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Learning Unknowns from Unknowns: Diversified Negative
Prototypes Generator for Few-Shot Open-Set Recognition

Anonymous Authors

ABSTRACT
Few-shot open-set recognition (FSOR) is a challenging task that
requires a model to recognize known classes and identify unknown
classes with limited labeled data. Existing approaches, particularly
Negative-Prototype-Based methods, generate negative prototypes
based solely on known class data. However, as the unknown space
is infinite while the known-space is limited, these methods suffer
from limited representation capability. To address this limitation, we
propose a novel approach, termed Diversified Negative Prototypes
Generator (DNPG), which adopts the principle of "learning un-
knowns from unknowns." Ourmethod leverages the unknown space
information learned from base classes to generate more representa-
tive negative prototypes for novel classes. During the pre-training
phase, we learn the unknown space representation of the base
classes. This representation, along with inter-class relationships, is
then utilized in the meta-learning process to construct negative pro-
totypes for novel classes. To prevent prototype collapse and ensure
adaptability to varying data compositions, we introduce the Swap
Alignment (SA) module. Our DNPG model, by learning from the
unknown space, generates negative prototypes that cover a broader
unknown space, thereby achieving state-of-the-art performance on
three standard FSOR datasets. We provide the source code in the
supplementary materials for reproducibility.

CCS CONCEPTS
• Computing methodologies → Computer vision.

KEYWORDS
Few-shot, Open-set, Learning unknowns from unknowns, Negative-
Prototype-Based, Diversified negative prototypes

1 INTRODUCTION
Deep learning [9, 13, 14] has significantly advanced various do-
mains, largely due to its ability to leverage extensive training data.
Conventionally, deep models are trained under the closed-set as-
sumption, where the classes in the training data align with those
in the test data. However, real-world scenarios often present more
complex challenges. Firstly, acquiring a large volume of labeled
data is frequently impractical, especially when data collection is
costly or involves sensitive information. For instance, datasets for
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Figure 1: Task setting for FSOR: The model undergoes a two-
phase pre-training on base class data, followed by testing
where it classifies novel classes (green, gray, orange boxes)
and identifies unknown class samples (red box).

rare disease diagnosis are typically small, and new users in recom-
mendation systems have limited records. Secondly, models must
contend with unknown data that falls outside the scope of training
classes, such as online shopping platforms needing to identify and
update new user-uploaded products.

To address these challenges, Few-Shot Open-Set Recognition
(FSOR) [10, 15, 17, 22, 31, 35] has emerged as a critical task. FSOR
demands that amodel utilizeminimal training data from the support
set to effectively recognize the query set, which involves classifying
known-class samples and identifying unknown-class samples. This
can be viewed as an N+1 classification problem (add an "Unknown"
class), as depicted in Figure 1. The FSOR model undergoes pre-
training on base classes with ample data, which do not overlap with
novel classes, before transitioning to the novel-class stage.

Since the unknown class can be understood as an extra class
against known classes, a common strategy is to learn a representa-
tion for this unknown class, referred to as the negative prototype
(NP), and perform an N+1 classification task using the prototypes of
both known and unknown classes [6]. Existing methods [15, 31, 41]
typically generate NPs based on known-class data, as depicted in
Figure 2(a). However, this approach inherently limits the diversity
of the NPs, as they tend to retain characteristics of the known
classes. For instance, an NP generated for the "Dalmatian" class
might resemble a generic dog with altered features, failing to repre-
sent the vast diversity of the unknown space. The unknown space
is theoretically infinite, encompassing a wide range of samples that
cannot be directly derived from known classes, such as a guitar
being an unknown sample relative to the "Dalmatian" class.

To overcome this limitation, we propose a novel approach to gen-
erate diversified NPs by learning unknowns from unknowns,
thus alleviating the constraints imposed by known-class informa-
tion. As illustrated in Figure 2(b), during the base-class stage, we

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(a) Existing Negative-Prototype-Based FSOR method.

(b) Our Diversified Negative Prototypes Generator method.
Figure 2: (a) Existing SOTA FSOR methods, like ATTG [15],
generate Negative Prototypes (NPs) from support samples,
leading to limited diversity (e.g., "Dalmatian" NPs resemble
dog-like animals). (b) Our DNPG model leverages the un-
known space representation (open weights) of base classes
to produce diversified NPs in the test phase.

leverage extensive data to learn the inverse representation of each
base class, which we term the open weight. This representation
captures the essence of what is not that class, effectively repre-
senting the corresponding unknown space. During the novel-class
stage, utilizing these open weights to generate NPs allows for a
broader coverage of the unknown space, enhancing the representa-
tion of diverse unknown-class samples. For example, open weights
derived from base classes such as cars and planes could correspond
to entities like rocks, trees, or the sun, which are unrelated to the
given base classes. Consequently, during the novel-class stage, the
model can generate diversified NPs for the "Dalmatian" class that
are not confined to dog-like animals as shown in Figure 2(b).

However, a challenge arises as the open weights, derived from
base classes, remain static during the novel-class stage. This can
lead to the generated NPs collapsing into a single point, reducing
their effectiveness. To address this, we further introduce the Swap
Alignment (SA) module, which ensures that NPs model distinct
unknown spaces for different novel-class data, thereby preserving
their diversity. During the base-class stage, we sample a set of non-
overlapping base classes as pseudo-unknown classes and minimize
the distance between the generated NPs and these pseudo-unknown
classes. Simultaneously, known class samples and pseudo-unknown
class samples together form the swap tasks, where, at the prototype
level, the distances between NPs and the pseudo-unknown class
samples are further reduced. This approach ensures that each gen-
erated NP is distinct from all current known-class representations,
preventing collapse and enabling adaptation to the current known
classes.

In summary, our main contributions are as follows.

• We propose a novel FSOR method, the Diversified Nega-
tive Prototypes Generator (DNPG), to generate diversified
negative prototypes by learning unknowns from unknowns,
using the inverse representation of base classes.

• We introduce the Swap Alignment module to prevent NP
collapse and enhance adaptation to novel-class data, further
increasing the diversity of NPs.

• Extensive experiments have been carried out on multiple
widely used FSOR datasets to prove that our DNPG model is
superior to the current state-of-the-art methods.

2 RELATEDWORK
Few-Shot Learning. Few-shot learning in visual classification ad-
dresses the challenge of classifying with limited support samples.
Methods can be broadly categorized into transfer learning, which
leverages pre-trained models from related tasks [33, 37], and meta-
learning, which includes model-based [4, 23], metric-based [12, 30],
and optimization-based approaches [1, 16]. Model-based meth-
ods adapt quickly to new tasks with minimal data, metric-based
methods optimize the distance distribution between samples, and
optimization-based methods focus on efficient model training with
limited examples.
Open-Set Recognition.Current open-set recognitionmethods can
be categorized based on their approach to discriminating unknown
class samples, including similarity threshold-based methods [2, 8,
29], and density threshold-based methods [20, 39]. Additionally, a
new trend has emerged, where Gaussian Mixture Models (GMMs)
are applied to model closed-set distributions [7, 21], enabling the
models to directly reject unknown class samples. However, no
previous work has employed GMMs to address the FSOR task. This
is mainly attributed to the difficulty of learning the joint distribution
of classes and pixel features when only a limited number of labeled
samples from the novel classes are available.
Few-Shot Open-set Recognition. FSOR combine the challenges
of FSL and OSR, requiring the completion of OSR tasks with limited
support samples. PEELER [22] proposes to train and test FSOR tasks
in a meta-learning pattern. RFDNet [10] suggests meta-learning
a feature displacement relative to a pre-trained reference feature
embedding. SnaTCHer [17] identifies unknown samples based on
the transformation consistency, which measures the difference be-
tween transformed prototypes and a modified prototype set. The
GEL [35] model utilizes an energy function as the discriminative cri-
terion and introduces a pixel-level prototype network. ReFOCS [24]
adopts a generative approach to dynamically adjust the similarity
threshold by reconstructing samples. OPP [32] proposes construct-
ing an overall positive prototype and then filters out unknown
class samples using a threshold method. MSCL [40] combines the
strengths of supervised contrastive learning and meta-learning to
effectively increase inter-class distinctions and reinforce intra-class
compactness. MRM [5] proposes enlarging the margin between dif-
ferent classes by extracting the multi-relationship of paired samples
to dynamically refine the decision boundary for known classes and
implicitly delineate the distribution of unknowns.
Negative-Prototype-Based FSOR Methods. These FSOR meth-
ods learns one or multiple prototypes for unknown class samples,
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thereby transforming the open-set recognition task into an N+1 clas-
sification task. Existing Negative-Prototype-Based FSOR methods:
ProCAM [31] learns NPs by extracting the background of support
set images, ATTG [15] uses attention mechanisms to generate NPs
that are distant from known class samples. ASOP [18] proposes
to generate a negative prototype closest to open-set samples and
second-closest to closed-set samples. TNPNet [38] adopts a trans-
ductive learning approach, leveraging both local and global contexts
to enhance prototypes and negative prototypes. However, these
methods utilize known class samples from the support set to learn
NPs, which inevitably leads to the NPs inheriting the characteristics
of the known class samples. As a consequence, the learned NPs are
limited in their ability to model the unknown space, as illustrated
in Figure 2 (a).
Multiple Prototypes Model. This approach involves generat-
ing multiple prototypes to represent a batch of data. Methods
like [6, 15] generate multiple negative prototypes, but often face
challenges such as prototype collapse and ineffective utilization of
prototypes. Some studies [25, 36] attempt to address these issues
with an equipartition constraint, but these methods may not per-
form well in small-sample open-set recognition tasks and could
potentially decrease model performance.

3 PRELIMINARIES
3.1 Few-Shot Open-Set Recognition Setting
FSOR task aims to achieve accurate classification of known classes
with limited support samples while effectively identifying instances
from unknown classes. Formally, an FSOR task T is defined as a
triplet T = {S, 𝑄𝑘 , 𝑄𝑢 }, comprising a support set S = {𝑥𝑖 , 𝑦𝑖 } |𝑆 |𝑖=1,
a query set 𝑄𝑘 = {𝑥𝑖 , 𝑦𝑖 } |𝑄𝑘 |𝑖=1 for known classes, and an open-set
query set 𝑄𝑢 = {𝑥𝑖 , 𝑦𝑖 } |𝑄𝑢 |𝑖=1 for unknown classes. The support set
S contains 𝐾 samples per class, where 𝐾 is typically small (e.g., 1
or 5). The labels 𝑦 for the support set S and query set 𝑄𝑘 belong to
the set of novel known classes C𝑘 , while the labels for 𝑄𝑢 belong
to the set of unknown classes C𝑢 , with C𝑘 ∩ C𝑢 = ∅.

A proficient FSOR model should: (1) accurately classify images
from the query set 𝑄𝑘 into the corresponding known classes using
the knowledge encapsulated in the support set S, and (2) effec-
tively recognize images from classes not represented in the current
support set (i.e., samples from𝑄𝑢 ) as belonging to unknown classes.

3.2 Negative-Prototype-Based FSOR
Negative-prototype-based FSOR approaches transform the open-set
recognition problem into an (𝑁 + 1)-way closed-set classification
task by introducing Negative Prototypes (NPs). In the absence of
unknown-class samples, a prototype-based few-shot classifier can
be formulated as

argmax𝑐
(
{𝑓𝑠 (F𝜃 (𝑞), p𝑐 )}𝑐∈C𝑘

)
, (1)

where F𝜃 is the feature extractor, 𝑓𝑠 is the similarity fynction, C𝑘
denotes the set of novel known classes, and p𝑐 represents the pro-
totype for class 𝑐 , computed as the average feature vector of sam-
ples belonging to class 𝑐 . To accommodate unknown-class sam-
ples, Negative-Prototype-Based FSOR models extend the prototype-
based classification by learning an additional NP for the unknown

classes. The classification then involves ( |C𝑘 | + 1) prototypes:

argmax𝑐
(
{𝑓𝑠 (F𝜃 (𝑞), p𝑐 )}𝑐∈C𝑘∪{unknown}

)
, (2)

where a sample is classified as belonging to an unknown class if it
is most similar to the NP.

However, as illustrated in Figure 2(a), existing approaches often
derive NPs based on support samples, inadvertently incorporating
information from known classes. This can lead to NPs that closely
resemble known classes or highly similar classes (e.g., Dalmatians
and Alaskans), which complicates the modeling of unknown classes
within the diverse space of unknowns.

4 THE PROPOSED METHOD
In this section, we introduce our approach to tackle the FSOR prob-
lem by generating diverse NPs. Our model architecture is depicted
in Figure 3. We first describe our baseline model, followed by our
strategy for learning open-set weights for base classes. Finally,
we present our Diversified Multiple Negative Prototype Generator
(DMNPG) module and the Swap Alignment module, which together
facilitate the generation of task-level diversified NPs for different
tasks.

4.1 Baseline Model
Our baseline model is built upon the framework proposed by Huang
et al. [15] and utilizes a metric-based meta-learning architecture,
similar to previous FSORmethods [12, 15, 30]. As shown in Figure 1,
the training process is divided into two stages: the base-class stage,
which uses a large-scale dataset of base classes, and the novel-class
stage, which evaluates the model on a dataset of novel classes with
all model parameters fixed.
Pre-training.During pre-training, we employ a ResNet-12 network
to perform a large-scale classification task using labeled samples
from the base classes. The resulting feature extractor F𝜃 and the
classifier head for base classes are obtained, with the classifier head
weights denoted as 𝑃∗.
Meta-learning. In the meta-learning stage, the base class dataset is
redivided into different tasks. Sampling 2N classes in each task, with
N known classes (S and Q𝑘 ) and N designated as pseudo-unknown
classes (Q𝑢 ). The pre-trained Res-12 network serves as the feature
extractor F𝜃 to extract low-dimensional feature representations 𝑣𝑖
for samples in each task. For each task, the feature representations
in the support set are averaged by class to obtain the raw class
prototype 𝑝𝑟𝑐 :

𝑝𝑟𝑐 =
1
𝐾

𝐾∑︁
𝑖=1

F𝜃
(
𝑥S𝑐,𝑖

)
, 𝑣𝑖 = F𝜃 (𝑥𝑖 ) , (3)

where 𝑥S
𝑐,𝑖

represents the 𝑖-th sample of class 𝑐 from the support
set, and 𝑝𝑟𝑐 ∈ 𝑃𝑟 is the raw class prototype of class 𝑐 , with 𝑐 ∈ C𝑆 .
A Multi-Layer Perceptron (MLP) is then applied to the averaged
class prototype 𝑝−𝑎𝑣𝑔 to generate the NP:

𝑝− = 𝑓𝑚𝑙𝑝
(
𝑝−𝑎𝑣𝑔

)
, 𝑝−𝑎𝑣𝑔 =

1
| C𝑘 |

∑︁
𝑐∈C𝑘

𝑝𝑟𝑐 , (4)

where 𝑝−𝑎𝑣𝑔 is the average of the raw class prototypes, considering
all novel classes in the current task to generate a task-specific NP.

After obtaining both the raw class prototypes 𝑃𝑟 and the NP
𝑝− , the closed-set classification and open-set recognition tasks are
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Figure 3: An overview of the base-class stage in our DNPG model. In the pre-training phase, the model learns an inverse
representation, termed as open weight, for each base class. During the meta-learning phase, these open weights, along with the
similarity relationship between base and novel classes, are utilized to generate Novel Prototypes (NPs). Furthermore, the Swap
Alignment module is employed to guide the NP generation process, thereby improving their diversity.

combined into a (|C𝑘 |+1)-way classification task:

argmax𝑐
(
{ 𝑓𝑠 (F𝜃 (𝑞) , [𝑃𝑟 , 𝑝− ] ) }𝑐∈C𝑘∪𝑢𝑛𝑘𝑛𝑜𝑤𝑛

)
, (5)

where 𝑓𝑠 is a function to measure the similarity between two inputs,
e.g., cosine similarity. The cross-entropy loss is used to train the
(|C𝑘 |+1)-way classification baseline model as L𝐶𝐸 (Q𝑘 ∪ Q𝑢 ).
Testing. During the testing phase, the model parameters are fixed.
For a test task T = {𝑆,𝑄𝑘 , 𝑄𝑢 }, prototypes of novel classes and
the NP are generated using the support set samples S, as per the
equations above. The cosine similarity between the query samples
{𝑄𝑘 , 𝑄𝑢 } and the prototypes, including the NP, is calculated. A
query sample is classified into the corresponding novel class if
its cosine similarity with a novel class prototype is the highest.
However, if its cosine similarity with the NP is the highest, it is
considered to be from an unknown class.

4.2 Diversified multiple NPs generator
Our method aims to generate negative prototypes directly from
the unknown space by utilizing the base-class inverse representa-
tion, referred to as open weights, and leveraging the similarity
relationships between classes.
Learning the transferable open weights. In the pre-training
phase, we adopt the concept of Reciprocal Prototype Learning
(RPL) [6] to learn the open weight 𝑂 𝑗 for each base class 𝑗 . The
objective is to position 𝑂 𝑗 far from the samples of class 𝑗 while
maintaining proximity to samples from other base classes. This is
achieved through a reverse classification task where the probability
of a sample being classified as class 𝑗 is inversely proportional to
its distance from 𝑂 𝑗 :

𝑝
(
𝑦 = 𝑗 | 𝑥, F𝜃 ,𝑂 𝑗

)
=

𝑒𝑑 (F𝜃 (𝑥 ),𝑂 𝑗 )∑𝑁
𝑘=1 𝑒

𝑑 (F𝜃 (𝑥 ),𝑂 𝑗 )
. (6)

After obtaining the classification probability, the cross entropy loss
function is used to train the model:

L−
𝑏

(
𝑥 ;𝜃,𝑂 𝑗

)
= − log𝑝

(
𝑦 = 𝑘 | 𝑥, F𝜃 ,𝑂 𝑗

)
, (7)

where 𝑑 is the Euclidean distance function. The learned open
weight 𝑂 𝑗 characterizes features outside class 𝑗 ’s domain, repre-
senting its unknown space. The matrix of all base classes’ open
weights is denoted as 𝑂 . To reduce training overhead and improve
DNPG model generalization, we fix the feature extractor during
open weights learning, allowing only the open weights to be train-
able.
Raw Class Prototypes Calibration Inspired by [11], we refine
the raw class prototypes 𝑃𝑟 for novel classes during the meta-
learning phase using the base class weights 𝑃∗ (refer to Figure 4,
left). Specifically, we adjust 𝑃𝑟 to incorporate characteristics akin
to 𝑃∗, resulting in the final class prototypes 𝑃 :

A(𝑃𝑟 ,𝑃∗ ) =
1
√
𝑑

(
𝑃𝑟𝑊 𝑞

(
𝑃∗𝑊 𝑘

)𝑇 )
, (8)

𝑃 = 𝑃𝑟 + 𝜎
(
A(𝑃𝑟 ,𝑃∗ )

) (
𝑃∗𝑊 𝑣

)
, (9)

where𝑊 𝑞,𝑊 𝑘 ,𝑊 𝑣 ∈ R𝑑×𝑑 are trainable parameters, and 𝜎 de-
notes the softmax operation. The resultingweightmatrixA(𝑃𝑟 ,𝑃∗ ) ∈
R | C𝑆 |× | C𝐵 | captures the learned relationships between novel and
base classes for task 𝑇 .
Multiple NPs Generator Based on Open Weights The open
weights, representing the unknown space of base classes, reveal
that samples from similar classes exhibit analogous characteristics
in this space (as illustrated in Figure 5). Exploiting this observation,
we generate Negative Prototypes (NPs) for novel classes using the
open weights of base classes (see Figure 4, right).

Specifically, leveraging the class similarity matrix A(𝑃𝑟 ,𝑃∗ ) from
Eq. 8, we construct the NPs by allowing novel classes to mimic the
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Figure 4: Details of the Raw Class Prototypes Calibration
(RPC) and Multiple NPs Generator (MNG) modules. In the
RPC module, a standard Transformer attention block is uti-
lized to calibrate raw prototypes with base weights. Subse-
quently, in the MNG module, based on the similarity rela-
tionship established in the RPC module, open weights are
employed to generate multiple NPs for the current episode.

unknown space characteristics of base classes, while preserving
the class similarity relationships. The NPs for each novel class are
generated as follows:

𝑃− = 𝜎

(
A(𝑃𝑟 ,𝑃∗ )

) (
𝑂𝑊 𝑣 ) , (10)

where𝑊 𝑣 is a trainable parameter, and 𝑂 and A(𝑃𝑟 ,𝑃∗ ) represent
the open weights of base classes. Each NP, 𝑃−

𝑗
∈ 𝑃− , signifies the

negation of novel class 𝑗 . To optimize 𝑃−
𝑗
, we employ a binary cross-

entropy loss that minimizes its similarity with queries of class 𝑗
and maximizes its similarity with queries from other classes:

L𝑛𝑒𝑔𝑛 ( 𝑗 ) = 1���𝑄 𝑗
𝑘

��� ∑︁
𝑞∈𝑄 𝑗

𝑘

L𝐵𝐶𝐸
(
0, 𝑓𝑠

(
F𝜃 (𝑞), 𝑃−

𝑗

))
+ 1

| Q𝑢 |
∑︁
𝑞∈𝑄𝑢

L𝐵𝐶𝐸
(
1, 𝑓𝑠

(
F𝜃 (𝑞), 𝑃−

𝑗

))
.

(11)

Then, we utilize the NP 𝑃−
𝑗
∈ 𝑃− of each novel class to replace

the input 𝑝𝑟𝑐 in Eq. 4, resulting in the NP 𝑝− for the entire task.
Considering the diverse appearances of unknown samples (e.g.,
both dogs and tigers can be considered unknown for the ’cat’ class),
we propose employing multiple NPs for each task. Specifically, we
apply 𝑁 MLPs to Eq. 4, yielding 𝑁 distinct NPs:

𝑝−
𝑘
= 𝑓

𝑚𝑙𝑝

𝑘

(
𝑝−𝑎𝑣𝑔

)
, 𝑘 ∈ {1, . . . 𝑁 } . (12)

4.3 Swap Alignment Module
Although we have generated multiple NPs for each task, not all NPs
are effective, as detailed in Section 5.4. To address this, we propose
the Swap Alignment Module (SA) to facilitate the generation of
diverse and suitable NPs for tasks involving different classes.

(a) Prototypes (b) Negative Prototypes
Figure 5: Heatmap visualization of cosine similarity between
classes. (a) shows similarity using class prototypes, and (b)
displays similarity between negative prototypes learned by
RPL [6]. Both approaches yield highly concordant similarity
relationships.

Inspired by ATTG [15], we employ a conjugate method to sample
a pair of tasks T1 =

(
𝑆1, 𝑄1

𝑘
, 𝑄1
𝑢 | 𝐶1

𝑘

)
and T2 =

(
𝑆2, 𝑄2

𝑘
, 𝑄2
𝑢 | 𝐶2

𝑘

)
,

with the property that 𝑄1
𝑘
= 𝑄2

𝑢 and 𝑄1
𝑢 = 𝑄2

𝑘
. This implies that

the known few-shot classes𝐶1
𝑘
in T1 and𝐶2

𝑘
in T2 serve as negative

sources for each other. We refer to T1 and T2 as each other’s swap
tasks.

For these swap tasks, our model generates prototypes and NPs,
denoted as [𝑃1, 𝑃−1 ] and [𝑃2, 𝑃−2 ], respectively. We then apply the
swap alignment operations :(

𝑃𝑖,𝑎, 𝑃
−
𝑖,𝑎

)
= GCN

(
𝑃𝑖 , 𝑃

−
𝑖

)
, 𝑖 ∈ {1, 2}, (13)

Lalign
𝑛 =

∑︁
𝑖

argmax𝑗 sim
(
𝑃
𝑖,−
1,𝑎 , 𝑃

𝑗

2,𝑎

)
+
∑︁
𝑗

argmax𝑖 sim
(
𝑃
𝑗

2,𝑎, 𝑃
𝑖,−
1,𝑎

)
.

(14)

The GCN is a lightweight GCN network used for information
propagation between prototypes and NPs, 𝑃 𝑗2,𝑎 is the prototype of
the 𝑗-th novel class in taskT2, and 𝑃𝑖,−1,𝑎 is the 𝑖-th generated negative
prototype in task T1. For each pair of swap tasks, we minimize the
distance between each negative prototype inT1 and themost similar
novel prototype in T2, and vice versa. This alignment ensures that
the unknown classes in T1 (represented by the negative prototypes)
correspond to the novel classes inT2 (represented by the prototypes).
The alignment loss Lalign

𝑛 aims to bring the NPs of task T1 closer to
the prototypes of task T2, as they represent the same set of samples
(𝑄1
𝑢 = 𝑄2

𝑘
). By reducing the distance between NPs and prototypes,

the NPs become more discriminative and better approximate the
distribution of real samples.

For task T1 in the swap task pair (T1,T2), the final training loss
function is:

LT1 = L𝐶𝐸
(
Q1
𝑘
∪ Q1

𝑢

)
+ 𝛼L𝑛𝑒𝑔𝑛 + 𝛽Lalign

𝑛 (15)

where 𝛼 and 𝛽 are hyperparameters. Similarly, we calculate LT2
for task T2. The total swap training loss is L = LT1 + LT2 .
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Table 1: Closed-set ACC and open-set AUROC on two datasets. For each test, 4800 tasks are randomly sampled to ensure a
confidence interval within ±0.3.

Algorithm Remark
MiniImagnet TieredImageNet

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

ACC AUROC ACC AUROC ACC AUROC ACC AUROC

PEELER CVPR2020 58.31±0.58 61.66±0.62 61.66 ±0.62 61.66±0.62 - - - -
PEELER-Res12 CVPR2020 65.86±0.85 65.86±0.85 65.86±0.85 65.86±0.85 69.51±0.92 65.20±0.76 84.10±0.66 73.27±0.71
SnaTCHer-F CVPR2021 67.02±0.85 68.27±0.96 82.02±0.53 82.02±0.53 70.52±0.96 74.28±0.80 84.74±0.69 82.02±0.64
SnaTCHer-T CVPR2021 66.60±0.80 70.17±0.88 81.77±0.53 76.66±0.78 70.45±0.95 74.84±0.79 84.42±0.68 82.03±0.66
SnaTCHer-L CVPR2021 67.60±0.83 69.40±0.92 82.36±0.58 76.15±0.83 70.85±0.99 74.95±0.83 85.23±0.64 80.81±0.68
RFDNet-Res12 TMM2022 66.23±0.80 71.37±0.80 82.44±0.54 80.31±0.59 66.84±0.89 72.68±0.76 82.64±0.63 80.63±0.63

ATT CVPR2022 67.64±0.81 71.35±0.68 82.31±0.49 79.85±0.58 69.34±0.95 72.74±0.78 83.82±0.63 78.66±0.65
ATT-G CVPR2022 68.11±0.81 72.41±0.72 83.12±0.48 79.85±0.57 70.58±0.93 73.43±0.78 85.38±0.61 81.64±0.63
GEL CVPR2023 68.26±0.85 73.70±0.82 83.05±0.55 82.29±0.60 70.50±0.93 75.86±0.81 84.60±0.65 81.95±0.72

ASOP-L ICIP2023 67.85±0.20 71.91±0.70 82.81±0.30 81.04±0.20 71.49±0.40 75.04±0.40 85.15±0.10 81.51±0.10
DNPG Ours 69.10±0.29 74.18±0.28 83.74±0.19 83.64±0.19 71.52±0.32 75.70±0.21 85.54±0.22 82.94±0.23

Table 2: Closed-set ACC and open-set AUROC on CIFAR-FS
dataset.

Algorithm 5-way 1-shot 5-way 5-shot

ACC AUROC ACC AUROC

PEELER-Res12 71.47±0.67 71.28±0.57 85.46±0.47 75.97±0.33
RFDNet-Res12 73.83±0.92 75.35±0.77 85.12±0.74 84.40±0.64

ATT-G 72.43±0.65 76.72±0.59 86.52±0.49 84.64±0.38
GEL 76.67±0.90 79.43±0.72 87.63±0.62 86.84±0.58

DNPG 77.26±0.30 80.83±0.19 88.68±0.20 87.90±0.13

5 EXPERIMENTS
5.1 Datasets and Implementation Details
Datasets.We conduct FSOR experiments are conducted on three
widely-used few-shot learning datasets: MiniImageNet [34], Tiered-
ImageNet [26], and CIFAR-FS [3]. MiniImageNet is a subset of
ILSVRC-12 [28], consisting of 100 categories with 600 images each.
The dataset is divided intometa-training, meta-validation, andmeta-
testing sets with 64, 16, and 20 categories, respectively. TieredIma-
geNet, also a subset of ILSVRC-12, contains 608 categories divided
into 351, 97, and 160 categories for the respective sets. CIFAR-FS is
derived from CIFAR100 [19], comprising 60,000 images across 100
categories, with the same division scheme as MiniImageNet.
Implementation Details. Following the settings of GEL [35] and
ATTG [15], we employ ResNet-12 as the feature extractor. During
the pre-training phase, we follow the protocol of Tian et al. [33] and
Huang et al. [15], pre-training ResNet-12 and a linear classifier with
a combination of cross-entropy loss and self-supervised rotation
loss on the base set for 90 epochs. We use SGD as the optimizer,
with an initial learning rate of 0.05, decayed by a factor of 10 at
epoch 60. In the meta-training phase, the learning rate is set to
0.0001 for ResNet-12 and 0.05 for all other layers in the negative
prototype generator. For FSOR testing and evaluation, we follow the
task sampling strategy of Liu et al. [22], setting 𝑁 = 5 and 𝐾 = 1, 5.
Each task includes 15 positive queries from each few-shot class
and 5 negative classes, each with 15 negative queries. We employ
cosine similarity as the similarity function, utilizing two different

Table 3: The 5-way 1-shot FSOR result on the COIL-DEL
dataset, which is commonly used for graph classification
tasks.

ACC AUROC

TANE-G 75.24 76.70
baseline 73.20 73.41

DNPG (ours) 75.51 77.25

temperature coefficients for comparing samples with prototypes
(𝑠𝑖𝑚1) and negative prototypes (𝑠𝑖𝑚2). Additionally, a trainable
bias is added to 𝑠𝑖𝑚2, allowing for an adjustable similarity offset
for all samples to the negative prototype. Classification into the
sixth class (representing the unknown class) is based on Equation 3,
with the sample’s probability of belonging to this class determined
accordingly. The hyperparameters 𝛼 and 𝛽 are both set to 1.
Metrics. Consistent with prior work [10, 15, 31, 35], we evaluate
closed-set classification performance using the accuracy metric
(ACC) and open-set recognition performance using the Area Un-
der the ROC Curve (AUROC). Higher values of ACC and AUROC
indicate superior performance.

5.2 Few-Shot Open-Set Recognition
We evaluate our model against state-of-the-art (SOTA) few-shot
open-set recognition approaches, which can be categorized into
two groups: Negative-Prototype-Based methods, including ATT,
ATT-G [15], and ASOP-L [18], and threshold-based models, such
as PEELER [22], SnaTCHer [17], RFDNet [10], and GEL [35]. No-
tably, PEELER and RFDNet originally employ Res-18 as the feature
extractor, but Wang et al. [35] implemented Res-12 versions, de-
noted as PEELER* and RFDNet*, whose results we directly quote
for comparison. For other models, we use the results reported in
their respective papers.

Tables 1 and 2 present our model’s performance compared to
other approaches on three datasets. Our method surpasses all com-
peting methods in both 1-shot and 5-shot settings across all datasets.
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Figure 6: Visualization of prototypes and NPs for a 5-way-
5-shot FSOR task on CIFAR-FS. The first row shows NPs
by ATTG, often inaccurately approximating known class
prototypes (red boxes). The second row shows NPs by our
DNPG, accurately representing unknown class space (gray
background). Each column is a different episode.

Additionally, on the COIL-DEL graph dataset [27], ourmodel demon-
strates strong FSOR performance, as shown in Table 3. It is impor-
tant to note that the innovation of our model lies in its ability to
learn unknowns from unknowns. This is highlighted by the fact
that our model consistently outperforms the ATTG model, which
also utilizes information from both novel and base classes during
testing, on all datasets. This indicates that our approach of learning
unknowns from unknowns is indeed effective for the FSOR task.
Given that the ATTG model outperforms the ATT model, we select
ATTG as the representative of existing Negative-Prototype-Based
FSOR models in subsequent experiments.

To further demonstrate the superiority of our DNPG model, we
provide visualizations of prototypes and NPs generated by both the
ATTG and DNPGmodels in Figure 6. For both models, we set 𝑁 = 8,
meaning that 8 MLPs are used to generate 8 NPs for each task. It
can be observed that the NPs generated by the ATTG model, which
relies on support samples as inputs, tend to erroneously converge
towards the prototypes of the corresponding classes, thereby losing
their ability to effectively model unknown samples. Conversely,
our DNPG model does not suffer from this issue, maintaining the
distinctiveness of NPs from the prototypes.

5.3 Ablation Study
To assess the contribution of each component in the DNPG model,
we conducted an ablation study with 𝑁 = 5, meaning that 5 MLPs
are used to generate 5 NPs for each task. In this context, MNG
refers to the proposed NPs generator. Although the RPC module is
not a novel contribution of our work, it is an integral part of our
model; thus, for fairness, we also present results for the baseline
combined with RPC. SA denotes the Swap Alignment Module. Since

the SA module is designed based on Conjugate Training (CT) [15],
we include an ablation model, baseline + RPC + MNG + CT, which
excludes the SA module and solely employs conjugate training.

Table 4 shows the performance of each ablation model on the
MiniImageNet dataset for 5-way 1-shot and 5-way 5-shot FSOR
tasks. The results demonstrate that the DNPG model significantly
outperforms the baseline in both ACC and AUROC metrics. Addi-
tionally, each individual module contributes positively to the overall
performance of the model.

By comparing the baseline + RPC + MNG + CT model with the
baseline + RPC + MNG + SA model, it is evident that conjugate
training does not markedly enhance our model. This is because
conjugate training is aimed at mitigating the overfitting of gen-
erated NPs to the pseudo-unknown class samples. However, our
model does not rely on pseudo-unknown class samples for generat-
ing NPs, thereby circumventing the overfitting issue. In contrast,
the SA module significantly boosts the performance of our model,
underscoring its importance in the DNPG framework.

Table 4: Ablation study of our model. We report the 5-way
1-shot and 5-way 5-shot results on MiniImageNet. Our inno-
vations are bolded.

Method 5-way 1-shot 5-way 5-shot

Acc AUROC ACC AUROC

baseline 65.16±0.29 71.32±0.28 81.65±0.19 78.96±0.23
baseline + RPC 66.66±0.29 71.94±0.29 81.77±0.20 77.99±0.24

baseline + RPC +MNGMNGMNG 68.24±0.29 73.54±0.27 83.34±0.19 82.44±0.20
baseline + RPC +MNGMNGMNG + CT 68.22±0.29 73.48±0.28 83.33±0.19 82.44±0.18
baseline + RPC +MNGMNGMNG + SASASA 69.1±0.2969.1±0.2969.1±0.29 74.18±0.2874.18±0.2874.18±0.28 83.75±0.1983.75±0.1983.75±0.19 83.63±0.1983.63±0.1983.63±0.19

5.4 Further Analysis
Better Negative Prototypes, Wider Unknown Space. To fur-
ther validate that our model’s NPs contain minimal known class
information and can model a broader unknown space, we conduct
experiments using two distinct datasets to generate NPs and analyze
their differences.

We train three FSOR models, ATTG [15], GEL [35], and our
DNPG, on the training set of MiniImageNet. After fixing all param-
eters, we evaluate the models on both the test set of MiniImageNet
and the test set of CIFAR-FS. We apply Principal Component Anal-
ysis (PCA) to reduce the dimensionality of the generated NPs in
ATTG and DNPG and visualize them. Since GEL is not a Negative-
Prototype-Based model, it does not generate NPs.

Figures 7a and 7b show the distributions of prototypes and NPs
generated by the ATTG and DNPG models for both MiniImageNet
and CIFAR-FS datasets. The NPs generated by the ATTG model
display noticeable differences between the two datasets, indicating
the incorporation of dataset-specific information. In contrast, our
DNPG model produces universal NPs that effectively model a wide
range of unknown spaces, making it difficult to distinguish the
learned NPs between the two datasets.

Lastly, we compare the ability of different models to fit unknown
class data using the learned NPs. Specifically, we calculate the
maximum similarity between each unknown class sample and the
NPs during testing, as depicted in Figure 8. It is evident that the
NPs learned by our model exhibit superior ability to fit various
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(a) ATTG Result (b) DNPG Result
Figure 7: (a) The ATTG model generated prototypes and NPs
for both MiniImagenet and CIFAR-FS, which hibit distinct
differences between the two datasets due to the incorporation
of dataset-specific information, and limited to a very small
part of the space. (b) Our DNPG model generated prototypes
and NPs for both MiniImagenet and CIFAR-FS, which are
more indistinguishable and model a larger part of the space.
unknown class samples, further validating the effectiveness of our
approach.

Figure 8: The distribution of cosine similarity between the
generated NPs and unknown samples, in the baseline model,
ATTG model, and DNPG (ours) model. NPs generated by our
model can fit unknown class samples better.
How does the SA Module Work? To enhance the model’s adapt-
ability to tasks composed of diverse data, we generate multiple NPs
for each task. Existing methods, such as ATTG [15], use the distance
between a sample and its most similar NP as the classification score
for the unknown class during both training and testing. However,
simply employing multiple NPs does not ensure sufficient differ-
entiation among them to effectively model samples from different
unknown classes. In our experiments, we observed that some NPs
tend to converge, collapsing to the same point in the unknown
space, resulting in underutilization of the NPs.

We incrementally increase the hyperparameter 𝑁 (the number
of generated NPs) from 1 to 8 and record the changes in model
performance with (w) and without (wo) the SA module. Simulta-
neously, we track the number of NPs that are utilized at least once
during the entire testing process. The results, depicted in Figure 9,
reveal that without the SA module, the model can effectively use up
to 3 NP generators. With the SA module, the model can fully utilize
each generator, and the performance improves with the growth of
𝑁 until 𝑁 = 5, where the best model performance is achieved.

Some models attempt to address the issue of collapsing by in-
corporating an equipartition constraint [25, 36], which introduces
a fixed-sized feature space for prototype assignment. However, in
our experiments, we found that this approach fails to resolve the
collapsing problem in the FSOR task. In both the DNPG model and
the model without the SA module (DNPG - SA), we applied the

Figure 9: As the number of generated NPs (𝑁 ) increases.
When the SA module is not used, only a maximum of 3 NPs
will actually be used (blue dashed line), after using the SA
module, each NP can be used (red dashed line), and the effect
is further improved (the red line continues to rise).

equipartition constraint, similar to the method outlined in [25, 36],
to restrict the number of negative prototypes matching with sam-
ples. The results, as shown in Table 5 , indicate that adding the
equipartition constraint negatively affects the model’s performance
on the FSOR task. In FSOR task, forcing each negative prototype to
match in every episode is not suitable because the composition of
known and unknown classes continuously varies across episodes.
In certain cases, the unknown classes may consist of a similar set
of classes, such as “Dalmatian” and “Alaskan Malamute.” In such
instances, it is more appropriate to allow the same negative proto-
type to represent them instead of forcing the use of a completely
dissimilar negative prototype. This issue does not arise in our SA
module, as we enable automatic matching between prototypes and
negative prototypes, providing greater flexibility.

Table 5: When adding the equipartition constraint (EC) to
our DNPG model ( both with and without the SA module),
the changes in the 5-way 1-shot ACC and AUROC on the
miniImageNet dataset.

ACC AUROC

DNPG - SA 67.96±0.31 72.74±0.21
DNPG - SA + EC 67.62±0.27 72.15±0.19

DNPG 69.10±0.29 74.18±0.28
DNPG + EC 67.70±0.32 72.40±0.21

5.5 Conclusion
In this paper, we investigate the task of few-shot open-set recog-
nition. To generate diversified negative prototypes for identifying
unknown class samples, we propose the DNPG model. DNPG de-
couples the known class sample information from the generation
of negative prototypes. Instead, DNPG transfers the information
learned from the unknown representation on the base classes to
generate negative prototypes corresponding to novel classes. This
approach ensures that the generated negative prototypes do not
contain excessive known class sample information, thereby cov-
ering a broader range of unknown spaces. To ensure that each
negative prototype has a certain performance and models the un-
known space from different directions, we introduce the SAmodule,
which guaranteed that multiple NPs will not collapse to the same
point in the unknown space. Extensive experiments validate the
effectiveness of our approach.
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