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A APPENDIX

A.1 PROOF OF 3.3

Proof. To optimize the objective in 8 with the standard widely available optimizers, we adopt the
following efficient mini-batch stochastic gradient estimator.

∇̂wL(w, b;xi,A,A′,Bi) = 2 [(sim(i, i+)− a)∇wsim(i, i+) | yii+]

+ 2
∑
j∈Bi

[2(sim(i, j)− b)∇wsim(i, j) | yij−] + 2α
[
−∇wsim(i, i+) | yii+

]
+ 2α

[ ∑
j∈Bi

∇wsim(i, j) | yij−
]
, (9)

∇̂bL(w, b;xi,A,A′,Bi) = 2
∑
j∈Bi

[
(b− sim(i, j)) | yij−

]
,

where Bi is a random mini-batch of images drawn fromMi, which still excludes the image xi itself.
For the analysis, we consider the following simple update

wt+1 =wt −
β

B

∑
i∈B
∇̂wL(w, b;xi,A,A′;Bi)

bt+1 =bt −
β

B

∑
i∈B
∇̂bL(w, b;xi,A,A′,Bi) . (10)

Our analysis adopts the following assumption. Note that the cosine similarity metric sim(i, j) for
any two augmentations xi, xj and two operations A,A′ is a function of w. Then, for the purpose of
analysis, we instead use the notation sim(i, j)(w) to capture the dependence on w.

Assumption A.1. We assume for any i, j,A,A′, the cosine similarity metric sim(i, j)(w) satisfies

• sim(i, j)(w) is L0-Lipschitz continuous and L1-smooth.

• max{a, b} ≤ τ ,

for some positive constant τ > 0.

Note that the boundedness condition in the second item can be replaced by adding a projection
of w and b onto a bounded set like a ball for the updates in 10. However, for the simplicity, we
directly assume the boundedness, which is also observed during the optimization process in the
experiments. The global contrastive objective in our case that is based on the entire dataset D is is
given by minw∈Rd,b Exi∼D,A,A′∼P [L

′
s(w, b;xi,A,A′,Mi)] where

L(w, b;xi,A,A′,Mi) =
[
(sim(i, i+)− a)2 | yii+

]
+

∑
j∈Mi

[
sim(i, j)− b)2 | yij−

]
+

{
2α

[
1− sim(i, i+) | yii+ +

∑
j∈Mi

sim(i, j) | yij−
]
− α2

}
.

We first prove the smoothness of this objective function. Note that the cosine similarity sim(i, j)(w)
is bounded by 1, and hence we have max{|sim(i, j)(w)|, a, b} ≤ τ + 1. Then, the gradient of the
this objective takes the form of
∇wL(w, b;xi,A,A′,Mi) = [2(sim(i, i+)− a)∇wsim(i, i+) | yii+]

+
∑

j∈Mi

[2(sim(i, j)− b)∇wsim(i, j) | yij−]

+ 2α
[
−∇wsim(i, i+) | yii+

]
+ 2α

[ ∑
j∈Mi

∇wsim(i, j) | yij−
]
,

∇bL(w, b;xi,A,A′,Mi) = 2
∑

j∈Mi

[
(b− sim(i, j)) | yij−

]
.
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Based on the gradient form here, we can obtain, for any two parameters (w, b), (w′, b′)

∥∇wL(w, b;xi,A,A′,Mi)−∇wL(w′, b′;xi,A,A′,Mi)∥
≤
∥∥ [2(sim(i, i+)(w)− a)∇wsim(i, i+)(w) | yii+]−
[2(sim(i, i+)(w′)− a)∇wsim(i, i+)(w′) | yii+]

∥∥
+

∑
j∈Mi

∥ [2(sim(i, j)(w)− b)∇wsim(i, j)(w) | yij−]−

[2(sim(i, j)(w′)− b′)∇wsim(i, j)(w′) | yij−] ∥
+ 2α

∥∥[−∇wsim(i, i+)(w) | yii+
]
−

[
−∇wsim(i, i+)(w′) | yii+

]∥∥
+ 2α

∑
j∈Mi

∥
[
∇wsim(i, j)(w) | yij−

]
−

[
∇wsim(i, j)(w′) | yij−

]
∥,

which, in conjunction with A.1 and using the fact that ab− a′b′ = a(b− b′) + (a− a′)b′, yields

∥∇wL(w, b;xi,A,A′,Mi)−∇wL(w′, b;xi,A,A′),Mi∥
≤ 4(τ + 1)L1n∥w −w′∥+ 2L2

0n∥w −w′∥+ 2(n− 1)L0|b− b′|+ 2αnL1∥w −w′∥
≤ (4(τ + 1)L1n+ 2L2

0n+ 2αnL1)∥w −w′∥+ 2(n− 1)L0|b− b′|

≤
√
2(4(τ + 1)L1n+ 2L0(L0 + 1)n+ 2αnL1)︸ ︷︷ ︸

Lw

√
∥w −w′∥2 + |b− b′|2 (11)

Similarly, for the gradient w.r.t. b, we have

∥∇bL(w, b;xi,A,A′,Mi)−∇bL(w
′, b′;xi,A,A′,Mi)∥

≤ 2(n− 1)|b− b′|+ 2(n− 1)L0∥w −w′∥ (12)

≤ 2n(L0 + 1)
√
2︸ ︷︷ ︸

Lb

√
∥w −w′∥2 + |b− b′|2

First note that our stochastic gradient estimator ∇̂wL(w, b;xi,A,A′,Bi) and
∇̂bL(w, b;xi,A,A′,Bi) are unbiased estimators. To see this, based on the forms in 9, we
have

E∇̂wL(w, b;xi,A,A′,Bi) =E[E∇̂wL(w, b;xi,A,A′,Bi) | xi,A,A′]

=E[E∇wL(w, b;xi,A,A′) | xi,A,A′]

=∇wL(w, b)

where the first equality follows because Bi is sampled fromMi. A similar result is obtained for
∇̂bL(w, b;xi,A,A′,Bi), i.e., E∇̂bL(w, b;xi,A,A′,Bi) = ∇bL(w, b).

Based on the smoothness results in 11 and 12 and the unbiased estimation, we are now ready to prove
the main theorem. Let v = (w, b) denote all optimization parameters. From the smoothness results
in 11 and 12, we can establish the smoothness of the overall objective L(v) = L(w, b) as below. For
any v and v′,

∥∇L(v)−∇L(v′)∥ ≤
√

L2
b + L2

w∥v − v′∥. (13)

Then, based on 13, we have

L(vt+1) ≤L(vt) + ⟨vt+1 − vt,∇L(vt)⟩+
√
L2
b + L2

w

2
∥vt+1 − vt∥2,
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which, by taking the expectation Et := E[·|vt] on the both sides and using our unbiased gradient
estimators, yields

EtL(vt+1) ≤L(vt)− β∥∇L(vt)∥2 +
√
L2
b + L2

w

2
Et∥vt+1 − vt∥2

=L(vt)− β∥∇L(vt)∥2 +
√
L2
b + L2

w

2
β2Et

(∥∥∥ 1

B

∑
i∈B
∇̂bL(w, b;xi,A,A′,Bi)

∥∥∥2
+
∥∥∥ 1

B

∑
i∈B
∇̂wL(w, b;xi,A,A′;Bi)

∥∥∥2). (14)

Note from the forms in 9 and A.1, we have∥∥∥ 1

B

∑
i∈B
∇̂wL(w, b;xi,A,A′;Bi)

∥∥∥2 ≤∥∥∥∇̂wL(w, b;xi,A,A′;Bi)
∥∥∥2

≤8(τ + 1)nL0 + 2αnL0∥∥∥ 1

B

∑
i∈B
∇̂bL(w, b;xi,A,A′;Bi)

∥∥∥2 ≤∥∥∥∇̂bL(w, b;xi,A,A′;Bi)
∥∥∥2 ≤ 4n(τ + 1). (15)

Incorporating 15 into 14 yields

EtL(vt+1) ≤L(vt)− β∥∇L(vt)∥2 + β2

√
L2
b + L2

w

2
(4n(τ + 1) + 8(τ + 1)nL0 + 2αnL0).

Unconditioning on vt, rearranging the above inequality and doing the telescoping over t from 0 to
T − 1, we have

1

T

T−1∑
t=0

∥∇L(vt)∥2 ≤
L(v0)−minv L(v)

βT
+ β

√
L2
b + L2

w

2
(4n(τ + 1) + 8(τ + 1)nL0 + 2αnL0)

≤O( 1

βT
+ β) (16)

which, in conjunction with β = 1√
T

and the definition of t′, finishes the proof.

A.2 AUC OPTIMIZATION AND CONTRASTIVE LEARNING

We further elucidate our motivations behind adaptation of the AUC optimization framework towards
contrastive learning. AUC as a metric was formulated for binary classification wherein, the objective
of the network is to enhance the prediction scores for “positive” samples in comparison to the
“negatives” (Equation 3.1). Thus by virtue of its construction, it aligns seamlessly for an application
in contrastive learning wherein due to the lack of labels, one is compelled to enforce separation
amongst classes through a binary objective with "positives" being the augmentations of the same
sample and "negatives", the augmentations of other samples within the batch. Additionally, AUC
was originally devised to address the imbalance of classes whereby accuracy as a metric may lead to
misleading evaluation of the network. A classic example of this phenomenon is often cited with a
dataset containing 100 samples, 99 of which are of the “positive” class and a network that predicts
every sample as a “positive” will therefore have attained a 99% accuracy. This aspect of the function
resonates well with the context of contrastive learning in our application, as for one image in our
batch of samples, the remaining images are considered to be “negative”.

A.3 ADDITIONAL RESULTS

A.3.1 LONGER PRETRAINING

In order to attain stronger convergence, we conduct the pretraining procedure using our method for
800 epochs on ImageNet with the ResNet-50 backbone. In Table 6, we compare against the prominent
methods for SSL. We retain the batch size of 256 for our method, wherein the remaining methods
have been trained using a larger batch size of 1024. The parameters and setup of the method follows
the description in 4. Yet again, our loss function avails a superior result using a far smaller batch size.
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Table 6: ImageNet Longer Pretraining (ResNet-50). Top-1 accuracy for linear evaluation results
are listed. We conduct pretraining for 800 epochs and compare against known arts.

Method Batch Size 800 ep

SimCLR Chen et al. (2020a) 1024 69.1
Moco-v2 Chen et al. (2020b) 1024 71.1
InfoMin Poole et al. (2020) 1024 73.0
BarlowTwins Zbontar et al. (2021) 1024 73.2
OBOW Gidaris et al. (2020) 1024 73.8
BYOL Grill et al. (2020) 1024 74.4
DCv2 Caron et al. (2018) 1024 75.2
SwAV Caron et al. (2020) 1024 75.3
DINO Caron et al. (2021) 1024 75.3

Ours (400 ep) 256 73.5
Ours (800 ep) 256 75.5

A.3.2 COMPARISON AGAINST MOCO-V3

Pretraining We train the MoCo-v3 architecture by replacing the objective function with ours whilst
retaining the architecture and parameter settings. Our results are based on a batch size of 128 on the
datasets Cifar-10, ImageNet-S and ImageNet using the ViT-small backbone, which are illustrated
in Table 7. Our models were trained for 100 epochs with the default parameter and augmentation
settings. Our model consistently outperforms the results when comparing to MoCo-v3 by values
higher than 2% for Cifar-10 and Cifar-100 datasets and by over 5% for ImageNet.

Table 7: Pre-training and linear evaluation vs MoCo-v3. ’a/b/c’ in the kNN column are acc. (%)
with k = 10, 20, 100, respectively. The Cifar results use the ResNet-18 backbone and the ImageNet
results use the Vit-Small backbone.

MoCo-v3 Ours
Dataset KNN Linear KNN Linear

Cifar-10 84.6/84.5/84.4 91.4 87.6/87.2/86.1 93.6
Cifar-100 51.3/53.5/52.7 66.6 52.9/54.7/53.4 69.7
ImageNet-100 74.1/74.7/73.8 77.6 77.0/77.6/76.9 82.5
ImageNet 50.0/50.6/49.1 62.3 54.1/54.0/51.4 67.9

Transfer Learning We subsequently evaluate the model for transfer learning on the Cifar-10,
Cifar-100 datasets, Flowers-102 Nilsback & Zisserman (2008) and the Pets Parkhi et al. (2012)
datasets after pretraining on ImageNet. The protocol followed is identical as mentioned in Chen et al.
(2021) and the results are listed under Table 8

Table 8: Transfer Learning comparison with MoCov3 after pretraining on ImageNet. Numbers
next to the method indicate the batch size used. ’a/b’ represent the Top-1 and Top-5 accuracies (%).
The numbers listed under the ’Supervised’ category are borrowed from Dosovitskiy et al. (2020).

Cifar-10 Cifar-100 Flowers-102 Pets Average

Random Init. 77.8 48.5 54.4 40.1 55.2
Supervised 98.1 87.1 89.5 93.8 92.1
Moco-v3-256 97.1/100.0 84.6/97.7 88.6/96.7 85.0/98.6 88.8/98.2

Ours-128 98.2/100.0 85.4/97.9 88.9/97.5 87.1/99.3 89.9/98.7

A.3.3 COMPARISON AGAINST SIMCLR

We illustrate the performance of our method on Cifar-10, Cifar-100 and STL-10 in Table 9, comparing
against SimCLR for varying batch sizes and epochs. In this experiment, we use a backbone of ResNet-
50. As is standard practice, we replace the first 7× 7 Conv layer with stride 2 with 3× 3 with stride 1
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Table 9: SimCLR comparison. Top-1 KNN evaluation results on Cifar-10, Cifar-100 and STL-10
datasets.

BS 64 128 256

Dataset Epoch 200 300 500 200 300 500 200 300 500

SimCLR 79.6 81.8 84.15 82.8 83.4 86.2 83.8 85.8 86.9
Cifar-10

Ours 85.4 87.4 89.1 86.1 87.9 89.4 85.7 87.3 88.7

SimCLR 45.2 47.8 49.9 47.8 53.5 55.6 48.5 54.1 56.0
Cifar-100

Ours 52.9 56.0 57.2 53.7 56.1 57.3 53.7 55.9 57.1

SimCLR 69.8 69.7 73.6 72.1 72.9 74.1 75.6 75.7 76.2
STL-10

Ours 76.1 76.2 78.6 77.5 78.9 80.9 76.8 78.4 80.4

Table 10: Comparison against DCL for the listed batch sizes and datasets. The linear evaluation
scores following the protocol mentioned in DCL are listed. All models are trained for 200 epochs.
The backbone used for ImageNet was ResNet-50 whereas for the other datasets, the backbone was
set to ResNet-18.

Method BS/Dataset 128 256 512

DCL ImageNet 64.3 65.9 65.8
Ours ImageNet 67.6 67.7 67.9

DCL Cifar-10 85.7 85.3 84.7
Ours Cifar-10 88.4 87.9 88.3

DCL Cifar-100 58.9 58.5 58.4
Ours Cifar-100 59.3 59.5 59.5

DCL STL-10 86.1 85.7 85.6
Ours STL-10 86.5 86.3 86.5

and remove the first max-pooling layer. The learning rate is fixed to 1e− 3. The training is conducted
for 500 epochs. We notice that our method significantly outperforms SimCLR for smaller batch
sizes by margins of +7% for both datasets, and retains a consistent performance across the batch
sizes. Upon convergence, our method outperforms SimCLR in Top-1 accuracy by an average of 3.8%.
Subsequent to the epoch 20, our method overcomes the performance of SimCLR, and towards the
end of training outperforms by over 3.2%. This trend is reflected across the datasets and batch-size,
epoch settings, with the margins of out-performance particularly stark for smaller batch sizes.

A.3.4 COMPARISON AGAINST DCL

We compare against the popular objective of DCL Yeh et al. (2022) directly for the datasets of
ImageNet, Cifar and STL. Here, identical to their work, we pretrain ResNet-50 and ResNet-18
architectures for ImageNet and the rest respectively, for 200 epochs. We follow the augmentation
parameters as per their work in order to retain fairness and train our models for varying batch sizes.
The results are listed in Table 10. We again witness a substantial margin of improvement over DCL
across the comparisons.

A.3.5 ROBUSTNESS TO α

We conduct extensive ablations to experiment with the significance of the component A3 in our main
formulation 8. We train the model using the parameters and architecture described in section A.3.3
with a batch size of 128 on Cifar-10, while varying the value of the parameter α which modulates
the influence of the component. The results are illustrated in Table 11. Here we show the KNN
evaluation results for at several epochs during training retaining identical settings. We establish that
A3 is crucial to our formulation and prevents the mode collapse phenomenon often observed in SSL
frameworks, where the features are mapped to a unique point in the hypersphere regardless of the
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Table 11: Robustness to α. We evaluate our loss function on the Cifar-10 dataset for varying values
of α using the KNN protocol for k=200. The values are the Top-1 KNN evaluation accuracies at
various epochs and α parameter settings.

Epoch/α 0.0 0.1 0.5 0.7 1.0

50 25.1 77.7 78.3 77.6 76.8
100 10.0 82.9 83.4 82.4 81.5
150 10.00 85.18 85.70 84.76 84.41
200 10.00 86.80 86.61 85.89 85.98
250 10.00 87.40 87.64 87.21 87.06

Figure 3: k-NN curves: Plot of the k-NN accuracy curves for various methods trained on Cifar-10
for 500 epochs using ResNet-18. The values for the other methods were borrowed from LightlyAI

class distinction. Moreover, for all other values of α, our formulation retains its performance across
the epochs, with nominal differences, thus illustrating that the component is crucial to the formulation
as well as robust to variations in α, which therefore requires no additional tuning.
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