
A Learning Algorithm

Algorithm 1: Learning algorithm for Dr.k-NN
Input: Sm := {(xi

, y
i) : yi = m, 8i} ⇢ S, m = 1, . . . ,M ;

Output: The feature mapping �(·; ✓) and the LFD P
⇤
1 , . . . , P

⇤
M supported on training samples;

Initialization: ✓0 is randomly initialized; n0
< n is the size of “mini-set”; t = 0;

while t < T do

for number of mini-sets do

Randomly generate M integers n1, . . . , nM such that
PM

m=1 nm = n
0
, nm > 0, 8m;

Initialize two ordered sets b⌅ = ;, bP = ;;
for m 2 {1, . . . ,M} do

Xm Randomly sample nm points from Sm;
b⌅m {⇠ := �(x; ✓t) : x 2 Xm};
bPm 1

nm

Pnm

i=1 �⇠im
, ⇠

i
m 2 b⌅m;

b⌅ b⌅ [b⌅m; bP bP [bPm;
end

Update the probability mass of LFDs P ⇤
1 , . . . , P

⇤
M on b⌅ by solving (9) given b⌅, bP ;

end

✓t+1 ✓t � ↵rJ(✓t;P ⇤
1 , . . . , P

⇤
M), where ↵ is the learning rate;

t t+ 1;
end

B Proofs for Section 3

B.1 Proof of Theorem 1

The proof of Theorem 1 is based on the following two lemmas.
Lemma 1. Fix probability distributions P1, . . . , PM 2P(b⌅), where b⌅ = {⇠1, . . . , ⇠n}. Then

 (P1, . . . , PM) := min
⇡:b⌅!�M

 (⇡;P1, . . . , PM) = M �
nX

i=1

max
1mM

Pm(⇠i).

Furthermore, the optimal classifier ⇡
⇤

satisfies that for any ⇠
i 2 b⌅,

�
m : ⇡⇤

m(⇠i) > 0, 1  m M

⇢ argmax

1mM

Pm(⇠i)
PM

m=1 Pm(⇠i)
.

This lemma gives a closed-form expression for the risk of the optimal classifier if P1, . . . , PM are
known, and shows that the optimal decision ⇡⇤ accepts the class with the maximum likelihood.
Moreover, when there is a tie (i.e., the set argmax1mM Pm(⇠) is not singleton), the optimal
decision ⇡⇤ can break the tie arbitrarily.

Proof of Lemma 1. We here prove a more general result for an arbitrary sample space ⌅. Note that
each Pm, 1  m M , is absolutely continuous with respect to P1 + · · ·+ PM , hence the Radon-
Nikodym derivative dPm

d(P1+···+PM) exists. Using the interchangeability principle [37] that enables us
to exchange the minimization and integration, we have

min
⇡:⌅!�M

 (⇡;P1, . . . , PM) = min
⇡:⌅!�M

Z

⌅

h MX

m=1

(1� ⇡m(⇠)) dPm
d(P1+···+PM) (⇠)

i
d(P1 + · · ·+ PM)

=

Z

⌅
min

⇡2�M

h MX

m=1

(1� ⇡m) dPm
d(P1+···+PM) (⇠)

i
d(P1 + · · ·+ PM)

=

Z

⌅

h
1� max

1mM

dPm
d(P1+···+PM) (⇠)

i
d(P1 + · · ·+ PM),

(14)

14

where the first equality is obtained by plugging in the definition of in (1); the second equality is due
the interchangeability principle; and the last equality holds because for any ⇠, the inner minimization
attains its minimum at one of the vertices of�M . More specifically, note that for each ⇠, the objective
of the inner minimization problem equals to 1 �

PM
m=1 ⇡m

dPm
d(P1+···+PM) (⇠). Under the constaint

that ⇡ 2 �M , i.e.,
PM

m=1 ⇡m = 1, we have:

MX

m=1

⇡m
dPm

d(P1 + · · ·+ PM)
(⇠)  max

1mM

dPm

d(P1 + · · ·+ PM)
(⇠),

and the equality holds when ⇡ are chosen such that

{m : ⇡m > 0, 1  m M} ⇢ argmax
1mM

dPm(⇠)
PM

m=1 dPm(⇠)
.

If there is a single maximum in { dPm
d(P1+···+PM) (⇠), 1  m M}, say at index m

⇤, then this simply
implies that the optimal ⇡ is chosen as ⇡m⇤ = 1 and ⇡m = 0 for m 6= m

⇤.

If we substitute ⌅ with the empirical support b⌅, the above formulation in Equation (14) translates into

min
⇡:b⌅!�M

 (⇡;P1, . . . , PM) = M �
nX

i=1

max
1mM

Pm(⇠i),

therefore the lemma is proved.

Lemma 2. For the uncertainty sets defined in (7), the problem maxPm2Pm,1mM (P1, . . . , PM)
is equivalent to (9).

Proof of Lemma 2. Recall that the Wasserstein metric of order 1 is defined as

W(P, P 0) := min
�

E(⇠,⇠0)⇠� [c(⇠, ⇠
0)]

for any two distributions P and P
0 on ⌅, where the minimization of � is taken over the set of all

probability distributions on ⌅⇥ ⌅ with marginals P and P
0, i.e., the set

⇢
� 2P(⌅⇥ ⌅) :

Z

⌅
�(⇠, ⇠0)d⇠0 = P (⇠),

Z

⌅
�(⇠, ⇠0)d⇠ = P

0(⇠0), 8⇠, ⇠0 2 ⌅
�
,

where P(⌅⇥ ⌅) denotes the joint probability distributions on ⌅⇥ ⌅. Therefore, the Wasserstein
metric W(P, P 0) can be rewritten as

min
�

⇢Z

⌅⇥⌅
c(⇠, ⇠0)�(⇠, ⇠0)d⇠d⇠0 :

Z

⌅
�(⇠, ⇠0)d⇠0 = P (⇠),

Z

⌅
�(⇠, ⇠0)d⇠ = P

0(⇠0), 8⇠, ⇠0 2 ⌅
�

By the definition of uncertainty sets in (7) which contains discrete distributions supported on b⌅, we can
introduce additional variables �m 2 Rn⇥n

+ which represents the distribution on b⌅⇥ b⌅, with marginals
Pm 2 Pm and bPm, for 1  m  M . For any ⇠i, ⇠j 2 b⌅, let �i,jm denotes �m(⇠i, ⇠j) for simplicity.
Thus the objective function in the above reformualtion of W(Pm, bPm) is

Pn
i=1

Pn
j=1 �

i,j
m c(⇠i, ⇠j).

The constraints W(Pm, bPm)  #m in (7) can be rewritten using �m as
nX

i=1

nX

j=1

�
i,j
m c(⇠i, ⇠j)  #m, m = 1, . . . ,M.

Furthermore, the marginal distribution constraint of �m reads:
nX

i=1

�
i,j
m = bPm(⇠j),

nX

j=1

�
i,j
m = Pm(⇠i), m = 1, . . . ,M.

Thereby the problem maxPm2Pm,1mM (P1, . . . , PM) is equivalent to the convex optimization
formulation in (9).

15

Proof to Theorem 1. By Lemmas 1 and 2, we have

max
Pm2Pm,1mM

min
⇡:b⌅!�M

 (⇡;P1, . . . , PM) = max
Pm2Pm,1mM

 (P1, . . . , PM) = (9).

To prove Theorem 1, it remains to verify the validity of exchanging max and min. We identify
⇡ as (⇡1

, . . . ,⇡
n), where ⇡i 2 RM

+ satisfies
PM

m=1 ⇡
i
m = 1. Similar to the proof of Lemma 2,

Pm, 1  m  M , can also be identified as a vector in Rn. Note that the objective function
 (⇡;P1, . . . , PM) is linear in (⇡1

, . . . ,⇡
n) and concave in (P1, . . . , PM), and the Slater condition

holds. Hence applying convex programming duality we can exchange max and min and thus the result
follows. It is worth mentioning that the optimal solution ⇡⇤ and corresponding LFDs P ⇤

1 , . . . , P
⇤
M

always exist since they are solutions to a saddle point problem.

B.2 Proof of Theorem 2

Proof of Theorem 2. On the one hand, since ⇡knn(·; k,w) can be regarded as a special case of the
general classifier ⇡ : ⌅! �M , it holds that

min
wm:⌅⇥⌅!R+, 1mM

1kn

max
Pm2Pm,1mM

MX

m=1

E⇠m⇠Pm [1� ⇡knn
m (⇠m; k, w)]

� min
⇡:b⌅!�M

max
Pm2Pm,1mM

MX

m=1

E⇠m⇠Pm [1� ⇡m(⇠m)].

On the other hand, by Lemma 2, there exists an optimal solution to the minimax problem (8),
denoted as (P ⇤

1 , . . . , P
⇤
M), and the optimal classifier ⇡⇤ as given in Lemma 1. Note that there exists

1  k
⇤  n and weight functions w⇤

1 , . . . , w
⇤
M such that

⇡
knn
m (⇠; k⇤, w⇤) = ⇡

⇤
m(⇠), 8⇠ 2 b⌅, (15)

for example, by taking k
⇤ = 1 and w

⇤
m = P

⇤
m, 1  m M . This implies that

min
wm:⌅⇥⌅!R+, 1mM

1kK

max
Pm2Pm,1mM

MX

m=1

E⇠m⇠Pm [1� ⇡knn
m (⇠m; k,w)]

 max
Pm2Pm,1mM

MX

m=1

E⇠m⇠Pm [1� ⇡knn
m (⇠m; k⇤, w⇤)]

= max
Pm2Pm,1mM

MX

m=1

E⇠m⇠Pm [1� ⇡⇤
m(⇠m)]

= min
⇡:b⌅!�M

max
Pm2Pm,1mM

MX

m=1

E⇠m⇠Pm [1� ⇡m(⇠m)].

Thereby we have shown that formulations (6) and (8) have identical optimal values. Moreover,
by the strong duality results in Theorem 1, we know (⇡⇤;P ⇤

1 , . . . , P
⇤
M) is the saddle point for the

formulation (8), and by the above arguments, we see that (⇡knn;P ⇤
1 , . . . , P

⇤
M) leads to the same

optimal value for formulation (6) as (⇡⇤;P ⇤
1 , . . . , P

⇤
M) for formulation (8). Therefore, we show that

⇡
knn is indeed the optimal solution to (6).

B.3 Proof of Theorem 3

Proof of Theorem 3. We first show the equivalence between the Lipschitz regularized problem (11)
and the minimax problem (8). Denote by vLip the optimal value of (11) and vdual the optimal value of
(10).

Observe that if k⇡mkLip  �m, then

max
⇠2b⌅

n
1� ⇡m(⇠)� �mc(⇠, b⇠)

o
= 1� ⇡m(⇠̂), 8⇠̂ 2 b⌅.

16

Therefore, we have

vdual  min
⇡: b⌅!�M , (�m)1mM�0, k⇡mkLip�m

(
MX

m=1

�m#m + E⇠̂⇠ bPm

"
max
⇠2b⌅

n
1� ⇡m(⇠)� �mc(⇠, ⇠̂)

o#)

= min
⇡: b⌅!�M

(
MX

m=1

k⇡mkLip#m + E⇠̂⇠ bPm

h
1� ⇡m(⇠̂)

i)

=vLip.

If we can show vdual � vLip, then we prove the equivalence between (11) and (10), thus the equivalence
between (11) and (8).

Let (⇡⇤;�⇤1, . . . ,�
⇤
M) be a dual minimizer of problem (10), whose existence is ensured by [17].

Define
�m(⇠) := max

⇠̃2b⌅

n
1� ⇡⇤

m(⇠̃)� �⇤mc(⇠̃, ⇠)
o
, m = 1, . . . ,M.

Then it follows that

⇡
⇤
m(⇠̃) � 1� �⇤mc(⇠̃, ⇠)� �m(⇠), 8⇠, ⇠̃ 2 b⌅, m = 1, . . . ,M.

Define
⇡̃m(⇠̃) := max

⇠2b⌅
{1� �⇤mc(⇠, ⇠̃)� �m(⇠)}, m = 1, . . . ,M.

Then by definition, k⇡̃mkLip  �
⇤
m. Indeed, for any ⇠, ⇠̃ 2 b⌅, there exists a ⇠0 2 argmax⇠̂2b⌅{1�

�
⇤
mc(⇠̂, ⇠)� �m(⇠̂)} such that:

⇡̃m(⇠)� ⇡̃m(⇠̃) =1� �⇤mc(⇠0, ⇠)� �m(⇠0)� ⇡̃m(⇠̃)

[1� �⇤mc(⇠0, ⇠)� �m(⇠0)]� [1� �⇤mc(⇠0, ⇠̃)� �m(⇠0)]

=�⇤mc(⇠0, ⇠̃)� �⇤mc(⇠0, ⇠)

�⇤mc(⇠, ⇠̃).

Furthermore, since ⇡̃m(⇠̃) � 1 � �
⇤
mc(⇠, ⇠̃) � �m(⇠), 8⇠, ⇠̃, we have �m(⇠) � 1 � ⇡̃m(⇠̃) �

�
⇤
mc(⇠, ⇠̃), 8⇠̃ 2 b⌅. Hence, we have �m(⇠) � max⇠̃2b⌅

n
1� ⇡̃m(⇠̃)� �⇤mc(⇠, ⇠̃)

o
. Recall that

(⇡⇤;�⇤1, . . . ,�
⇤
M) is a dual minimizer of problem (10):

vdual :=
MX

m=1

�
⇤
m#m+E⇠̂⇠ bPm

"
max
⇠2b⌅

n
1� ⇡⇤

m(⇠)� �⇤mc(⇠, ⇠̂)
o#

=
MX

m=1

�
⇤
m#m+E⇠̂⇠ bPm

h
�m(⇠̂)

i
,

thus

vdual �
MX

m=1

�
⇤
m#m+E⇠̂⇠ bPm

"
max
⇠2b⌅

n
1� ⇡̃m(⇠)� �⇤mc(⇠, ⇠̂)

o#
=

MX

m=1

�
⇤
m#m+E⇠̂⇠ bPm

h
1� ⇡̃m(⇠̂)

i
.

Since vdual is the minimum value, this means that if ⇡̃ is a feasible solution, then it is also an optimal
solution to (10).

Next we verify ⇡̃ is a feasible classifier, i.e., it satisfies 0  ⇡̃(⇠)  1 and
PM

m=1 ⇡̃m(⇠) = 1, 8⇠.
First, by definition, ⇡⇤

m(⇠̃) � ⇡̃m(⇠̃), 8⇠̃ 2 b⌅, therefore ⇡̃m(⇠̃)  1 and
PM

m=1 ⇡̃m(⇠̃)  1. If we
are able to show that

MX

m=1

⇡̃m(⇠̃) � 1, 8⇠̃ 2 b⌅, (16)

then we can show ⇡̃ is indeed a feasible classifier.

To show (16), first note that if ⇡⇤
m(⇠̃) = 0, then we have by definition ⇡̃m(⇠̃) = 0. Moreover, for any

⇠̃ 2 b⌅, there is a set M0 ⇢ {1, . . . ,M} such that for all m 2M0, ⇡⇤
m(⇠̃) > 0, and the worst-case

17

distribution P
⇤
m transports probability mass from supp bPm to ⇠̃, which suggests that there exits

⇠̂m 2 supp bPm such that

⇠̃ 2 argmax
⇠2b⌅

{1� ⇡⇤
m(⇠)� �⇤mc(⇠, ⇠̂m)}.

It follows from the definition of �m that
X

m2M0

�m(⇠̂m) =
X

m2M0

⇣
1� ⇡⇤

m(⇠̃)� �⇤mc(⇠̃, ⇠̂m)
⌘
.

Meanwhile, by definition of ⇡̃m,
X

m2M0

⇡̃m(⇠̃) �
X

m2M0

⇣
1� �⇤mc(⇠̃, ⇠̂m)� �m(⇠̂m)

⌘
=

X

m2M0

⇡
⇤
m(⇠̃) = 1.

Thereby we have shown (16). The proof is completed by noting that the optimal solution ⇡̃ satisfies
k⇡̃mkLip  �

⇤
m and thus vdual � vLip. Combine with the previous result that vdual  vLip, we have

shown vdual = vLip and the proof is completed.

C Memory-efficient implementation of Dr.k-NN in data-intensive scenario

For the sake of completeness, we extend our algorithm to non-few-training-sample setting. This
can be particularly useful for the general classification problem with an arbitrary size of training set.
In fact, k-NN methods notoriously suffer from computational inefficiency if the number of labeled
samples n is large, since it has to store and search through the entire training set [19].

(a) Dr.k-NN (b) ⌧ -truncated set (c) Truncated

Figure 6: An example of the truncated Dr.k-NN using MNIST (digit 4 (red) and 9 (blue)). Big dots
represent training samples and small dots represent query samples. (a) shows the decision made by
Dr.k-NN; (c) shows the decision made by the truncated Dr.k-NN with truncation level ⌧ = 0.9; (b)
shows ⌧ -truncated regions with ⌧ = 0.95, 0.9, 0.8. Big dots between the lines are selected training
samples under different ⌧ . The depth of the shaded area shows the level of samples entropy.

The main idea is to only keep the training samples that are important in deciding the decision boundary
based on the maximum entropy principle [11]. As a measure of importance, we choose the samples
with the largest entropy across all categories, based on the intuition that the samples with higher
entropy has larger uncertainty and will be more useful for classification purposes since they tend
to lie on the decision boundary. The entropy of a sample is defined as follows. Consider a random
variable which takes value m with probability ⇡m,

PM
i=1 ⇡m = 1; then the entropy of this random

variable is define as

H(⇡1, . . . ,⇡M) = �
MX

m=1

⇡m log ⇡m.

As a simple example, for Bernoulli random variable (which can represent, e.g., the outcome for
flipping a coin with bias p), the entropy function is H(p) = �p log p � (1 � p) log(1 � p), and it

18

is a concave function achieving the maximum at p⇤ = 1/2, which means that the fair-coin has the
maximum entropy; this is intuitive as indeed the outcome of a fair coin toss is the most difficult to
predict. Now we use this entropy to define the “uncertainty” associated with each training points.
With a little abuse of notation, define

H(b⇠) := H(⇡1(b⇠), . . . ,⇡M (b⇠)).

Denote the minimal and maximal entropy of all the training points as

Hmin = min{H(b⇠), b⇠ 2 b⌅}, Hmax = max{H(b⇠), b⇠ 2 b⌅}.

Define the ⌧ -truncated training set as

e⌅ = {b⇠ 2 b⌅ : (H(b⇠)�Hmin)/(Hmax �Hmin) � ⌧}, 8⌧ 2 [0, 1].

The truncated Dr.k-NN is obtained similarly as Step 2 of Dr.k-NN by restricting the training set b⌅
only to the samples in e⌅ (samples with larger entropy). Figure 6 reveals that the most informative
samples usually lie in between categories. We can see that a truncated Dr.k-NN classifier with
⌧ = 0.9 only uses 20% samples with little performance loss. More experimental details is presented
in Section 5.

19

D Comparison to kernel smoothing

Figure 7 and Figure 8 present a comparison of the results using Dr.k-NN and the kernel smoothing
defined in (13). The results suggest that the performance of Dr.k-NN is insensitive to the choice of k,
while the performance of the kernel smoothing is heavily depended on the choice of h.

(a) k = 1 (b) k = 2 (c) k = 3 (d) k = 4

(e) k = 5 (f) k = 6 (g) k = 7 (h) k = 8

Figure 7: Dr.k-NN with different k.

(a) h = 10�4 (b) h = 10�3 (c) h = 10�2 (d) h = 10�1

(e) h = 1 (f) h = 10 (g) h = 102 (h) h = 103

Figure 8: Kernel smoothing with different bandwidth h.

20

E Real data examples for COVID-19 CT

Figure 9 and Figure 10 show 16 real CT images collected from patients who have been diagnosed
with COVID-19 and other diseases (non-COVID-19), respectively.

Figure 9: COVID-19 CT images.

Figure 10: Non-COVID-19 CT images.

21

	Introduction
	Distributionally Robust k-NN
	Weighted k-NN classifier
	Distributionally robust k-NN

	Theoretical Properties
	Robust Classification
	Expressiveness of Weighted k-NN
	Lipschitz Regularization

	Proposed Algorithm Dr.k-NN
	Dr.k-NN algorithm
	Joint learning framework

	Experiments
	Conclusion
	Learning Algorithm
	Proofs for Section 3
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Memory-efficient implementation of Dr.k-NN in data-intensive scenario
	Comparison to kernel smoothing
	Real data examples for COVID-19 CT

