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ABSTRACT

Recent work has shown that 8-bit floating point (FP8) can be used

for efficiently training neural networks with reduced computational

overhead compared to training in FP32/FP16. In this work, we

investigate the use of FP8 training in a federated learning context.

This brings not only the usual benefits of FP8 which are desirable

for on-device training at the edge, but also reduces client-server

communication costs due to significant weight compression. We

present a novel method for combining FP8 client training while

maintaining a global FP32 server model and provide convergence

analysis. Experiments with various machine learning models and

datasets show that our method consistently yields communication

reductions of at least 2.9x across a variety of tasks and models

compared to an FP32 baseline.
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1 INTRODUCTION

Lots of data is generated daily on personal smartphones and other

devices at the edge. This data is very valuable for training machine

learning models to provide services such as better voice recogni-

tion or text completion. However, the local data carries sensitive

personal information which needs to be protected for privacy rea-

sons. Furthermore, communication of local data between billions of

devices and data centers is expected to occupy lots of network band-

width and transmission is costly in terms of power consumption,

which is a primary concern for edge devices running on batteries.

Despite these constraints, it is still possible to train a model

without having to transmit this local data using federated learning

[19]. In federated learning, each local device performs training

locally with their local data and update their local models. When it

comes to communication, the central server receives local models

from a subset of devices. The central server then aggregates these

local models and transmits a new global model back to those devices

for a model update. In this way, no local data is ever exposed during

communication and the global model can learn from local data as

communication goes on.

Since its inception, new techniques around federated learning

have been proposed to reduce communication cost. The local mod-

els, albeit smaller than the local data, are still expensive to transmit

via wireless communication and will be taxing on local devices’

battery life if performed very frequently. One method to reduce
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Figure 1: Overview of federated learning with local FP8 on-

device training and weight quantization in both uplink and

downlink communication.

communication cost is to quantize the models before the communi-

cation occurs, and several works have shown that this can be done

without significant loss in model accuracy [7, 10, 22]. Nevertheless,

standard quantization of the model weights will introduce a bias

term that slows down convergence of the training process. In order

to alleviate this problem, the use of stochastic rounding has been

proposed [6, 32]. Hence, when aggregating the client models at the

server, the stochastic rounding errors tend to zero as the number of

clients grows large. This method has also been shown to improve

the learning process from a privacy perspective [31]. Furthermore,

He et al. [9] showed that stochastic rounding in conjunction with

non-linear quantization can reduce the number of communication

rounds to reach convergence even more.

In this paper, we focus on the use of a new type of short floating

point number format which has not yet been explored for federated

learning: 8-bit floating point (FP8). An 8-bit floating point number

is only ¼ of the length of a 32-bit floating point number. Therefore,

it has smaller representation power and lower precision than full

32-bit floating point number format, but it offers great savings in

terms of model storage and memory access. Computation can be

greatly accelerated with the FP8 format because of significantly less

bit-wise operations required compared to FP32/FP16. Application of

FP8 number format to deep learning model training and inference

is in a nascent stage but is widely expected to have fast growth.

While integer representations, such as INT8, have been widely

adopted for neural network quantization for efficient inference, the

use of FP8 remains relatively new in comparison and has been more

focused on model training. A few recent works [24, 26, 28] have pro-

posed centralized neural network training in FP8 with promising

results. However, for some networks, the FP8 precision was found to

be insufficient for retaining accuracy in certain operations. Notably,

the backwards pass through the network typically requires higher

dynamic range than the forward pass. To this end, Micikevicius et
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al. [20] proposed a binary interchange FP8 format that uses both

E4M3 (4-bit exponent and 3-bit mantissa) and E5M2 (5-bit expo-

nent and 2-bit mantissa) representations, which allows for minimal

accuracy drops compared to FP16 across a wide range of network

architectures. Concurrent work by Kuzmin et al. [14] proposed a

similar solution, where the exponent bias is flexible and updated for

each tensor during training, which allows for maintaining different

dynamic ranges in different parts of the network.

Being a very efficient training datatype, FP8 is a good candidate

for on-device training at the edge and its industrial support points

to wide-spread real-world applications. A future scenario where

edge devices can perform efficient on-device training with native

hardware support introduces a new class of federated learning prob-

lems. It also increases device heterogeneity in a federated learning

setting, where participating devices and servers may have different

levels of hardware support for FP8.

In this work, we introduce an implementation of federated learn-

ing with on-device FP8 training simulated by quantization-aware

training (QAT), which learns from quantized models effectively

while being efficient in its communication and computing cost.

A high-level overview is shown in Figure 1. We present theoret-

ical convergence properties as well as thorough experiments on

a variety of models and data sets. Finally, we also present a novel

server-side weight aggregation method that improves the server

model accuracy compared to standard federated averaging.

2 METHOD

Preliminaries. Consider the federated learning problem, where

𝐾 clients update their local models by training on disjoint local

datasets {D𝑘 }𝐾𝑘=1. Each client minimizes their own local objectives

𝐹𝑘 (w, 𝑄, 𝛼, 𝛽) = E(x,𝑦)∼D𝑘
[𝑙 (w; x, 𝑦,𝑄, 𝛼, 𝛽)], where 𝑄 is a quan-

tization operator and 𝑙 is the loss function. Furthermore, 𝛼 and 𝛽

are the per-tensor clipping values used for weights and activations

respectively. Henceforth, we denote quantized weights based on

range 𝛼 as 𝑄 (w;𝛼). In practice, different clipping values are used

for different layers of the network, but we omit this in our notation

for readability. The overall problem can be expressed as

min

w
𝐹 (w, 𝑄, 𝛼, 𝛽), 𝐹 (w, 𝑄, 𝛼, 𝛽) =

𝐾∑︁
𝑘=1

𝑛𝑘

𝑛
𝐹𝑘 (w, 𝑄, 𝛼, 𝛽), (1)

where 𝑛𝑘 = |D𝑘 | is the number of training samples on the 𝑘 :th

device and 𝑛 =
∑
𝑘 𝑛𝑘 is the total number of training examples.

On-Device Quantization-Aware Training. Depending on the

hardware support, on-device local training can be performed in

native FP8 or using quantization-aware training (QAT), or a mix of

the two. Native FP8 training is supported by the latest AI hardware

in data centers such as Nvidia’s H100/H200 series of GPUs. There is

significant industry support behind FP8, it is only a matter of time

for FP8 hardware support to arrive on edge devices. For research

purposes, we here resort to QAT, and follow the FP8 QAT method

described in [14], using per-tensor quantization for both model

weights and activations, with one signed bit, and𝑚 = 3 and 𝑒 =

4 bits for the mantissa and exponent respectively, as well as a

flexible exponent bias. QAT with both weights and activations

quantization is a good way of simulating native FP8 training on

supported hardware with low precision arithmetic. In our setting,

we are not simulating the effect of gradient quantization which

happens on FP8-enabled hardware. However, previous work [14]

has shown that it is a good approximation to ignore its effect.

Let x = (𝑥1, ..., 𝑥𝑑 )𝑇 ∈ R𝑑 denote an FP32 input tensor and

𝑄
det

: R𝑑 → R𝑑 the FP8 deterministic quantization operator with

a clipping parameter 𝛼 , whose element-wise outputs are given by

𝑄
det
(𝑥𝑖 ;𝛼) = 𝑠𝑖

⌊
𝑥𝑖
𝑠𝑖

⌉
. Here, 𝑠𝑖 is the scale that is computed as

log
2
𝑠𝑖 =

{⌊
log

2
|𝑥𝑖 | + 𝑏

⌋
− 𝑏 −𝑚,

⌊
log

2
|𝑥𝑖 | + 𝑏

⌋
> 1

1 − 𝑏 −𝑚, otherwise,

(2)

where the exponent bias depends on the clipping value 𝛼 as 𝑏 =

2
𝑒 − log

2
𝛼 + log

2
(2 − 2−𝑚) − 1. At training time, 𝛼 is first initial-

ized using the maximum absolute value of each weight range, and

then treated as a learnable parameter that is updated during train-

ing. Furthermore, the gradients of the non-differentiable rounding

operators are computed using the straight-through estimator [3],

i.e.
𝜕⌊𝑥𝑖 ⌉
𝜕𝑥𝑖

= 1, with a key exception being

⌊
log

2
|𝑥𝑖 | + 𝑏

⌋
, which is

treated as a constant following the approach in Kuzmin et al. [14].

Activations are quantized using the same procedure, but with a

separate clipping value 𝛽 .

Unbiased Quantized Communication.When applying FP8

QAT to a federated leaning scenario, an important aspect is the

ability to reduce communication overhead by transferring weights

between clients and the server using only 8 bits per scalar value.

On client devices with hardware for FP8 mixed-precision training

support, a copy of high-precision master weights [27] is present

as in our QAT setup. Therefore, at the end of each communication

round, the participating clients need to perform a hard reset of their

master weights to the de-quantized FP8 values on a quantization

grid. This approach allows for cost reduction in both the uplink

and downlink communication.

At each communication round 𝑡 , active clients P𝑡 will send the

FP8-quantized weights to the central server together with the clip-

ping parameters. However, to form an unbiased estimate of the

average client weight, we need a different quantization operator.

We therefore introduce stochastic quantization as

𝑄
rand
(𝑥𝑖 ;𝛼) = 𝑠𝑖


⌈
𝑥𝑖
𝑠𝑖

⌉
𝑝 ≤ 𝑥𝑖

𝑠𝑖
−

⌊
𝑥𝑖
𝑠𝑖

⌋⌊
𝑥𝑖
𝑠𝑖

⌋
otherwise,

(3)

where 𝑝 is a Bernoulli random variable that takes the values 0 and

1 with equal probability. It is straightforward to verify that this

randomized quantization is unbiased from a statistics point of view

while the deterministic quantization introduced earlier is biased.

The quantized weights are then aggregated at the server using a

federated average as w𝑡+1 ←
∑
𝑘∈P𝑡

𝑛𝑘
𝑚𝑡
𝑄
rand
(w𝑘

𝑡+1;𝛼
𝑘
𝑡+1), where

𝑚𝑡 =
∑
𝑘 ′∈P𝑡 𝑛𝑘 ′ . The clipping values are also aggregated, but

without quantization, their contribution to the communication

overhead is small relative to the weights. The aggregated weights

are then quantized again to FP8 and transmitted to the next set of

active clients with a new set of quantization parameters.

Server-Side Optimization (ServerOptimize). The standard

federated average of the weights in the un-quantized scenario corre-

sponds to the minimization of weighted mean squared error (MSE)

between the server parameters and the client parameters. However,

when the server parameters are quantized before transmission to
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Algorithm 1 FP8FedAvg-UQ, FP8FedAvg-UQ+

Input: w1, 𝛼1, 𝛽1, 𝑄det
, 𝑄

rand

for 𝑡 = 1, ...,𝑇 do

Sample a set P𝑡 ∈ [𝐾] of 𝑃 active devices

for each client 𝑘 ∈ P𝑡 do
Receive 𝑄

rand
(w𝑡 ;𝛼𝑡 ), 𝛼𝑡 , 𝛽𝑡 from server

{w𝑘
𝑡+1, 𝛼

𝑘
𝑡+1, 𝛽

𝑘
𝑡+1} ← LocalUpdate(w𝑡 , 𝑄det

;𝛼𝑡 , 𝛽𝑡 ,D𝑘 )
Send 𝑄

rand
(w𝑘

𝑡+1;𝛼
𝑘
𝑡+1), 𝛼

𝑘
𝑡+1, 𝛽

𝑡+1
𝑖

to server

end for

Compute𝑚𝑡 =
∑
𝑘∈P𝑡 𝑛𝑘 , 𝛽𝑡+1 ←

∑
𝑘∈P𝑡

𝑛𝑘
𝑚𝑡
𝛽𝑘
𝑡+1

Compute w𝑡+1 ←
∑
𝑘∈P𝑡

𝑛𝑘
𝑚𝑡
𝑄
rand
(w𝑘

𝑡+1;𝛼
𝑘
𝑡+1)

𝛼𝑡+1 ←
∑
𝑘∈P𝑡

𝑛𝑘
𝑚𝑡
𝛼𝑘
𝑡+1

{w𝑡+1, 𝛼𝑡+1} ← ServerOptimize({𝛼𝑘
𝑡+1,w

𝑘
𝑡+1}𝑘∈P𝑡 )

end for

Evaluate on w𝑇+1, 𝛼𝑇+1, 𝛽𝑇+1

the clients, this property no longer holds. We therefore propose

a modification to the server-side model aggregation, where the

MSE is explicitly minimized. This can be done without commu-

nication overhead since all computations are done on the server.

We are leveraging the computing power of the server to do more

optimization since the server typically possesses more computing

power than a device. At time step 𝑡 , we perform model/parameters

aggregation to obtainw𝑡+1, 𝛼𝑡+1 for the next communication round

by minimizing the following mean-squared error (MSE).

w𝑡+1, 𝛼𝑡+1 = argmin

w,𝛼

∑︁
𝑘∈P𝑡

𝑛𝑘

𝑚𝑡
∥𝑄

rand
(w;𝛼) −𝑄

rand
(w𝑘𝑡 ;𝛼𝑘𝑡 )∥22 .

Note that when there is no communication quantization, the closed-

form solution to ServerOptimize is the federated average w𝑡+1 =∑
𝑘∈P𝑡

𝑛𝑘
𝑚𝑡

w𝑘𝑡 . Since the problem above has no closed-form solu-

tion for the quantized communication case, we use the alternating
minimization approach to optimize w and 𝛼 : First, we optimize

the model weights w by minimizing (4) using a fixed number of

gradient descent steps, while fixing 𝛼 to 𝛼𝑡+1 =
∑
𝑘∈P𝑡

𝑛𝑘
𝑚𝑡
𝛼𝑘
𝑡+1.

w𝑡+1 = argmin

w

∑︁
𝑘∈P𝑡

𝑛𝑘

𝑚𝑡
∥𝑄

rand
(w;𝛼𝑡+1) −𝑄rand

(w𝑘𝑡 ;𝛼𝑘𝑡 )∥22 . (4)

Next, we aim to optimize 𝛼 while fixing w to w𝑡+1. However, min-

imizing the MSE with respect to 𝛼 using gradient descent would

require access to
𝜕𝑠𝑖
𝜕𝛼 , which is non-differentiable at multiple points

and therefore highly numerically unstable. We instead perform a

grid search over a fixed set of clipping values uniformly distributed

in 𝑆 = [min𝑘∈P𝑡 𝛼
𝑘
𝑡 ,max𝑘∈P𝑡 𝛼

𝑘
𝑡 ] as

𝛼𝑡+1 = argmin

𝛼∈𝑆

∑︁
𝑘∈P𝑡

𝑛𝑘

𝑚𝑡
∥𝑄

rand
(w𝑡 ;𝛼) −𝑄rand

(w𝑘𝑡 ;𝛼𝑘𝑡 )∥22 . (5)

Overall algorithm. A summary of our proposed FP8 FedAvg with

unbiased communication (FP8FedAvg-UQ) method is presented in

Algorithm 1, where the optional server-optimization step (UQ+) cor-

responds to replacing the standard federated averaging of weight

and range parameters with our two-step MSE minimization opti-

mization in equations (4) and (5). It is important to note that our

method involves two different quantization operators. On-device

QAT uses a deterministic and biased quantizer while the commu-

nication part adopts its stochastic counterpart which is unbiased.

In the next section, we will give a convergence analysis result

for FP8FedAvg-UQ and show that these design choices are well-

motivated from a theory point of view.

3 CONVERGENCE ANALYSIS AND

THEORETICAL MOTIVATIONS

We briefly state our main convergence theorem here and refer to the

Appendix for the formal assumption definitions and proof. Please

note that we make the simplifying assumption to only consider

weight quantization in our proof, which is standard for this type of

theoretical analysis.

Theorem 3.1 (Convergence of FP8FedAvg-UQ). For convex
and 𝐿-smooth federated losses in (1) with𝐺-bounded unbiased
stochastic gradients using an FP8 deterministic quantization
method during training and an FP8 unbiased quantization
method with bounded scales for model communication, the
objective gap 𝐸 [𝐹 (𝑄rand (w𝜏 )) − 𝐹 (w∗)] decreases at a rate of

𝑂

( ∥w1 −w∗∥2
2√

𝑇𝑈
+ 𝐺

2

√
𝑈

√
𝑇
+ 𝑈𝐺

2𝐿

𝑇︸                                    ︷︷                                    ︸
T1

+ 𝐺𝑈
2.5𝑆
√
𝑑𝐿

√
𝑇︸         ︷︷         ︸
T2

+ 𝑆
√
𝑑𝐺︸︷︷︸
T3

)

where 𝜏 is uniformly sampled from {1, 2, . . . ,𝑇 }, 𝑇 is the num-
ber of rounds,𝑈 is the total number of updates done in each
round, the quantization scales 𝑠𝑖 are uniformly bounded by 𝑆 ,
w1 is the initial model, and w∗ is an optimal solution of (1).

Remark 1. T1 is a term similar to SGD convergence where it de-

creases with𝑂
(

1√
𝑇

)
and depends on the bound on the second moment

of stochastic gradient 𝐺 , smoothness 𝐿, as well as the ℓ2-distance be-
tween the initial model𝑤1 and the optimal solution𝑤∗.

Remark 2. T2 and T3 are due to quantization. Due to (2) and the
definition of 𝑆 , the terms T2 and T3 exponentially decay when the
number of mantissa bits𝑚 increases, i.e., T2 ∝ 2

−𝑚,T3 ∝ 2
−𝑚 .

Remark 3. We emphasize that unbiased quantization during com-
munication is crucial. In the case of biased communication, the con-
vergence proof does not hold and one can construct even diverging
cases [5] for FedAvg. To ensure convergence for biased communication,
we need more sophisticated techniques such as error feedback [25].

Remark 4. Deterministic quantization is used during training.
We bound the norm of QAT quantization error in the proof. Since
deterministic quantization has a smaller error norm than stochastic
one, we use deterministic quantization during training.

As we shall see in the next section, we observe strictly worse

results if we use stochastic quantization during training or determin-

istic quantization during model transmission in our experiments,

which aligns with the remarks above.

4 EXPERIMENTS AND ABLATION STUDIES

Setup. We test our method on two different tasks: image clas-

sification on CIFAR10 and CIFAR100 [13] and keyword spotting

on Google SpeechCommands v2 [29] (35-word task). For image
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classification, we use the LeNet and ResNet18 [8] architectures,

and for keyword spotting we use MatchboxNet3x1x64 [18] and

the Transformer-based KWT-1 model [4]. Furthermore, we replace

batch normalization layers in the convolutional networks with

GroupNorm [30], since this is known to work better in a federated

setting with skewed data distributions [11]. For all FP8 experiments,

we use one signed bit,𝑚 = 3 and 𝑒 = 4 bits for the mantissa and

exponent respectively.

For each dataset, we evaluate our method in both i.i.d. and non-

i.i.d. distributions of the datasets across clients. In the i.i.d scenarios,

we use 𝐾 = 100 clients, a participation rate of𝐶 = 0.1 in each round

and train for 𝑅 = 1000 rounds with a local batch size of 𝐵 = 50,

where each client trains for 5 local epochs. In the non-i.i.d. image

classification setting we sample the local datasets from a Dirichlet

distribution with a concentration parameter of 0.3.

For the keyword spotting task, we use a similar setup as [16]

and split the dataset based on the speaker-id of each utterance in

order to obtain a more realistic heterogenity across local datasets.

This results in a total of 𝐾 = 2112 clients for the 35-word task. In

order to get a similar total training steps as in the i.i.d scenarion,

we reduce the participation rate to 𝐶 = 0.01, the number of rounds

to 𝑅 = 500 and the number of local gradient updates to 50.

When training models on image classification, we use SGD as the

local optimizer with a constant learning rate of 0.1, weight decay

of 0.001 and random cropping and horizontal flipping for data

augmentation. On SpeechCommands, we adhere to the training

setup used in [4], with AdamW [17] as local optimizer with an

initial learning rate of 0.001 and a cosine decay scheduler, weight

decay of 0.1, and apply SpecAugment [23] to the mel-frequency

cepstrum coefficients.

When applying client-side FP8 QAT, we quantize all parameters

in the network except biases and parameters in normalization layers,

e.g. GroupNorm and LayerNorm. This results in a negligible impact

on the client-server communication, since these parameters account

for < 2 % of the total parameter count in the models. In addition,

when performing server-side optimization of weight aggregation,

we use 5 gradient descent steps when solving (4), where the learning

rate was selected using grid search in {0.01, 0.1, 1}, and 50 grid

points when solving (5).

Results. The results are shown in Table 1, where we present the

final centralized test accuracy as well as the communication gain for

each model and dataset, with and without server-side optimization,

across three random seeds. In order to compare communication

costs, we do not pick a common accuracy threshold for all methods,

but instead calculate the gains individually for each method as the

reduction in communicated bytes compared to FP32 training at the

maximum accuracy reached by both FP32 and FP8. In Table 1 it

can be seen that for most datasets and methods, FP8-FedAvg-UQ

achieves similar test accuracy as the FP32 baseline, which results in

communication gains around 4x on average. Note that even though

FP8 quantization sometimes results in a small accuracy drop, a

large communication gain is still possible due to less data being

transferred in each communication round. However, in certain

cases, for example when applying FP8 quantization to LeNet on

CIFAR100, accuracy increases significantly compared to the FP32

baseline. For these experiments, we observed that FP8 quantization

to some extent prevented overfitting to the local client datasets,

Table 1: Final test accuracy and communication gain com-

pared to FP32 FedAvg for our proposed methods on CI-

FAR10/CIFAR100 and Google SpeechCommands.

Model Setting FP32 FedAvg FP8 FedAvg-UQ FP8 FedAvg-UQ+

CIFAR10

LeNet

i.i.d. 82.1 ± 0.1 / 1× 82.0 ± 0.1 / 4.1× 82.2 ± 0.3 / 4.7×
Dir(0.3) 77.1 ± 0.4 / 1× 77.3 ± 0.9 / 3.9× 77.7 ± 0.5 / 3.9×

ResNet18

i.i.d 92.0 ± 0.1 / 1× 91.1 ± 0.2 / 3.4× 92.0 ± 0.1 / 3.9×
Dir(0.3) 85.5 ± 0.5 / 1× 87.4 ± 0.7 / 5.2× 87.5 ± 0.5 / 5.2×

CIFAR100

LeNet

i.i.d. 43.0 ± 0.3 / 1× 44.8 ± 0.4 / 6.0× 44.9 ± 0.5 / 6.0×
Dir(0.3) 38.3 ± 0.7 / 1× 41.1 ± 0.3 / 9.1× 41.3 ± 0.7 / 9.5×

ResNet18

i.i.d 64.6 ± 0.3 / 1× 64.0 ± 0.2 / 3.5× 64.6 ± 0.1 / 4.0×
Dir(0.3) 56.1 ± 0.7 / 1× 55.4 ± 0.6 / 3.6× 55.5 ± 0.6 / 3.6×

SpeechCommands

MatchboxNet

i.i.d. 91.5 ± 0.3 / 1× 90.0 ± 0.4 / 3.5× 90.8 ± 0.4 / 3.4×
speaker-id 79.6 ± 0.7 / 1× 75.4 ± 0.6 / 3.1× 77.0 ± 1.3 / 3.3×

KWT-1

i.i.d 91.4 ± 0.4 / 1× 89.2 ± 0.3 / 2.3× 90.7 ± 0.2 / 2.9×
speaker-id 83.2 ± 0.2 / 1× 79.6 ± 0.5 / 2.9× 82.4 ± 0.8 / 3.7×

Table 2: Final test accuracy on CIFAR100 (i.i.d.) for determin-

istic/stochastic QAT and quantized communication (CQ).

FP8 QAT without CQ FP8 det. QAT with CQ

Model det. QAT rand. QAT det. CQ rand. CQ

LeNet 44.4 ± 0.5 43.7 ± 0.6 38.0 ± 0.4 44.8 ± 0.4
ResNet18 64.5 ± 0.1 63.5 ± 0.5 62.5 ± 0.9 64.0 ± 0.2

and thereby acted as a regularizer. This effect of quantization has

been observed in other studies as well [2]. Finally, we note that

the server-side optimization in most scenarios yields additional

performance improvements, which results in communication gains

greater than 2.9x compared to FP32 across all tasks and models.

Ablation studies. Next, we ablate the use of deterministic and

stochastic quantization in order to validate our design choices. Ta-

ble 2 shows the server test accuracy when using the two different

quantization methods for the on-device QAT training. Determin-

istic quantization works best here, which can also be understood

intuitively, since in each forward pass through the network, deter-

ministic quantization results in a smaller quantization error. We

refer to Appendix B for more details about QAT convergence.

We also ablate the effect of deterministic and stochastic quantiza-

tion in server-device communication, and it is clear that stochastic

quantization results in both higher accuracy and gain. This is in

agreement with Remark 3, which shows that stochastic quantiza-

tion is important for the convergence of our algorithm. In addition,

we show the server test accuracy as a function of communication

cost for different methods in Figure 2. Here we can clearly see the

gain arising from quantized communication, as well as the benefits

of stochastic quantization and server-side optimization.

5 CONCLUSIONS AND FUTUREWORK

In this work, we show that on-device FP8 QAT training combined

with quantized communication can be integrated into a federated

learning setting with a well-designed algorithm. Our results show
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Figure 2: Server test accuracy versus communication cost for

FP32 FedAvg, and FP8 QAT with biased (BQ)/unbiased (UQ)

communication, and server-side optimization (UQ+).

that this can be done with minimal drop in model predictive perfor-

mance, while obtaining large savings in terms of communication

cost. This opens up a wide range of possibilities in terms of ex-

ploiting client heterogeneity. For example, it allows for combining

devices with different computational capabilities, which could in-

volve training with different levels of precision in different clients.

Furthermore, since the use of low-precision number formats is or-

thogonal to the optimization method itself, our proposed method

may be extended beyond standard federated averaging. We leave

this as future work and hope our work will inspire the wider re-

search community to explore different combinations of floating

point number formats in a federated learning setting.
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APPENDIX

For FedAvg convergence proof, our analysis builds on [1, 12, 15]. [1, 12] focus on debiasing the local losses in a standard non-quantized

federated learning setting. Differently, we show convergence using quantization aware training in federated learning. We can further extend

our analysis to use the sophisticated debiasing methods for better heterogeneity control. Li et al. [15] proves convergence of different

quantization aware training schemes in a centralized non-federated setting. Differently, we give convergence of quantization aware training

in a distributed federated learning setting. Additionally, we give a proof for more general non-uniform quantization grids such as FP8, which

is different from the uniform quantization consideration in [15].

A QUANTIZATION FUNCTION

Definition 1 (Quantization). For an unquantized number 𝑥 , we define the quantization of 𝑥 as

𝑄rand (𝑥) = 𝑠
{⌈
𝑥
𝑠

⌉
𝑝 ≤ 𝑥

𝑠 −
⌊
𝑥
𝑠

⌋⌊
𝑥
𝑠

⌋
otherwise,

, 𝑄det (𝑥) = 𝑠
⌊𝑥
𝑠

⌉
,

where 𝑝 ∈ [0, 1] is a random variable. We omit the parameter of quantization for the sake of simplicity in the notation. We overload the notation
and define quantization of a vector x ∈ R𝑑 as the element-wise quantization of the vector, 𝑄 (x) = [𝑄 ( [x]

1
) , 𝑄 ( [x]

2
) , . . . , 𝑄 ( [x]𝑑 )]𝑇

Let’s define the quantization error.

Definition 2 (Quantization Error). Let 𝑟𝑄 (w) = 𝑄 (w) −w.

Note that if 𝐸𝑟𝑄 (w) = 0, we have an unbiased quantization as in our model transmission where expectation is over the randomness of

the quantization.

Note that we simplified the definition by ignoring the quantization based learnable parameters such as 𝛼 and 𝛽 in our proof. Hence, we

redefine them here.

B CONVERGENCE ANALYSIS OF QUANTIZATION-AWARE TRAINING (QAT)

As a warmup, we provide the convergence analysis of QAT training on a single machine, similar to the one in [15].

We want to find a quantized model that solves minw∈Rd 𝐹 (w). We start with an unquantized model as w1 and use QAT training as

w𝑡+1 = w𝑡 − 𝜂𝑡∇𝐹 (𝑄 (w𝑡 ) ; 𝜉𝑡 ) where 𝜂𝑡 is learning rate and 𝜉𝑡 controls randomness of SGD at iterate 𝑡 . Let us define the best model as

w∗ = argminw 𝐹 (w).
Our analysis is based on the following assumptions on the objective function 𝐹 .

Assumption 1 (Convexity). We assume that 𝐹 is differentiable and convex, i.e.,

− ⟨∇𝐹 (x), x − y⟩ ≤ −𝐹 (x) + 𝐹 (y) ∀x, y.

Assumption 2 (Bounded Unbiased Gradients). We assume the gradients are unbiased and bounded.

𝐸𝜉 [∇𝐹 (x; 𝜉)] = ∇𝐹 (x) , 𝐸𝜉 ∥∇𝐹 (x; 𝜉) ∥22 ≤ 𝐺
2 ∀x.

where 𝜉 defines the randomness due to stochastic gradient estimator. The algorithm draws ∇𝐹 (x; 𝜉) instead of ∇𝐹 (x).

Assumption 3 (BoundedQuantization Scales). We assume the scales 𝑠𝑖 are uniformly upper bounded during the training by a constant 𝑆 .

Next, we provide an upper bound on the quantization error.

Lemma 1. If assumption 3 holds, we have,
𝐸∥𝑟𝑄 (w) ∥2 ≤

√
𝑑𝑆

Proof. Each dimension of 𝑟𝑄 (w) can be at max 𝑆 . We have 𝑑 dimensions. Hence, 𝐸∥𝑟𝑄 (w) ∥2 ≤
√
𝑑𝑆 □

We can then prove the following lemma on the 𝑡-th iteration of QAT training.

Lemma 2 (QAT step update). If assumptions 1, 2, and 3 hold and 𝜂𝑡 = 1√
𝑇
, we have,

𝐸 [𝐹 (𝑄 (w𝑡 )) − 𝐹 (w∗)] ≤
√
𝑇

2

[
−𝐸∥w𝑡+1 −w∗∥22 + 𝐸∥w𝑡 −w∗∥

2

2

]
+𝐺
√
𝑑𝑆 + 1

2

√
𝑇
𝐺2

Proof. Based on the update w𝑡+1 = w𝑡 − 𝜂𝑡∇𝐹 (𝑄 (w𝑡 ) ; 𝜉𝑡 ) in the 𝑡-th iteration of QAT training,

𝐸∥w𝑡+1 −w∗∥22 = 𝐸∥w𝑡 − 𝜂𝑡∇𝐹 (𝑄 (w𝑡 ) ; 𝜉𝑡 ) −w∗∥
2

2

= 𝐸∥w𝑡 −w∗∥22 − 2𝜂𝑡𝐸 ⟨∇𝐹 (𝑄 (w𝑡 ) ; 𝜉𝑡 ) ,w𝑡 −w∗⟩ + 𝜂
2

𝑡 𝐸∥∇𝐹 (𝑄 (w𝑡 ) ; 𝜉𝑡 ) ∥22
≤ 𝐸∥w𝑡 −w∗∥22 − 2𝜂𝑡𝐸 ⟨∇𝐹 (𝑄 (w𝑡 ) ; 𝜉𝑡 ) ,w𝑡 −w∗⟩ + 𝜂

2

𝑡𝐺
2
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= 𝐸∥w𝑡 −w∗∥22 − 2𝜂𝑡𝐸 ⟨∇𝐹 (𝑄 (w𝑡 )) ,w𝑡 −w∗⟩ + 𝜂
2

𝑡𝐺
2

= 𝐸∥w𝑡 −w∗∥22 − 2𝜂𝑡𝐸 ⟨∇𝐹 (𝑄 (w𝑡 )) , 𝑄 (w𝑡 ) −w∗⟩ − 2𝜂𝑡𝐸 ⟨∇𝐹 (𝑄 (w𝑡 )) ,w𝑡 −𝑄 (w𝑡 )⟩ + 𝜂
2

𝑡𝐺
2

≤ 𝐸∥w𝑡 −w∗∥22 − 2𝜂𝑡𝐸 (𝐹 (𝑄 (w𝑡 )) − 𝐹 (w∗)) − 2𝜂𝑡𝐸 ⟨∇𝐹 (𝑄 (w𝑡 )) ,w𝑡 −𝑄 (w𝑡 )⟩ + 𝜂
2

𝑡𝐺
2

≤ 𝐸∥w𝑡 −w∗∥22 − 2𝜂𝑡𝐸 (𝐹 (𝑄 (w𝑡 )) − 𝐹 (w∗)) + 2𝜂𝑡𝐸 ∥∇𝐹 (𝑄 (w𝑡 ))∥2 ∥𝑟 (w𝑡 )∥2 + 𝜂
2

𝑡𝐺
2

≤ 𝐸∥w𝑡 −w∗∥22 − 2𝜂𝑡𝐸 (𝐹 (𝑄 (w𝑡 )) − 𝐹 (w∗)) + 2𝜂𝑡𝐺𝐸 ∥𝑟 (w𝑡 )∥2 + 𝜂
2

𝑡𝐺
2

≤ 𝐸∥w𝑡 −w∗∥22 − 2𝜂𝑡𝐸 (𝐹 (𝑄 (w𝑡 )) − 𝐹 (w∗)) + 2𝜂𝑡𝐺
√
𝑑𝑆 + 𝜂2𝑡𝐺2

where A.2, A.1, ⟨x, y⟩ ≤ ∥x∥2∥y∥2, A.2, and Lemma 1 are used respectively in the inequalities. We use the fact that gradients are unbiased as

well, A.2. Let 𝜂𝑡 =
1√
𝑇
. Note that the same rate can be obtained with a decreasing learning rate scheme with a couple extra steps. Rearranging

the terms and dividing with the learning rate give the Lemma. □

By the telescoping sum of Lemma 2 over all iterations 𝑡 = 1, . . . ,𝑇 , we can prove the convergence of QAT training.

Theorem B.1 (QAT Convergence). For a convex function with bounded unbiased stochastic gradients using a quantization
method with bounded scales, we have

𝐸 [𝐹 (𝑄 (w𝜏 )) − 𝐹 (w∗)] = 𝑂
(
1

√
𝑇

(
∥w1 −w∗∥22 +𝐺

2

)
+𝐺
√
𝑑𝑆

)
where 𝜏 is a random variable that takes values in {1, 2, . . . ,𝑇 } with equal probability1, 𝑇 is the number of iterations, w1 is the
initial model and w∗ is the optimal model w∗ ∈ argminw 𝐹 (w), and the remaining constants are defined in the assumptions.

Proof. If we average Lemma 2 for all iterations we get,

𝐸

[ [
1

𝑇

𝑇∑︁
𝑡=1

𝐹 (𝑄 (w𝑡 ))
]
− 𝐹 (w∗)

]
≤ 1

2

√
𝑇

[
−𝐸∥w𝑇+1 −w∗∥22 + 𝐸∥w1 −w∗∥22

]
+𝐺
√
𝑑𝑆 + 1

2

√
𝑇
𝐺2

≤ 1

2

√
𝑇
∥w1 −w∗∥22 +𝐺

√
𝑑𝑆 + 1

2

√
𝑇
𝐺2

Note that LHS is the same if we choose 𝑄 (w𝑡 ) at random from all iterations with equal probability. □

Remark 5. Note that the proof uses a bound on the quantization error in the form of Lemma 1. Deterministic quantization would have a
smaller bound on the norm of the quantization error, 𝐸



𝑟𝑄 (𝑤)


2
, compared to the stochastic quantization. This motivates the use of deterministic

quantization during the training phase.

Remark 6. LHS of the convergence rate in Theorem B.1 has two terms. First term decays with 𝑂
(

1√
𝑇

)
which is similar to the SGD rate. The

second term is a constant. This constant term accounts for irreducible loss due to quantization.

C CONVERGENCE ANALYSIS OF FP8FEDAVG-UQ

We note that 𝐹𝑘 is the local loss at device 𝑘 ∈ [𝐾] and 𝐹 is the average of local functions, .i.e 𝐹 (x) = 1

𝐾

∑𝐾
𝑘=1

𝐹𝑘 (w). We assume the number

of data points in each device is the same so that 𝐹 is a non-weighted average of local functions for the sake of simplicity. We note that results

can be adjusted easily for non-equal dataset size cases. We denotew∗ as the optimal model of the global loss, .i.e argmin 𝐹 (w). For simplicity,

we consider the balanced clients 𝑛𝑘 = 𝑛
𝐾

in our proof. However, the proof can be extended to the general imbalanced case similar to [19].

Assumption 4 (Smoothness). We assume the functions are 𝐿 smooth.

∥∇𝐹𝑘 (x) − ∇𝐹𝑘 (y)∥2 ≤ 𝐿∥x − y∥2 ∀x, y, 𝑘 .

Property 1. If we have smooth and convex functions, as in [1, 12, 21], for all w, x, y,

− ⟨∇𝐹𝑘 (w) , y − x⟩ ≤ −𝐹𝑘 (y) + 𝐹𝑘 (x) +
𝐿

2

∥y −w∥2
2
.

1
We could further derive a model bound using Jensen on LHS since the function is convex. This allows us to avoid introducing another random variable 𝜏 , and would give LHS as

𝐸

[
𝐹

(
1

𝑇

∑𝑇
𝑡=1𝑄 (w𝑡 )

)
− 𝐹 (w∗ )

]
. However the model,

1

𝑇

∑𝑇
𝑡=1𝑄 (w𝑡 ) , is not necessarily a quantized model. Since we are interested in quantized model performance, we further

need to argue that the quantization error of the averaged model is small and that would not change the rate. To avoid these extra steps, we introduced another random variable, 𝜏 ,

for the sake of simplicity in the proof.
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C.1 Lemmas on the Stochastic Quantization for Model Communication

Lemma 3. Stochastic quantization is unbiased, i.e.,
𝐸𝑟𝑄rand (x) = 0.

Proof. It follows directly from the definition as,

𝐸𝑟𝑄rand
(x) = 𝐸𝑄

rand
(x) − x = 𝑠

(x
𝑠
−

⌊x
𝑠

⌋ )
⊙

( ⌊x
𝑠

⌋
+ 1

)
+ 𝑠

(
1 − x

𝑠
+

⌊x
𝑠

⌋ )
⊙

⌊x
𝑠

⌋
− x = 0

where ⊙ denotes the element-wise product. □

Lemma 4. Let 𝑄rand be the stochastic unbiased quantization satisfying assumption 3 . Then we have,

𝐸


𝑟𝑄rand (x)



2
2
≤ 𝑆 ∥x∥

1
≤ 𝑆
√
𝑑 ∥x∥

2

Proof. Let’s start with a scalar case and we extend it to a vector case.

𝐸
��𝑟𝑄rand

(𝑥)
��2 = 𝑠2 (𝑥

𝑠
−

⌊𝑥
𝑠

⌋ ) ( ⌊𝑥
𝑠

⌋
+ 1 − 𝑥

𝑠

)
2

+ 𝑠2
(
1 − 𝑥

𝑠
+

⌊𝑥
𝑠

⌋ ) ( ⌊𝑥
𝑠

⌋
− 𝑥
𝑠

)
2

= 𝑠2
(𝑥
𝑠
−

⌊𝑥
𝑠

⌋ ) (
1 +

⌊𝑥
𝑠

⌋
− 𝑥
𝑠

)
≤ 𝑠2min

(𝑥
𝑠
−

⌊𝑥
𝑠

⌋
, 1 − 𝑥

𝑠
+

⌊𝑥
𝑠

⌋ )
≤ 𝑠2

���𝑥
𝑠

��� ≤ 𝑆 |𝑥 |
where inequalities follow from the fact that

𝑥
𝑠 −

⌊
𝑥
𝑠

⌋
≤ 1.

We can add the scalar variances to bound a vector variance as,

𝐸


𝑟𝑄rand

(x)


2
2
=

∑︁
𝑖∈[𝑑 ]

𝐸


𝑟𝑄rand

( [x]𝑖 )


2
2
≤ 𝑆

∑︁
𝑖∈[𝑑 ]

| [x]𝑖 | = 𝑆 ∥x∥1 ≤ 𝑆
√
𝑑 ∥x∥

2

where we use Cauchy–Schwarz inequality in the last step.

□

Lemma 5 (Quantization Error Decomposition). Let assumption 3 holds. Both uniform and FP8 quantization satisfies,

𝐸
��𝑟𝑄 (𝑄 (𝑥) + 𝑦)��2 ≤ 𝑆 |𝑦 | .

For 𝑑 dimensional vectors we get,
𝐸


𝑟𝑄 (𝑄 (x) + y)

2

2
≤ 𝑆
√
𝑑 ∥y∥

2
.

Proof. We give a proof for scalar case. Vector version comes from upper bounding scalar case using Cauchy-Schwarz. Note that variance

is higher for randomized quantization so let’s prove the bound for 𝑄
rand

. Due to symmetry, we can assume 𝑄
rand
(𝑥) ≥ 0.

Let’s define grid points as 𝑔𝑖 where 𝑔0 = 0 and 𝑔𝑖+1 > 𝑔𝑖 . Note that due to quantization definitions, we have 𝑔𝑖%(𝑔𝑖+1 − 𝑔𝑖 ) = 0, .i.e

∃𝑘 ∈ Z+ such that 𝑔𝑖 = 𝑘 (𝑔𝑖+1 − 𝑔𝑖 ). Furthermore, we have a finer resolution close to 0, .i.e 𝑔𝑖+1 − 𝑔𝑖 ≥ 𝑔𝑖 − 𝑔𝑖−1.
We extensively use a step in Lemma 4 as,

𝐸
��𝑟𝑄rand

(𝑧)
��2 = 𝑠2𝑞𝑧 (1 − 𝑞𝑧) ≤ 𝑠2min (𝑞𝑧 , 1 − 𝑞𝑧) ≤ 𝑠2

���𝑧
𝑠

��� = 𝑠 |𝑧 |
where 𝑞𝑧 =

𝑧
𝑠 −

⌊
𝑧
𝑠

⌋
. We use this relation by plugging in 𝑧 = 𝑄

rand
(𝑥) + 𝑦 and investigating 𝑞𝑄rand (𝑥 )+𝑦 .

Since 𝑄
rand
(𝑥) is already quantized, ∃𝑖 ≥ 0 such that 𝑄

rand
(𝑥) = 𝑔𝑖 . Let 𝑔 𝑗+1 > 𝑄

rand
(𝑥) + 𝑦 ≥ 𝑔 𝑗 .

Let 𝑦 = 𝛿 + 𝑔 𝑗 − 𝑔𝑖 . Then we have 𝑔 𝑗+1 > 𝛿 + 𝑔 𝑗 ≥ 𝑔 𝑗 =⇒ 𝑔 𝑗+1 − 𝑔 𝑗 > 𝛿 ≥ 0. We also know 𝑔 𝑗+1 − 𝑔𝑖 > 𝑦 ≥ 𝑔 𝑗 − 𝑔𝑖 .
We have, by definition,

𝑞𝑄rand (𝑥 )+𝑦 =
𝑔 𝑗 + 𝛿

𝑔 𝑗+1 − 𝑔 𝑗
−

⌊
𝑔 𝑗 + 𝛿

𝑔 𝑗+1 − 𝑔 𝑗

⌋
=

𝛿

𝑔 𝑗+1 − 𝑔 𝑗
−

⌊
𝛿

𝑔 𝑗+1 − 𝑔 𝑗

⌋
= 𝑞𝛿

since 𝑔 𝑗 is a multiple 𝑔 𝑗+1 − 𝑔 𝑗 .
Let’s look at different cases.

Case 𝑖 ≤ 𝑗
Note that 𝑔 𝑗 − 𝑔𝑖 ≥ 0 so that |𝑦 | = |𝛿 + 𝑔 𝑗 − 𝑔𝑖 | ≥ |𝛿 |. Then, we have,

𝐸
��𝑟𝑄rand

(𝑄 (𝑥) + 𝑦)
��2 ≤ (

𝑔 𝑗+1 − 𝑔 𝑗
)
2

min (𝑞𝛿 , 1 − 𝑞𝛿 ) ≤
(
𝑔 𝑗+1 − 𝑔 𝑗

)
|𝛿 | ≤ 𝑆 |𝛿 | ≤ 𝑆 |𝑦 | □.

Case 𝑖 > 𝑗 + 1
Note that 𝑔 𝑗+1 − 𝑔𝑖 < 0 and 𝑦 is negative. Let’s look at magnitude of 𝑦 and 𝛿 .

0 > 𝑔 𝑗+1 − 𝑔𝑖 > 𝑦 ≥ 𝑔 𝑗 − 𝑔𝑖 =⇒ |𝑦 | > 𝑔𝑖 − 𝑔 𝑗+1 ≥ 𝑔 𝑗+2 − 𝑔 𝑗+1 .
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We already know that 𝑔 𝑗+1 − 𝑔 𝑗 > 𝛿 ≥ 0. Then we have,

|𝑦 | > 𝑔 𝑗+2 − 𝑔 𝑗+1 ≥ 𝑔 𝑗+1 − 𝑔 𝑗 > 𝛿

Since |𝑦 | > |𝛿 |, we get,

𝐸
��𝑟𝑄rand

(𝑄 (𝑥) + 𝑦)
��2 ≤ (

𝑔 𝑗+1 − 𝑔 𝑗
)
2

min (𝑞𝛿 , 1 − 𝑞𝛿 ) ≤
(
𝑔 𝑗+1 − 𝑔 𝑗

)
|𝛿 | ≤ 𝑆 |𝛿 | ≤ 𝑆 |𝑦 | □.

Case 𝑖 = 𝑗 + 1
We have 𝑦 = 𝛿 + 𝑔 𝑗 − 𝑔𝑖 = 𝛿 −

(
𝑔 𝑗+1 − 𝑔 𝑗

)
. Let’s look at 𝑞𝛿 as,

𝑞𝛿 =
𝛿

𝑔 𝑗+1 − 𝑔 𝑗
−

⌊
𝛿

𝑔 𝑗+1 − 𝑔 𝑗

⌋
=
𝛿 −

(
𝑔 𝑗+1 − 𝑔 𝑗

)
𝑔 𝑗+1 − 𝑔 𝑗

−
⌊
𝛿 −

(
𝑔 𝑗+1 − 𝑔 𝑗

)
𝑔 𝑗+1 − 𝑔 𝑗

⌋
=

𝑦

𝑔 𝑗+1 − 𝑔 𝑗
−

⌊
𝑦

𝑔 𝑗+1 − 𝑔 𝑗

⌋
= 𝑞𝑦

Then we have,

𝐸
��𝑟𝑄rand

(𝑄 (𝑥) + 𝑦)
��2 ≤ (

𝑔 𝑗+1 − 𝑔 𝑗
)
2

min (𝑞𝛿 , 1 − 𝑞𝛿 ) =
(
𝑔 𝑗+1 − 𝑔 𝑗

)
2

min

(
𝑞𝑦, 1 − 𝑞𝑦

)
≤

(
𝑔 𝑗+1 − 𝑔 𝑗

)
|𝑦 | ≤ 𝑆 |𝑦 |.

□

Please note that the above proof holds for any quantization scheme of which the grid is symmetric with respect to zero and the bin size

increases monotonically going from zero to plus or minus infinity. The FP8 quantization obviously satisfies this condition.

C.2 Lemma on a Single Communication Round

We define some useful quantities. For simplicity in the proof, let us define auxiliary models as,

v𝑘𝑡,𝑢+1 = v𝑘𝑡,𝑢 − 𝜂𝑡∇𝐹𝑘
(
𝑄
det

(
v𝑘𝑡,𝑢

)
; 𝜉𝑘𝑡,𝑢

)
∀𝑢 ∈ [𝑈 ], v𝑘𝑡,1 = 𝑄rand

(w𝑡 )

where𝑈 is the total number of local updates per communication round per device. Furthermore, we can unroll the recursion as,

v𝑘𝑡,𝑈 +1 = v𝑘𝑡,𝑈 − 𝜂𝑡∇𝐹𝑘
(
𝑄
det

(
v𝑘𝑡,𝑈

)
; 𝜉𝑘𝑡,𝑈

)
= v𝑘𝑡,𝑈𝐸−1 − 𝜂𝑡∇𝐹𝑘

(
𝑄
det

(
v𝑘𝑡,𝑈 −1

)
; 𝜉𝑘𝑡,𝑈 −1

)
− 𝜂𝑡∇𝐹𝑘

(
𝑄
det

(
v𝑘𝑡,𝑈

)
; 𝜉𝑘𝑡,𝑈

)
= . . .

= 𝑄
rand
(w𝑡 ) − 𝜂𝑡

∑︁
𝑢∈[𝑈 ]

∇𝐹𝑘
(
𝑄
det

(
v𝑘𝑡,𝑢

)
; 𝜉𝑘𝑡,𝑢

)
It is clear to see that w𝑘

𝑡+1 = v𝑘
𝑡,𝑈 +1 for active devices. Let’s define inactive device w

𝑘
𝑡+1 = v𝑘

𝑡,𝑈 +1 as well. Note that this is just for notation

and the algorithm is unchanged. Because if 𝑘 is not active we do not use w𝑘
𝑡+1 in our algorithm. Let us define a drift quantity similar to [12].

𝑉𝑡 =
1

𝐾𝑈

∑︁
𝑘∈[𝐾 ]

∑︁
𝑢∈[𝑈 ]

𝐸




𝑄rand
(w𝑡 ) −𝑄det

(
v𝑘𝑡,𝑢

)


2
2

. (6)

Note that if local models diverge, we get a higher 𝑉𝑡 . We can obtain the following lemma for a single communication round of the

FP8FedAvg-UQ algorithm.

Lemma 6. If assumptions 1, 2, 3, 4 hold and we use an unbiased quantization for model transmission, we have,

𝐸∥w𝑡+1 −w∗∥22 ≤ 𝐸 ∥w𝑡 −w∗∥
2

2
− 2𝑈𝜂𝑡𝐸 (𝐹 (𝑄rand (w𝑡 )) − 𝐹 (w∗)) + 𝜂𝑡𝐿𝑈𝑉𝑡 + 2𝑆

√
𝑑𝐺𝑈𝜂𝑡 + 𝜂2𝑡𝑈 2𝐺2

(7)

𝑉𝑡 ≤ 18𝑈 3𝑆
√
𝑑𝐺𝜂𝑡 + 9𝑈 2𝜂2𝑡𝐺

2
(8)

Proof. First, we prove Eq. 7. Due to the model-to-server communication and the model aggregation on the server in the 𝑡-th round, we

have

𝐸 ∥w𝑡+1 −w∗∥22 =𝐸







 1𝑃 ∑︁
𝑘∈P𝑡

𝑄
rand

(
w𝑘𝑡+1

)
−w∗








2

2

≤ 1

𝑃
𝐸

∑︁
𝑘∈P𝑡




𝑄rand

(
w𝑘𝑡+1

)
−w∗




2
2

=
1

𝐾

∑︁
𝑘∈[𝐾 ]

𝐸




𝑄rand

(
w𝑘𝑡+1

)
−w∗




2
2

where we use definition of w𝑡+1 and triangular inequality (



∑
𝑛∈[𝑁 ] 𝑎𝑛



2 ≤ 𝑁 ∑
𝑛∈[𝑁 ] ∥𝑎𝑛 ∥2). Lastly, we use the fact that active devices are

sampled uniformly at random so that each device has an activation probability of
𝑃
𝐾
. Let’s continue as

𝐸 ∥w𝑡+1 −w∗∥22 ≤
1

𝐾

∑︁
𝑘∈[𝐾 ]

𝐸




𝑄rand

(
w𝑘𝑡+1

)
−w∗




2
2

=
1

𝐾

∑︁
𝑘∈[𝐾 ]

𝐸




𝑟𝑄rand

(
w𝑘𝑡+1

)
+w𝑘𝑡+1 −w∗




2
2

=
1

𝐾

©­«
∑︁
𝑘∈[𝐾 ]

𝐸




𝑟𝑄rand

(
w𝑘𝑡+1

)


2
2

+ 2𝐸
〈
𝑟𝑄rand

(
w𝑘𝑡+1

)
,w𝑘𝑡+1 −w∗

〉
+ 𝐸




w𝑘𝑡+1 −w∗


2
2

ª®¬
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=
1

𝐾

©­«
∑︁
𝑘∈[𝐾 ]

𝐸




𝑟𝑄rand

(
w𝑘𝑡+1

)


2
2

+ 𝐸



w𝑘𝑡+1 −w∗


2

2

ª®¬
where we use the fact that 𝑄

rand
is an unbiased quantizer. Let’s bound 𝐸




w𝑘𝑡+1 −w∗


2 as
𝐸




w𝑘𝑡+1 −w∗


2
2

=𝐸







𝑄rand
(w𝑡 ) −w∗ − 𝜂𝑡

∑︁
𝑢∈[𝑈 ]

∇𝐹𝑘
(
𝑄
det

(
v𝑘𝑡,𝑢

)
; 𝜉𝑘𝑡,𝑢

)






2

2

=𝐸 ∥𝑄
rand
(w𝑡 ) −w∗∥22 − 2𝜂𝑡

∑︁
𝑢∈[𝑈 ]

𝐸

〈
𝑄
rand
(w𝑡 ) −w∗,∇𝐹𝑘

(
𝑄
det

(
v𝑘𝑡,𝑢

)
; 𝜉𝑘𝑡,𝑢

)〉
+ 𝜂2𝑡 𝐸







 ∑︁
𝑢∈[𝑈 ]

∇𝐹𝑘
(
𝑄
det

(
v𝑘𝑡,𝑢

)
; 𝜉𝑘𝑡,𝑢

)






2

2

≤𝐸 ∥𝑄
rand
(w𝑡 ) −w∗∥22 − 2𝜂𝑡

∑︁
𝑢∈[𝑈 ]

𝐸

〈
𝑄
rand
(w𝑡 ) −w∗,∇𝐹𝑘

(
𝑄
det

(
v𝑘𝑡,𝑢

)
; 𝜉𝑘𝑡,𝑢

)〉
+ 𝜂2𝑡𝑈 2𝐺2

=𝐸 ∥𝑄
rand
(w𝑡 ) −w∗∥22 − 2𝜂𝑡

∑︁
𝑢∈[𝑈 ]

𝐸

〈
𝑄
rand
(w𝑡 ) −w∗,∇𝐹𝑘

(
𝑄
det

(
v𝑘𝑡,𝑢

))〉
+ 𝜂2𝑡𝑈 2𝐺2

≤𝐸 ∥𝑄
rand
(w𝑡 ) −w∗∥22 + 2𝜂𝑡

©­«
∑︁

𝑢∈[𝑈 ]
𝐸 [−𝐹𝑘 (𝑄rand

(w𝑡 )) + 𝐹𝑘 (w∗)] +
𝐿

2




𝑄rand
(w𝑡 ) −𝑄det

(
v𝑘𝑡,𝑢

)


2ª®¬ + 𝜂2𝑡𝑈 2𝐺2

=𝐸 ∥𝑄
rand
(w𝑡 ) −w∗∥22 − 2𝑈𝜂𝑡𝐸 (𝐹𝑘 (𝑄rand

(w𝑡 )) − 𝐹𝑘 (w∗)) + 𝜂𝑡𝐿
∑︁

𝑢∈[𝑈 ]




𝑄rand
(w𝑡 ) −𝑄det

(
v𝑘𝑡,𝑢

)


2
2

+ 𝜂2𝑡𝑈 2𝐺2

where we use the fact that gradients are bounded, ∇𝐹𝑘
(
𝑄
det

(
v𝑘𝑡,𝑢

)
; 𝜉𝑘𝑡,𝑢

)
is an unbiased gradient estimate and property 1. We further restate

𝐸 ∥𝑄
rand
(w𝑡 ) −w∗∥22 as,

𝐸 ∥𝑄
rand
(w𝑡 ) −w∗∥22 = 𝐸



𝑟𝑄rand
(w𝑡 ) +w𝑡 −w∗



2
2
= 𝐸



𝑟𝑄rand
(w𝑡 )



2
2
+ 2𝐸

〈
𝑟𝑄rand

(w𝑡 ) ,w𝑡 −w∗
〉
+ 𝐸 ∥w𝑡 −w∗∥22

= 𝐸


𝑟𝑄rand

(w𝑡 )


2
2
+ 𝐸 ∥w𝑡 −w∗∥22

where we use the fact that 𝑄
rand

is an unbiased quantizer. Then, we have,

𝐸




w𝑘𝑡+1 −w∗


2
2

≤ 𝐸 ∥𝑄
rand
(w𝑡 ) −w∗∥22 − 2𝑈𝜂𝑡𝐸 (𝐹𝑘 (𝑄rand

(w𝑡 )) − 𝐹𝑘 (w∗)) + 𝜂𝑡𝐿
∑︁

𝑢∈[𝑈 ]




𝑄rand
(w𝑡 ) −𝑄det

(
v𝑘𝑡,𝑢

)


2
2

+ 𝜂2𝑡𝑈 2𝐺2

= 𝐸


𝑟𝑄rand

(w𝑡 )


2
2
+ 𝐸 ∥w𝑡 −w∗∥22 − 2𝑈𝜂𝑡𝐸 (𝐹𝑘 (𝑄rand

(w𝑡 )) − 𝐹𝑘 (w∗)) + 𝜂𝑡𝐿
∑︁

𝑢∈[𝑈 ]




𝑄rand
(w𝑡 ) −𝑄det

(
v𝑘𝑡,𝑢

)


2
2

+ 𝜂2𝑡𝑈 2𝐺2

Using Lemma 5 we have,

𝐸




𝑟𝑄rand

(
w𝑘𝑡+1

)


2
2

= 𝐸







𝑟𝑄rand

©­«𝑄rand
(w𝑡 ) − 𝜂𝑡

∑︁
𝑢∈[𝑈 ]

∇𝐹𝑘
(
𝑄
det

(
v𝑘𝑡,𝑢

)
; 𝜉𝑘𝑡,𝑢

)ª®¬







2

2

≤ 𝑆
√
𝑑𝐸







𝜂𝑡 ∑︁
𝑢∈[𝑈 ]

∇𝐹𝑘
(
𝑄
det

(
v𝑘𝑡,𝑢

)
; 𝜉𝑘𝑡,𝑢

)






2

≤ 𝑆
√
𝑑𝐺𝑈𝜂𝑡

where𝑈 is the number of local iterates. Finally, we can upper bound RHS as,

𝐸 ∥w𝑡+1 −w∗∥22 ≤
1

𝐾

©­«
∑︁
𝑘∈[𝐾 ]

𝐸




𝑟𝑄rand

(
w𝑘𝑡+1

)


2
2

+ 𝐸



w𝑘𝑡+1 −w∗


2

2

ª®¬
≤𝐸 ∥w𝑡 −w∗∥22 − 2𝑈𝜂𝑡𝐸 (𝐹 (𝑄rand

(w𝑡 )) − 𝐹 (w∗)) +
𝜂𝑡𝐿

𝐾

∑︁
𝑘∈[𝐾 ]

∑︁
𝑢∈[𝑈 ]




𝑄rand
(w𝑡 ) −𝑄det

(
v𝑘𝑡,𝑢

)


2
2

+ 2𝑆
√
𝑑𝐺𝑈𝜂𝑡 + 𝜂2𝑡𝑈 2𝐺2

=𝐸 ∥w𝑡 −w∗∥22 − 2𝑈𝜂𝑡𝐸 (𝐹 (𝑄rand
(w𝑡 )) − 𝐹 (w∗)) + 𝜂𝑡𝐿𝑈𝑉𝑡 + 2𝑆

√
𝑑𝐺𝑈𝜂𝑡 + 𝜂2𝑡𝑈 2𝐺2

This completes Eq. 7’s proof.
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Remark 7. Note that we extensively use unbiasedness of stochastic quantization via 𝐸
〈
Vector, 𝑟𝑄rand (w)

〉
= 0. Otherwise, we need to upper

bound this term. There exists cases where a biased resetting diverges [5]. Hence, stochastic quantization is needed for convergence.

Next, we prove Eq. 8 for upper bounding the drift 𝑉𝑡 in round 𝑡 defined in (8).

𝐸
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(w𝑡 )




2
2
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)
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(w𝑡 )



2
2
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(
𝑄
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(
v𝑘𝑡,𝑢

)
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)
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2
2
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𝑟𝑄det
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𝑄
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rand
(w𝑡 )




2
2

+𝑈𝐸
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v𝑘𝑡,𝑢+1

)
− 𝑟𝑄det

(
v𝑘𝑡,𝑢
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𝑄
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(
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)
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2
2

≤ 𝑈

𝑈 − 1𝐸
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(
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)
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rand
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2

+ 3𝑈𝐸
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2
2

+ 3𝑈𝐸
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2
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+ 3𝑈𝜂2𝑡 𝐸
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)
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)


2
2

≤ 𝑈
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rand
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2

+ 3𝑈𝐸
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v𝑘𝑡,𝑢+1

)


2
2

+ 3𝑈𝐸



𝑟𝑄det

(
v𝑘𝑡,𝑢

)


2
2

+ 3𝑈𝜂2𝑡𝐺2

where we use ∥x + y∥2
2
≤

(
1 + 1

𝐴

)
∥x∥2

2
+ (𝐴 + 1) ∥y∥2

2
, triangular inequality and bound on the gradients.

Let’s bound 𝐸
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)
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2

using Lemma 5 as,

𝐸




𝑟𝑄det

(
v𝑘𝑡,𝑢+1

)


2
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2

≤ 𝑆
√
𝑑𝐺𝑢𝜂𝑡

This leads to

𝐸
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≤ 𝑈

𝑈 − 1𝐸



𝑄det

(
v𝑘𝑡,𝑢

)
−𝑄

rand
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2
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+ 3𝑈𝜂2𝑡𝐺2

≤ 𝑈

𝑈 − 1𝐸



𝑄det

(
v𝑘𝑡,𝑢

)
−𝑄

rand
(w𝑡 )




2
2

+ 6𝑈 2𝑆
√
𝑑𝐺𝜂𝑡 + 3𝑈𝜂2𝑡𝐺2

Let’s unroll the recursion noting that 𝑄
det

(
v𝑘
𝑡,1

)
= 𝑄

rand
(w𝑡 ),

𝐸
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)
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≤ 𝑈

𝑈 − 1𝐸



𝑄det

(
v𝑘𝑡,𝑢

)
−𝑄

rand
(w𝑡 )




2
2

+ 6𝑈 2𝑆
√
𝑑𝐺𝜂𝑡 + 3𝑈𝜂2𝑡𝐺2

≤
(
𝑈

𝑈 − 1

)
2

𝐸




𝑄det

(
v𝑘𝑡,𝑢−1

)
−𝑄

rand
(w𝑡 )




2
2

+
(
6𝑈 2𝑆

√
𝑑𝐺𝜂𝑡 + 3𝑈𝜂2𝑡𝐺2

) (
1 + 𝑈

𝑈 − 1

)
. . .

≤
(
6𝑈 2𝑆

√
𝑑𝐺𝜂𝑡 + 3𝑈𝜂2𝑡𝐺2

) (
1 + 𝑈

𝑈 − 1 + . . . +
(
𝑈

𝑈 − 1

)𝑢−1)
Let’s bound the second term in the RHS as,

1 + 𝑈

𝑈 − 1 + . . . +
(
𝑈

𝑈 − 1

)𝑢−1
≤ 𝑢

(
𝑈

𝑈 − 1

)𝑢−1
= 𝑢

(
1 + 1

𝑈 − 1

)𝑢−1
≤ 𝑈

(
1 + 1

𝑈 − 1

)𝑈 −1
≤ 𝑈𝑒 ≤ 3𝑈

Hence we get

𝐸




𝑄det

(
v𝑘𝑡,𝑢+1

)
−𝑄

rand
(w𝑡 )




2
2

≤ 18𝑈 3𝑆
√
𝑑𝐺𝜂𝑡 + 9𝑈 2𝜂2𝑡𝐺

2
(9)

Note that we inherently assume 𝑈 > 1 in order to have a coefficient as
𝑈
𝑈 −1 . Assume 𝑈 = 1. Then we have, 𝑉𝑡 = 0 by definition and Eq. 9

holds. If we average Eq. 9 over𝑈 and 𝐾 we get Eq. 8 as, 𝑉𝑡 ≤ 18𝑈 3𝑆
√
𝑑𝐺𝜂𝑡 + 9𝑈 2𝜂2𝑡𝐺

2
.

□
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C.3 Proof of the Main Theorem

Now, we are ready to present the main theorem on the convergence of the proposed FP8FedAvg-UQ algorithm.

Theorem C.1 (FP8FedAvg-UQ Convergence). For convex and smooth federated losses with bounded unbiased stochastic gradients
using a quantization method with bounded scales during training and an unbiased quantization with bounded scales for model
transfer, we have,

𝐸 [𝐹 (𝑄 (w𝜏 )) − 𝐹 (w∗)] = 𝑂
(

1

√
𝑇𝑈
∥w1 −w∗∥22 +

1

𝑇
𝑈𝐺2𝐿 + 1

√
𝑇
𝐺
√
𝑈

(
𝐺 +𝑈 2𝑆

√
𝑑𝐿

)
+ 𝑆
√
𝑑𝐺

)
where 𝜏 is a random variable that takes values in {1, 2, . . . ,𝑇 } with equal probability, 𝑇 is the number of rounds, 𝑈 is the total
number of updates done in each round, the quantization scales 𝑠𝑖 are uniformly bounded by 𝑆 , w1 is the initial model, and w∗ is
an optimal solution of (1).

Combining Eq. 7 and 𝜂𝑡𝐿𝑈 times Eq. 8 gives,

𝐸∥w𝑡+1 −w∗∥22 ≤ 𝐸 ∥w𝑡 −w∗∥
2

2
− 2𝑈𝜂𝑡𝐸 (𝐹 (𝑄rand

(w𝑡 )) − 𝐹 (w∗)) + 2𝑆
√
𝑑𝐺𝑈𝜂𝑡 + 𝜂2𝑡𝑈 2𝐺2 + 18𝑈 4𝑆

√
𝑑𝐺𝜂2𝑡 𝐿 + 9𝑈 3𝜂3𝑡𝐺

2𝐿

Rearranging the terms and dividing both sides with 2𝑈𝜂𝑡 gives,

𝐸 [𝐹 (𝑄
rand
(w𝑡 )) − 𝐹 (w∗)] ≤

1

2𝑈𝜂𝑡

(
−𝐸∥w𝑡+1 −w∗∥22 + 𝐸 ∥w𝑡 −w∗∥

2

2

)
+ 𝑆
√
𝑑𝐺 + 1

2

𝜂𝑡𝑈𝐺
2 + 9𝑈 3𝑆

√
𝑑𝐺𝜂𝑡𝐿 +

9

2

𝑈 2𝜂2𝑡𝐺
2𝐿

Let 𝜂𝑡 =
1√
𝑈𝑇

. Note that we can get the same rate with a decreasing learning rate as well. Let’s average the inequality over 𝑡 as,

𝐸

[ [
1

𝑇

𝑇∑︁
𝑡=1

𝐹 (𝑄
rand
(w𝑡 ))

]
− 𝐹 (w∗)

]
≤ 1

2

√
𝑇𝑈

[
−𝐸∥w𝑇+1 −w∗∥22 + 𝐸∥w1 −w∗∥22

]
+ 1

𝑇

9

2

𝑈𝐺2𝐿 + 1

√
𝑇
𝐺
√
𝑈

(
1

2

𝐺 + 9𝑈 2𝑆
√
𝑑𝐿

)
+ 𝑆
√
𝑑𝐺

≤ 1

2

√
𝑇𝑈
∥w1 −w∗∥22 +

1

𝑇

9

2

𝑈𝐺2𝐿 + 1

√
𝑇
𝐺
√
𝑈

(
1

2

𝐺 + 9𝑈 2𝑆
√
𝑑𝐿

)
+ 𝑆
√
𝑑𝐺

= 𝑂

(
1

√
𝑇𝑈
∥w1 −w∗∥22 +

1

𝑇
𝑈𝐺2𝐿 + 1

√
𝑇
𝐺
√
𝑈

(
𝐺 +𝑈 2𝑆

√
𝑑𝐿

)
+ 𝑆
√
𝑑𝐺

)
□
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