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.1 Better Negative Prototype
Firstly, in Figure 1, we provide a more comprehensive illustra-
tion than the main text Figure 6. It can be observed that existing
Negative-Prototype-Based FSOR models indeed suffer from the is-
sue of erroneously approximating negative prototypes to known
class representations, thus failing to model unknown samples. Our
model effectively addresses this issue.

We further complement our analysis with Figure 7 in the paper
to illustrate why our approach of “learning unknowns from un-
knowns” leads to superior negative prototype generation. In Figure
7, it can be observed that the negative prototypes generated by the
ATTG model for different datasets are completely separated. This is
because the approach of generating negative prototypes based on
known sample information leads to distinct and separate negative
prototypes when input samples differ. In contrast, our model first
generates representations of the unknown space, and then uses
only these learned representations in downstream tasks to generate
negative prototypes. This approach, which is not directly linked to
current input information, results in negative prototypes that are
less influenced by input samples, but instead are more generalizable
and difficult to distinguish, as depicted in Figure 7. Additionally, it
can be observed that the coverage range of the negative prototypes
generated by our model is greater than that of the ATTG model.
This subjective analysis explains why our approach to negative
prototype generation is superior to existing methods.

On an objective level, we provide the FSOR task performance
of various models involved in plotting Figure 7 on two datasets,
as shown in Table 1. It can be seen that the performance of our
DNPG model on both datasets is significantly better than that of
the ATTG model. Furthermore, comparing the performance on the
training dataset with that on the new dataset also reveals that the
performance drop of our model when transferred to a new dataset
is smaller than that of other models. This objectively demonstrates
that our approach to generating negative prototypes leads to better
FSOR model performance.

Table 1: 5-way 5 shot test results on TieredImageNet and
CIFAR-FS, using ATTG, GEL, and DNPG(ours) trained on
TieredImageNet.Δ indicates degradation of themodel’s effect
before and after the model is migrated to test on CIFAR-FS,
and smaller values indicate a more robust model.

Algorithm TieredImageNet CIFAR-FS ↓ Δ

Acc AUROC ACC AUROC ACC AUROC

ATT-G 84.54±0.67 78.84±0.76 72.64±0.73 61.39±0.68 11.9 17.5
GEL 83.55±0.72 81.06±0.72 62.19±0.71 61.60±0.63 21.4 19.4
DNPG 84.71±0.6984.71±0.6984.71±0.69 83.20±0.6483.20±0.6483.20±0.64 73.87±0.7273.87±0.7273.87±0.72 71.12±0.6671.12±0.6671.12±0.66 10.9 12.8

Table 2: Our model is compared with the state-of-the-art
model ATT-G [1] on the miniImageNet dataset with the ad-
dition of three types of noise, evaluating the 5-way 5-shot
classification performance.

blur digital extra Average

TANE-G [1] 45.98±0.66 54.23±0.76 36.75±0.67 45.65
DNPG(ours) 49.98±0.68 58.39±0.70 39.39±0.69 49.25

.2 Model Robust
We further show the robustness of our model under different condi-
tions. Firstly, we evaluated the FSOR task performance of our model,
DNPG, and the ATTG model (one of the Negative-Prototype-Based
SOTA FSORmodels) on the miniImageNet dataset with the addition
of three types of noise. The results are shown in Table 2. It can be
observed that our model outperforms the ATTGmodel significantly
on datasets with various added noise. This is because the process of
generating negative prototypes in the ATTG model heavily relies
on the information of the known class samples, and the addition of
noise greatly affects the quality of input samples, thus leading to
poor quality negative prototypes. On the other hand, our model,
by severing the direct connection between input information and
negative prototype generation, is less affected. Furthermore, we
present the FSOR task performance of our model and the ATTG
model under different numbers of classes, as depicted in Table 3.
It can be seen that our model consistently outperforms the ATTG
model across various class configurations. Additionally, we observe
that as the number of known and unknown classes increases, the
superiority of our model over the ATTG model also increases. This
further illustrates that our model is capable of generating more
generalized negative prototypes, enabling better performance in
FSOR tasks with varying numbers of classes.

.3 Storage and Computational Expenses
Our model needs to reserve an open weight for each base class.
When the number of base classes is 64 and the dimensionality of
the negative prototype features is 640, the additional parameter
count is approximately 40,000. In contrast, the TANE-G [1] model
has a parameter count of 27,198,124. This means that the storage
overhead of our model is only increased by 0.14% compared to the
TANE-G model.

In terms of computational expenditure, our model takes 142.8
seconds on an RTX3090 GPU to complete one epoch of 5-way
1-shot training (300 episodes) and testing (600 episodes) on the
MiniImageNet dataset. In a similar experimental setup, the existing
SOTA model TANE-G [1] requires 139.8 seconds. This indicates
that our model exhibits a marginal 2% increase in computational
costs compared to the TANE-G model.
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Figure 1: The visualization of the prototypes and NPs generated by one state-of-the-art method, ATTG (the first line) and our
DNPG models (the second line) in the 5-way-5-shot FSOR task on the CIFAR-FS dataset. Each column corresponds to a specific
episode. The NPs generated by ATTG incorrectly approximate the prototypes of known classes (highlighted in the red box). In
contrast, the NPs generated by our model accurately model the space of unknown class samples (gray background area).

Table 3: The 5-way 1-shot performance of our model and an existing SOTA model TANE-G [1] on FSOR tasks under different
class number settings.

Number of test classes DNPG (ours) ATT-G [1] Δ

Acc AUROC ACC AUROC ACC AUROC

5 novel + 5 unknown 68.83±0.85 73.62±0.79 67.33±0.85 72.11±0.78 1.50 1.51
6 novel + 6 unknown 64.81±0.75 71.52±0.71 63.30±0.76 70.02±0.71 1.51 1.50
7 novel + 7 unknown 61.13±0.71 70.56±0.69 59.71±0.72 68.86±0.68 1.42 1.70
8 novel + 8 unknown 58.30±0.64 69.19±0.59 56.75±0.64 67.43±0.60 1.55 1.76
9 novel + 9 unknown 55.54±0.60 68.62±0.56 54.04±0.62 66.78±0.56 1.50 1.84
10 novel + 10 unknown 52.89±0.54 68.19±0.53 51.63±0.55 66.11±0.53 1.26 2.08
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