
Table 4: Influence of the optimal grouping on Group Window Attention.

Group size gs Dynamic Programming FLOPS@Stage1 FLOPS@Stage1 FLOPS@Stage1

Greedy (Algorithm 1) X 62.6M 55.4M 52.3M
p× p (i.e., 49) X 65.0M 58.5M 52.7M
maxi wi X 64.5M 59.7M 62.5M
maxi wi × 137.5M 113.3M 75.7M∑

i wi × 201.3M 69.2M 52.7M

Table 5: Time cost of each component in the Group Window Attention.

Time Cost (ms) DP Masking Pre-proc Grouping Ungrouping Attention Fwd & Bwd

Stage1 4.9 3.8 14.8 0.4 0.4 61.9
Stage2 0.6 0.1 2.1 0.2 0.2 20.8
Stage3 0.1 0.1 1.0 0.1 0.1 15.4

A More Ablation Studies

A.1 Efficiency comparison using Twins-L

Table 6: Comparison using Twins-L.

Method Time Mem. Acc.

MAE w/ all patches 2.6h 408.3G 83.5%
Ours 0.8h 102.3G 83.3%

Here we compare our method with a variant of MAE
that operates on both visible and masked patches, which
is almost identical to SimMIM except for the choice
of the loss function. As shown in Table 6, our method
performs on par with the baseline MAE operating on all
patches while enjoying 2.6x pre-training speedup in a
greener way.

A.2 Analysis on the Optimal Grouping

Following the setting in Figure 4, we compare the complexity of a single group attention module, w/
or w/o dynamic programming, at each stage as below. As displayed in Table 4, when gs = maxi wi,
the complexity is doubled without the DP solver. Simply setting gs =

∑
i wi (such that there is

only 1 group) also suffers from heavy cost, encountering an out-of-memory error in practice even
with a much smaller batch size (e.g., 64 per GPU). In contrast, with the DP solver, the complexity
is significantly reduced even when we simply fix the group size to the same as the window size
p× p (note that maxi wi = p× p with a high probability in practice) as discussed in Sec. 4.2. This
experiment demonstrates the efficacy of our optimal grouping scheme.

In addition, We benchmark the time cost (ms) of each component in a single Group Attention module
and summarize the results in Table 5. Here we use a tensor of shape [256, Hi ×Wi, Ci] as input,
where Hi,Wi, Ci denote the height, width, and the number of channels of the features in the ith stage.
Note that the DP, masking, and other pre-processing operations are only executed twice for each
stage, i.e., for the shifted/unshifted window partition. We can see that the extra cost of our method is
indeed moderate compared with the attention computation.

B More Details of Our Method

B.1 Method Overview.

We provide a diagram in Figure 6 for an intuitive illustration of our method. The input image is first
randomly masked according to the masking scheme in Section 3.5, then fed into our green hierarchical
ViT to obtain representations for each visible patch. Finally, we concatenate the representations
of visible patches with the mask tokens and feed them into a transformer decoder, yielding the
representations for the masked patches. Finally, we predict the raw pixel values of masked patches

15



Mask

Stage1 Stage2 Stage3 Stage4

Decoder:
Isotropic ViT

MSE

MSE

MSE

MSE

MSE

MSE

Encoder: 
Green Hierarchical ViT with Group Window Attention

Figure 6: Overview of our method. The input image is randomly masked and then fed into a 4-stage
hierarchical ViTs. Finally, a lightweight decoder takes the representations of visible patches and
mask tokens to reconstruct the missing patches.

Mask

O
ptim

al 
Grouping

M
asked 

Attention

𝐗 "𝐗 #𝐗

Figure 7: Illustration of the Group Window Attention scheme with shifted windows. It shows
that our approach is agnostic to the window partition.

from the corresponding representations and implement the training by minimizing the Mean Square
Error (MSE) between the predictions and ground truth.

B.2 Group Window Attention scheme with shifted windows.

In addition to Figure 2, we also illustrate how our method works with the irregular window partition
in Figure 7. We can observe that owing to the optimal grouping scheme, our method dynamically
finds out the best group partition despite the number of visible patches within each local window
being highly uneven. This figure further demonstrates that our approach is agnostic to the window
partition and works impressively well.

B.3 A Python Implementation of the Optimal Grouping algorithm

We provide a Python implementation of the Dynamic-Programming-based Optimal Grouping al-
gorithm in Algorithm 2. As we can see, the two components of the Optimal Grouping algorithm
are both easy to implement. For the DP algorithm for the single Knapsack problem, its time/space
complexity is O(gsnw) where gs is the group size and nw is the number of windows. In practice,
because gs and nw are generally small (i.e., smaller than 100) the running time of Algorithm 2 is
negligible (i.e., <1ms).

B.4 A PyTorch Implementation of the Group Attention scheme

With the group partition on the indexes, we can then permute visible patches according to the partition
and obtain several groups of patches with an equal size gs, upon which the Masked Attention is

16



Algorithm 2 Dynamic Programming-based algorithm for the Optimal Grouping using Python.

1 def Knapsack(g_s, Phi):
2 # g_s (int): Group size
3 # Phi (list[int]): The numbers of visible patches within each local window
4
5 n_w = len(Phi) # the number of windows
6 K = [[0 for w in range(g_s + 1)] for i in range(n_w + 1)] # a buffer for the DP

algorithm
7
8 # Build table K[][] in a bottom up manner
9 for i in range(n_w + 1):

10 for w in range(g_s + 1):
11 if i == 0 or w == 0:
12 K[i][w] = 0
13 elif Phi[i − 1] <= w:
14 K[i][w] = max(Phi[i − 1] + K[i − 1][w − Phi[i − 1]], K[i − 1][w])
15 else:
16 K[i][w] = K[i − 1][w]
17
18 # Store the result of Knapsack
19 res = K[n_w][g_s]
20
21 # Store the selected indexes
22 w = g_s
23 Pi = []
24
25 for i in range(n_w, 0, −1):
26 if res <= 0:
27 break
28
29 if res == K[i − 1][w]: # This window is not included.
30 continue
31 else: # This window is included.
32 Pi.append(i − 1)
33 # Since this window is included, its value is deducted
34 res = res − Phi[i − 1]
35 w = w − Phi[i − 1]
36
37 return Pi[::−1] # Optional: make Pi in an increasing order
38
39
40 def GroupPartition(g_s, Phi):
41 # g_s (int): Group size
42 # Phi (list[int]): The numbers of visible patches within each local window
43
44 win_szs = Phi.copy()
45 ori_win_idxs = list(range(len(win_szs)))
46 win_idxs = []
47
48 while len(win_szs) > 0:
49 idx = knapsack(group_size, win_szs)
50
51 # Append the selected idx
52 win_idxs.append([ori_win_idxs[i] for i in idx])
53
54 # The remaining windows and indexes
55 win_szs = [win_szs[i] for i in range(len(ori_win_idxs)) if i not in idx]
56 ori_win_idxs = [ori_win_idxs[i] for i in range(len(ori_win_idxs)) if i not in idx]
57
58 return win_idxs

performed. We also provide a PyTorch implementation of the Group Attention scheme in Algorithm 3
to facilitate future research. Note the padding operations are omitted here for simplicity.

17



Algorithm 3 Group Attention using the PyTorch framework.

1 def GroupAttention(x, g_s, Phi):
2 # x (3−d tensor): Features the visible patches
3 # g_s (int): Group size
4 # Phi (list[int]): The numbers of visible patches within each local window
5
6 # B is the batch size, L is the number of visible patches, C is the number of channels
7 B, L, C = x.shape
8
9 # Prepare for the group attention

10 win_idxs = GroupPartition(g_s, Phi)
11 patch_idxs = torch.arrange(sum(Phi))
12 patch_idxs = torch.split(patch_idxs, Phi)
13 shuffle_idxs = torch.cat([patch_idxs[wi] for wi in win_idxs])
14 unshuffle_idxs = torch.argsort(shuffle_idxs)
15
16 # Group partition. For simplicity, assume that the partition is even
17 x = torch.index_select(x, 1, shuffle_idxs) # (B, n_g ∗ g_s, C)
18 x = x.reshape(−1, g_s, C) # (B ∗ n_g, g_s, C)
19
20 # Attention with relative position bias as in Figure 3
21 x = MaskedAttention(x)
22
23 # Reverse the group partition
24 x = x.reshape(B, L, C).index_select(x, 1, unshuffle_idxs)
25
26 return x

18




