot product,793

⌘k = hu,xk
i i =

X

l

(u)l · (xk
i)l. (7)

For k 6= ji this is a sum of independent Gaussians and each coordinate is distributed as ⇠ N(0,
u2
l
d).794

As such we have795

hu,xk
i i ⇠ N

0,

X

l

1

d
· u2

l

!
= N(0, kuk22/d)

= N (0, 1/d)

since kuk2 = 1. Next we consider k = ji. By the hypothesis we have that796

yi(hxji
i , wDi+ bD) � cD.

With positive label (yi = 1) this gives hxji
i , wDi+ bD � cD. Note that since cD � 2|bD| we have797

that hxji
i , wDi � cD/2. Since wD is the maximal margin solution, we have kwDk = 1 and cD > 0.798

Take q to be of the form q = t · wD for t 2 R+ and u = wD, then799

t · ⌘ji = hxji
i , qi = thxji

i , wDi � t · cD/2. (8)

For ⌘k, k 6= ji, separating t, we have that hxk
i , qi = t · ⌘k. Define M = maxk 6=ji

�
|⌘k|
�
. M is800

a random variable distributed as the maximum of of T � 1 i.i.d. Gaussians distributed according801

to N(0, 1/d). We bound M by investigating an upper bound of the Gaussian CDF. Recall that the802

moment generating function of a Gaussian random variable X ⇠ N(0, 1) is given by MX(r) =803

E[erX] = e
1
2 r

2

. Then note that for any s > 0 we have804

P(X � r) = P(esX � e
sr
)  e

�sr
M(s) = e

�sr+ 1
2 s

2

where the inequality is an application Markov’s inequality. Setting s = r this gives the tail bound805

P(X � r)  exp(�r
2
/2). (9)

For our settings with ⌘k ⇠ N(0, 1/d)806

P(⌘k � r)  exp(�dr
2
/2). (10)

For a two-sided bound, by symmetry of the distribution we have807

P(|⌘k| � r)  2 exp(�dr
2
/2). (11)

Therefore a union bound results in808

P(M � r) = P

0

@
[

k 6=ji

|⌘k| � r

1

A


X

k 6=ji

P(|⌘k| � r)

 (T � 1) · 2 exp(�dr
2
/2)

 2T exp(�dr
2
/2).

Your representations are in the network: composable and parallel adaptation for large scale models

We can bound the bulk of the distribution of M as809

P(M < r) � 1� 2T exp(�dr
2
/2). (12)

Taking r = cD/4, then with probability at least 1 � 2T exp(�d(cD/4)
2
/2) = 1 �810

2T exp(�d(cD)
2
/32) we have811

M = max
k 6=ji

|⌘k| <
cD
4

(13)

and thus812

max
k 6=ji

(hq, xk
i i) <

tcD
4

. (14)

With high probability, Eq. (13) holds. This implies that for ji,813

Sji =
exp(hxji

i , qi)PT
j=1 exp(hx

j
i , qi)

=
1

1 +
PT

j 6=ji
exp(hxj

i , qi � hxji
i , qi))

� 1

1 +
PT

j 6=ji
exp(hxj

i , qi � tcD/2))

� 1

1 +
PT

j 6=ji
exp(�tcD/4))

=
1

1 + (T � 1) exp(�tcD/4))

= 1� (T � 1) exp(�tcD/4))

1 + (T � 1) exp(�tcD/4))
.

Note that cD > 0 and T is fixed. Nonetheless, the probability bound is independent of t which may814

take arbitrarily values, e.g. for any ✏ > 0, take t = 4/cD log(T/✏), which gives815

Sji � 1� ✏. (15)

Since Sk � 0 for each k and
PT

k=1 Sk = 1 we have for k 6= ji,816

Sk 
X

j 6=ji

Sj = 1� Sji  ✏. (16)

We consider the classifer prediction817

f(x; q, u) = �

0

@
TX

j=1

Sjhu, xj
i i+ b

1

A (17)

where b is a bias parameter we can choose. Recall u = wD. Focusing on the inside of the sign818

function819

TX

j=1

SjhwD, x
j
i i = SjihwD, x

ji
i i+

X

k 6=ji

Sk⌘k

� SjihwD, x
ji
i i �

X

k 6=ji

Sk max
j 6=ji

(|⌘j |)

� (1� ✏)cD/2� ✏ · cD/4

= (1� (3/2)✏)cD/2 >
cD
4

provided that ✏ < 1/3. If we take b = � cD
4 we have that for q = twD and u = wD820

f(xi; q, u, b) = �

0

@
TX

j=1

SjhwD, x
j
i i+ b

1

A = 1 = yi. (18)

Your representations are in the network: composable and parallel adaptation for large scale models

Next we address the case where yi = �1. We consider the classifier prediction821

f(x; q, u, b) = �

0

@
TX

j=1

Sjhu, xj
i i+ b

1

A (19)

with u = wD. Again for k 6= ji we have that822

max
k 6=ji

(hu, xk
i i) < cD/4. (20)

On the other hand for ji, yi = �1 we have that823

yi(hxji
i , wDi+ bD) � cD

=) hxji
i , wDi+ bD  �cD

=) hxji
i , wDi  �cD/2 < 0

where we have used the hypothesis that cD � 2|bD| in the last line. We consider the term inside the824

classifier. We note that825

TX

k=1

Skhu, xk
i i <

TX

k 6=ji

Skhu, xk
i i

<

TX

k 6=ji

Sk · (cD)/4

 cD/4

where in the first inequality we have used the fact that Sjihu, x
ji
i i < 0 and in the last inequality we826

have used the fact that
PT

j=1 Sj = 1. Therefore again with bias term b = �cD/4 we have that827

TX

j=1

Sjhu, xj
i i+ b < 0 (21)

and f(xi; q, u, b) = �1 = yi. Thus we have just shown that with probability 1 �828

2T exp(�d(cD)
2
/32) the model f(x; q, u, b) with u = wD, q = twD, b = �cD/4 gives the cor-829

rect label for xi. Taking the union bound over all n points in D we get with probability at least830

1 � 2Tn exp(�d(cD)
2
/32) � 1 � � the model f(x; q, u, b) with u = wD, q = twD, b = �cD/4831

separates D.832

Negative result for the linear model We consider the linear classifier833

g(x;w, b) = �

0

@b+

TX

j=1

hw, xji

1

A (22)

where w 2 Rd is restricted to have unit norm kwk = 1. For an input xi under the aggregation, the834

term inside the sign function simplifies to835

TX

j=1

hw, xj
i i = hw,

TX

j=1

x
j
i i.

We recall that the x
k
i for k 6= ji are distributed according to N(0,

1
dI). Thus we have that836

↵i :=

X

k 6=ji

x
k
i ⇠ N

✓
0,

T � 1

d

◆
. (23)

So the problem of classification is equivalent to learning a linear classifier over the separating tokens837

under the presence of Gaussian noise with distribution N(0,
T�1
d). Let i⇤ be the index corresponding838

to the input xi⇤ with smallest margin, i.e.839

i
⇤
= argminiyi(hw, x

ji
i i+ bD).

Your representations are in the network: composable and parallel adaptation for large scale models

Then we have that yi⇤(hw, xji⇤
i⇤ i + bD)  cD. We note that any linear classifier g(x;w, b) with840

kwk2 = 1 will fail to classify D whenever yi⇤↵i⇤ < �cD. Thus we will lower bound the probability841

of P(yi⇤↵i⇤ < �cD). Note for a standard Gaussian random variable ⌘ ⇠ N(0, 1) as shown in [14]842

we have for r > 0843

P(⌘ > r) � 1p
2⇡

r

r2 + 1
exp(�r

2
/2). (24)

Set s =

p
dp

T�1
cD. Then by symmetry of the Gaussian distribution the above bound translates into844

the following bound for ↵i⇤845

P(yi⇤↵i⇤ < �cD) �
1p
2⇡

s

s2 + 1
exp(�s

2
/2).

It follows that for any w 2 Rd such that kwk2 = 1 that the linear classifier g(x;w, b) incorrectly846

classifies D with probability at least847

1p
2⇡

s

s2 + 1
exp(�s

2
/2).

This completes the second part of the proof.848

E Further Results849

We present additional experiments below. In Subsection E.1 we present per-dataset results for850

additional architectures and a discussion about ensembling InCA is given in Subsection E.2.851

E.1 Per-dataset results for different architectures as presented in Table 2852

Table 8 provides per-dataset results that are presented in aggregate in Table 2. Below we present the853

results for ConvNext-Base and ViT-L/16 (original pre-training) pre-trained models (with the results854

for ViT-L/16 DeiT and SWIN-L presented in Table 1 and Table 3 respectively).855

E.2 Ensembling learned adapters856

Because of “one-to-many” inference of InCA can take a set of independently learned adapters and857

ensemble them without a marginal increase to the inference cost. We follow non-parametric equal-858

weight ensembling, by taking the output predictions of two adapters h1(x), h2(x) on a sample image859

x. Note that the adapters are computed with their relevant representations via a single forward pass,860

which makes the execution of h1(x) and h2(x) together only incrementally higher than computing861

just h1(x). The ensemble is defined as862

h
⇤
(x) =

h1(x) + h2(x)

2
. (25)

Given the large combinatorial selection of k adapters from the l learned adapters we consider the case863

of ensembling with two adapter members. After training we evaluate all m(m� 1)/2 such pairs and864

compare them with the top performing single layer predictor which we present in Figure 7. In the865

figure, we illustrate the representations and corresponding adapter pairs that lead to best performance866

and also present the computed ensemble gain which is the difference between the ensembled model867

accuracy and the top accuracy of any single adapter.868

In addition to improving classification accuracy, ensembling can aid in improving robustness and869

out of distribution performance which we leave as a future work. Further directions of ensembling870

include ensembling performance when using adapters of different adapter architectures (e.g. an871

MLP-3 ensembled with an InCA adapter) or adapters that use representations from different neural872

networks [20].873

E.3 Ablation on the number of queries874

We apply an ablation to see the effects of using a different number of queries in the InCA adapter875

architecture. In particular, the InCA adapter is written as,876

vcross(z)[1:m] := cross-attn✓([z
1
, . . . , z

T
], [q1, . . . qm])

InCA✓(z) := head✓ � norm (avg-pool(vcross(z)[1:m]).

Your representations are in the network: composable and parallel adaptation for large scale models

Top-1 Test Error for ConvNext-B

Dataset Full
fine-tuning InCA InCA

(last) Inter. LP LP

CUB-200 9.3 9.3 9.3 13.0 13.0
DTD 16.7 17.4 17.4 18.6 18.6

Flood Depth 16.9 16.5 20.5 19.4 19.9
EuroSAT 0.9 1.6 2.2 2.8 3.1
Aircrafts 10.5 17.9 23.1 54.7 54.7

Herbarium 17.0 22.7 26.4 37.4 39.5
MIT-67 10.9 10.3 10.7 10.2 10.4

Oxford Flowers 0.5 0.4 0.4 0.6 0.6
Oxford Pets 5.2 4.6 5.6 5.9 6.0
Stanf. Cars 6.8 9.3 14.4 39.9 39.9
Stanf. Dogs 8.9 7.6 7.6 7.3 7.3

Ave. Top-1 Test Error 9.4 10.7 (-7.4) 12.8 (-12.6) 19.7 (-44.2) 20.0 (-44.2)

Top-1 Test Error for ViT-L/16 (ViT pre-training)

Dataset Full
fine-tuning InCA InCA

(last) Inter. LP LP

CUB-200 11.7 10.9 10.9 12.2 12.2
DTD 18.3 18.9 20.1 19.9 20.1

Flood Depth 20.8 18.1 18.7 18.7 18.7
EuroSAT 0.8 1.1 1.9 2.5 3.5
Aircrafts 20.7 23.2 28.2 44.5 46.4

Herbarium 20.3 26.9 31.3 38.9 41.3
MIT-67 12.8 11.3 11.9 10.4 11.1

Oxford Flowers 0.6 0.3 0.4 0.3 0.4
Oxford Pets 5.5 5.3 5.4 6.5 6.5
Stanf. Cars 9.3 10.9 12.9 27.6 30.2
Stanf. Dogs 11.0 10.4 10.4 10.1 10.1

Ave. Top-1 Test Error 12.0 12.5 (-6.6) 13.8 (-11.0) 17.4 (-23.8) 18.2 (-25.7)

Table 8: Per-dataset Adaptation Top-1 Test Error on various architectures We test transfer
learning performance of fine-grained datasets applied to different architectures and pre-trainings
including, ViTs, SWIN, and convolutional networks. We report the per-dataset Top-1 test error for
the 11 datasets presented in Table 2

.

For m > 1 the output of tokens [q1, . . . qm] through the cross-attn layer are averaged, and we test877

whether using m > 1 brings additional representational benefit to each adapter. We present the result878

in Table 9 and observe that using a different m does not have a consistent effect on the accuracy of the879

learned adapters, and in our experiments we use m = 1 for InCA adapters to be most computationally880

efficient.881

F Implementation details882

We present the optimization and augmentation details for training InCA, and note we use standardized883

procedures for augmentation and training (without extensive hyper-parameter optimization) of the884

different transfer learning methods we evaluate.885

Augmentation Unless otherwise specified we train with input image size 224 and standard augmen-886

tation practice [59]. In particular, during training we resize to image-size 256 and apply random887

cropping, for testing we apply resizing and center cropping. For larger image resolutions we maintain888

the same resize-crop ratio of 0.875.889

Optimization For the linear probing and InCA approaches, we train with the AdamW optimizer890

[47], cosine annealing learning rate scheduler [48] for 30 epochs and with weight decay 1e�4.891

In each method we sweep over 2 learning rates lr = {1e�4,3e�4}. For full fine-tuning, we also892

train with AdamW optimizer (weight decay 1e�4), cosine annealing for 30 epochs, but in addition,893

identify optimal learning rates for each pre-training and architecture separately. We first identify an894

Your representations are in the network: composable and parallel adaptation for large scale models

Figure 7: Optimal Representation pairings Optimal ensemble pairs of InCA of listeners at different
locations of the network; Optimal ensembles can improve over any single layer. ViT-L/16 DeiT
pre-training

Top-1 Test Error for ViT-L/16 (DeiT pre-training)

of InCA queries (m)

Dataset 1 2 4 16

CUB-200 9.1 9.5 9.6 9.5
DTD 17.8 18.4 19.2 19.1

Aircrafts 15.8 19.3 19.8 16.8
MIT-67 10.1 10.8 11.0 10.9

Oxford Flowers 0.3 0.3 0.3 0.4
Oxford Pets 4.7 4.7 4.5 4.4
Stanf. Cars 8.4 8.7 8.8 8.2
Stanf. Dogs 8.1 6.3 6.3 5.9

Table 9: Varying # of queries in the InCA adapter We run an ablation testing the effect of
applying a different number of queries q1, . . . qm and then averaging when using the InCA adapter.
We observe that in most cases m does not have a big effect on accuracy and that m = 1 has sufficient
representation capacity for the adapter.

architecture coarse-range learning rate based on performance on 5 datasets by sweeping over lr =895

{1e�2,1e�3,1e�4,1e�5,1e�6} followed by a refined sweep with learning rates lr = B, 2B with B896

being the optimal coarse learning rate.897

For the VPT baseline, we follow the details presented in the paper and train with VPT-Deep that898

generally outperforms VPT-Shallow. To train VPT, we use the SGD optimizer with momentum and899

cosine annealing for 100 epochs. For each dataset we run a sweep on the prompt length {5,20,100},900

base learning rate {0.25,0.1,0.05,0.01}, and weight-decay {1e�2,1e�4} for a total of 24 runs with901

100-epochs for each dataset. We compare the training cost of InCA and VPT-Deep in Table 7. In902

general we note that the shallow and small architecture of InCA or linear probing that are separate903

from the base model makes them straightforward to optimize, compared with adaptation methods that904

receive back-propagated gradients from a frozen intermediate layer of the network as shown in Fig. 2.905

For the LoRa baseline [27] we apply a LoRa modified attention to each block’s self-attention layer906

(Wk,Wq,Wv) in ViT based architectures and to each block’s WindowAttention for SWIN. For the907

low rank dimension we sweep over the best value among d = 5, 10, 50. For BitFit we follow the908

discussion in [6] and train all of the bias-parameters in the network in addition to full training of the909

head. Analogously for [42] we follow their procedure with LayerNorm which includes training each910

of the LayerNorm parameters (�,�) for each layer along with training of the head of the pre-trained911

model. For all of the efficient training methods above we sweep over lr={3e�5,1e�4,3e�4,1e�3}912

to identify the best learning rate for the dataset.913

Your representations are in the network: composable and parallel adaptation for large scale models

Broader Impacts Our method, InCA enables efficient and modular model adaptation that can be914

applied to any strong available pre-trained backbone. In that sense, InCA reduces the computational915

barriers to entry for training and evaluating over a large set of (potentially massive scale) models916

and optimization settings to identify a model to be used for downstream adaptation. This bridges917

the gap between cutting edge research in general visual representation learning and specific domain918

applications, especially since the best performing models are computationally expensive to adapt.919

Given that InCA operates well on fine-grained visual datasets, this can have positive applications920

in scientific domains such as medical imaging. In many scientific domains, the available datasets921

are known to be fine-grained yet also with sparse training data. In addition the ease of use and922

reduced computational costs associated with downstream adaptation with InCA makes it possible for923

domain experts without machine learning expertise to use InCA without access to large computational924

resources. This can enable domain researchers solve their domain problems by leveraging various925

public pre-trained models to achieve competitive results.926

