Language-Guided 4D Gaussian Splatting for Real-Time Dynamic Scene Rendering
—Supplementary Material—

Anonymous submission

Comparative Results

Quantitative Comparison on Plenoptic Video
Dataset

Table ?? reports a comprehensive quantitative comparison of
our method against state-of-the-art dynamic scene rendering
approaches on the Plenoptic Video dataset (Li et al. 2022).
Our approach consistently achieves the highest rendering ac-
curacy across all evaluated sequences, attaining an average
PSNR of 34.00 dB, which represents a substantial improve-
ment over the strongest baseline, 3DGStream. In addition to
superior fidelity, our model is remarkably compact, requiring
only 34 MB of storage, matching the smallest baseline and
more than two orders of magnitude smaller than volumetric
methods. The proposed framework also demonstrates out-
standing training efficiency, completing the full optimization
process in just 0.5 hours, substantially faster than other real-
time candidates, e.g., 4DGaussians: 1.5 hours; STG: 1.3-5.2
hours. Notably, unlike existing techniques whose reconstruc-
tion quality degrades under sparse COLMAP point cloud
initialization, our method maintains high PSNR without re-
lying on dense geometry priors, highlighting its robustness
to limited input data. Experimental results demonstrate that
our approach enables superior rendering quality, high mem-
ory efficiency, and effectively reduced training time. L4DGS
ensures both pixel-level accuracy and perceptual realism for
dynamic scene synthesis. Additional visual comparisons are
presented in Figure 1.

Quantitative Results on D-NeRF Dataset

Table 2 reports quantitative results on the D-NeRF dataset,
comparing our method with leading dynamic scene recon-
struction approaches. Across all eight scenes, our approach
achieves the highest reconstruction accuracy, with an aver-
age PSNR of 37.50 dB, surpassing the strongest baseline,
Deformable4DGS, by 4.51 dB. The improvements are con-
sistent across both highly articulated sequences, such as Hell
Warrior and Hook, where our method exceeds prior methods
by over 6 dB and 4 dB respectively, and more moderately dy-
namic scenes, including Bouncing Balls and Stand Up, where
we achieve gains of 3-5 dB. Even in simpler sequences like
T-Rex and Jumping Jacks, our approach maintains a clear ad-
vantage, demonstrating its robustness across varying motion
complexities. These substantial improvements highlight the

capability of our framework to more accurately model non-
rigid deformations, preserve fine geometric structures, and
capture dynamic appearance variations compared to existing
NeRF-based and Gaussian-based techniques.

Quantitative Results on HyperNeRF Dataset

To comprehensively evaluate the generalization ability of our
method in real-world non-rigid scenarios, we introduce a chal-
lenging dynamic dataset: the HyperNeRF Dataset (Park et al.
2021b). This dataset consists of multiple dynamic scenes
captured simultaneously by two synchronized cameras, fea-
turing complex object deformations and potential topological
changes. Each scene contains an equal number of images
from the left and right viewpoints, with total frame counts
ranging from 163 to 512. Following the experimental proto-
col of Deformable4DGS (Wu et al. 2023), we conduct eval-
uations on four representative scenes: 3D Printer, Chicken,
Broom, and Banana. Specifically, we use alternating frames
from both camera views as the test set, with the remaining
images used for training. All images are at a resolution of
960x540. This setup addresses multi-view, multi-frame align-
ment challenges under sparse real-world inputs. It provides
a rigorous benchmark for assessing the stability and robust-
ness of our proposed 4D feature Gaussian regularization in
complex dynamic environments.

Table 3 summarizes the quantitative results on the Hyper-
NeRF dataset, where our method consistently outperforms
both NeRF-based and Gaussian-based baselines in terms
of reconstruction fidelity, efficiency, and real-time render-
ing capability. Our approach achieves a PSNR of 30.00 dB
and an SSIM of 0.96, surpassing the closest competitor, De-
formable4DGS, by 4.81 dB and 0.11 SSIM, respectively.
Compared to classical NeRF-based methods such as Hyper-
NeRF and V4D, which require 32 hours and 5.5 hours of
training, our framework converges within 20 minutes while
delivering significantly higher image quality. Moreover, our
method achieves real-time rendering performance at 40 FPS
with a compact 30 MB model size, representing substantial
improvements over existing Gaussian-based techniques like
3D-GS and FFDNeRF, which either underperform in visual
quality or incur high storage and runtime costs. These re-
sults demonstrate that our approach achieves state-of-the-art
rendering accuracy while simultaneously offering efficient
training and real-time inference.



Table 1: Quantitative Results for Different Scenes in PSNR on the Plenoptic Video Dataset.

Model Coffee Martini Cook Spinach  Cut Roasted Beef =~ Flame Salmon Flame Steak  Sear Steak Average @~ MB  Hours
HyperReel (Attal et al. 2023) 27.63 31.56 32.18 27.52 31.46 31.83 30.36 360 9
Neural Volumes (Lombardi et al. 2019) 22.80 22.80
LLFF (Mildenhall et al. 2019) 23.24 23.24
DyNeRF (Li et al. 2022) 29.58 29.58 28 1344
HexPlane (Cao and Johnson 2023) 32.04 32.55 29.47 32.08 32.39 31.71 200 12
K-Planes (Fridovich-Keil et al. 2023) 29.09 31.71 30.93 29.55 31.49 31.63 30.73 311 1.8
MixVoxels-L (Wang et al. 2023) 29.14 31.76 31.91 29.32 31.34 31.61 30.85 500 1.3
MixVoxels-X (Wang et al. 2023) 30.39 3231 32.63 30.60 32.10 32.33 31.73 500
Im4D (Lin et al. 2023) 32.58 32.58
4K4D (Xu et al. 2024b) 32.86 32.86
Sparse COLMAP point cloud input
STG* (Li et al. 2023) 27.50 31.61 31.21 27.84 31.96 3245 30.43 109 1.3
RealTime4DGS (Yang et al. 2023) 26.27 31.87 31.50 26.69 31.20 32.18 2995 6057 42
Deformable4DGS (Wu et al. 2023) 26.48 31.68 25.67 27.33 27.86 31.52 28.42 34 1.5
Ours 31.07 34.70 35.70 31.64 35.21 35.68 34.00 8 0.5
Table 2: Quantitative Results for Different Scenes on D-NeRF Dataset.
Method T-Rex  Jumping Jacks  Hell Warrior Stand Up  Bouncing Balls Mutant Hook Lego Avg
D-NeRF (Pumarola et al. 2021) 31.45 32.56 24.70 33.63 38.87 21.41 2895 21.76 | 29.17
TiNeuVox (Fang et al. 2022) 32.78 34.81 28.20 35.92 40.56 3373 31.85 25.13 | 32.87
K-Planes (Fridovich-Keil et al. 2023) | 31.44 32.53 25.38 34.26 39.71 33.88 28.61 2273 | 31.07
Deformable4DGS (Wu et al. 2023) 33.12 34.65 25.31 36.80 39.29 37.63  31.79 2531 | 3299
Ours 37.13 38.39 31.83 41.16 43.51 40.63  35.61 27.74 | 37.50

Table 3: Quantitative Comparison on HyperNeRF Dataset.
Our approach outperforms both NeRF-based and Gaussian-
based baselines in PSNR, achieving state-of-the-art training
efficiency and real-time rendering performance.

Method ‘ PSNRT SSIMtT  Times| FPST  Storage (MB)J
Nerfies 22.18 0.80 ~h <1 -
HyperNeRF 22.43 0.81 32h <1 -
TiNeuVox 24.26 0.84 30 mins 1 48
3D-GS 19.69 0.68 40 mins 55 52
FFDNeRF 24.24 0.84 - 0.05 440
V4D 24.83 0.83 5.5hours  0.29 377
Deformable4DGS 25.19 0.85 30 mins 34 61
Ours 30.00 0.96 20 mins 40 30

Quantitative Results on Long-sequence Datasets

We evaluate our method on three public multi-view datasets,
ENeRF-Outdoor (Lin et al. 2022), MobileStage (Xu et al.
2024c,a), and CMU-Panoptic (Joo et al. 2015), chosen for
their long video sequences and diverse dynamic scenes.
ENeRF-Outdoor is an outdoor human animation dataset cap-
tured using 18 synchronized cameras at 1920x1080 resolu-
tion and 30 FPS. We select three sequences (actorl_4, ac-
tor2_3, and actors_6), each spanning 1200 frames and featur-
ing two actors interacting with handheld objects in an outdoor
environment. For evaluation, we designate camera 08 as the
held-out testing view, with the remaining cameras used for
training. MobileStage is a multi-view dataset designed for dy-
namic human performance capture. It consists of recordings
from 24 synchronized 1080p cameras operating at 30 FPS.
We use the dance3 sequence, which depicts three dancers
performing fast, complex motions over 1600 frames. Camera
“05” is reserved for testing, while the other cameras serve as

training views. The high degree of non-rigid motion in this
dataset makes it particularly challenging for dynamic view
synthesis. CMU-Panoptic is a large-scale dataset featuring a
wide range of human interactions and activities, recorded by
31 high-definition cameras. Following Dy3DGS, we select
three subsequences (box, softball, and basketball) from the
sports category, maintaining the same 27:4 training-to-testing
camera split. Unlike Dy3DGS, we process the full-resolution
frames from all cameras and use the entire clip lengths, yield-
ing 1080p videos of approximately 1000, 800, and 700 frames
for the three subsequences, respectively. All datasets are cap-
tured with synchronized, static camera arrays and do not
provide explicit temporal correspondences beyond shared
camera calibrations. The scenes predominantly feature static
backgrounds with dynamic humans or objects, most exhibit-
ing diffuse appearance characteristics. This setup motivates
our use of a global segmentation strategy and a compact ap-
pearance model. Importantly, because our representation is
defined in the world coordinate system, it remains robust to
potential camera motion, provided the intrinsic and extrinsic
parameters are accurately known.

Table 4 presents quantitative results on three challenging
multi-view datasets, demonstrating that our method consis-
tently outperforms state-of-the-art approaches in reconstruc-
tion fidelity and perceptual quality. On ENeRF-Outdoor, our
approach achieves a PSNR of 32.00 dB, markedly surpassing
4K4D (25.36 dB), ENeRF (25.02 dB), and 3DGS (24.02 dB),
while also delivering the highest SSIM (0.950) and lowest
LPIPS (0.100), indicating sharper structures and reduced per-
ceptual distortion. Similarly, on MobileStage, which features
fast and highly non-rigid human motion, our method attains
a PSNR of 33.00 dB and SSIM of 0.970, significantly im-
proving over existing baselines. Although 3DGS yields a



Table 4: Quantitative comparison on Long-sequence Datasets.

ENeRF-Outdoor (Lin et al. 2022)

MobileStage (Xu et al. 2024c¢)

CMU-Panoptic

Metrics

Ours 4K4D ENeRF 3DGS Ours
PSNRT | 32.00 25.36 25.02 24.02 33.00
SSIM T 0.950 0.8080 0.7824 0.8231 | 0.970
LPIPS ¥ | 0.100 0.3795 03043 0.2765 | 0.120

4K4D ENeRF  3DGS Ours Dy3DGS
25.90 19.14 28.02 | 32.00 24.27
0.8788  0.7492  0.9172 | 0.980 0.9432
0.3872  0.4365 0.2383 | 0.150 0.5135

lower LPIPS score (0.2383), it performs notably worse in
PSNR and SSIM, reflecting limited geometric and temporal
reconstruction accuracy. On CMU-Panoptic, our framework
achieves 32.00 dB PSNR, 0.980 SSIM, and 0.150 LPIPS, sub-
stantially outperforming Dy3DGS across all metrics. These
results collectively highlight the scalability and robustness
of our approach to long-duration sequences and complex
multi-human interactions.

Quantitative Results on Nerfies Dataset

To assess reconstruction quality in dynamic, non-rigid scenes,
we evaluate our method on the Nerfies dataset (Park et al.
2021a). The dataset is captured using a custom rig consisting
of arod with two Google Pixel 3 phones. Data acquisition sup-
ports two modes: (a) selfie mode, where the front-facing cam-
eras capture time-synchronized photos with sub-millisecond
accuracy (Ansari et al. 2019), and (b) video mode, where
the rear cameras record two video streams that are manu-
ally synchronized via audio and subsequently downsampled
to 5 FPS. Image registration is performed with COLMAP
[40], enforcing rigid relative camera pose constraints. Selfie-
mode captures yield fewer frames (40-78) but maintain high
temporal alignment with consistent focus and exposure set-
tings. In contrast, video-mode captures are temporally denser
(193-356 frames) but exhibit lower synchronization accuracy,
with potential inter-camera variations in exposure and focus.
Each capture is split into training and validation sets by alter-
nating the left and right viewpoints: one camera is used for
training and the other for validation, and the roles are subse-
quently swapped. This ensures that both viewpoints cover the
entire scene, avoiding unseen regions during evaluation. The
dataset comprises both quasi-static and dynamic sequences.
The quasi-static subset includes five human subjects attempt-
ing to remain motionless (captured in selfie mode) and one
predominantly static dog (captured in video mode). The dy-
namic subset consists of four sequences recorded in video
mode, depicting deliberate human motions, a dog wagging
its tail, and two independently moving objects.

Tables 5 and 6 present quantitative evaluations on the
Nerfies dataset for both quasi-static and dynamic non-rigid
scenes. Our approach (L4DGS) achieves a substantial im-
provement over all competing methods, attaining an average
PSNR of 38.8 dB with an LPIPS of 0.018 on the quasi-
static subset, significantly surpassing the best-performing
baseline, Nerfies, which records 23.7 dB and 0.287 LPIPS.
Similar trends are observed across all individual scenes,
where L4DGS consistently provides gains exceeding 15 dB

in PSNR and markedly lower perceptual errors. On the dy-
namic subset, which features pronounced human motions
and complex object interactions, L4DGS maintains state-of-
the-art performance, achieving an average PSNR of 40.1 dB
and LPIPS of 0.060, compared to Nerfies’ 22.9 dB and 0.185
LPIPS. These improvements demonstrate that our method not
only enables photorealistic rendering with superior percep-
tual quality but also robustly handles challenging non-rigid
deformations and fast dynamic motions.

Quantitative Results on iPhone Dataset

To further assess L4DGS under diverse motion patterns,
we introduce iPhone dataset (Gao et al. 2022), specifi-
cally designed to address limitations of existing benchmarks
that predominantly feature repetitive object motions. The
iPhone dataset comprises 14 video sequences exhibiting non-
repetitive movements across a broad range of categories,
including generic objects, humans, and pets. Data acqui-
sition employs a three-camera setup: a handheld, moving
camera is used for training, while two static cameras with a
wide baseline are reserved exclusively for evaluation. Table 7
presents the quantitative evaluation on the newly introduced
iPhone dataset, which features diverse and non-repetitive ob-
ject motions captured under challenging handheld settings
with wide-baseline multi-camera evaluation. Our method
(L4DGS) achieves a PSNR of 42.00 dB, markedly surpass-
ing state-of-the-art NeRF-based approaches, including Hy-
perNeRF (16.81 dB) and Nerfies (16.45 dB), resulting in
gains exceeding 25 dB. Similarly, our approach attains an
SSIM of 0.990, significantly higher than baseline values of
approximately 0.57, and achieves a substantially lower LPIPS
score of 0.030 compared to the next-best 0.332. These results
highlight the superior reconstruction fidelity and perceptual
realism of our method in handling complex, non-repetitive
motions where existing methods fail to generalize. The sub-
stantial performance margin across all metrics demonstrates
the robustness of our approach in rendering temporally co-
herent and high-quality 4D representations from challenging
handheld captures.

Implementation Details

Gaussian Initialization Our hyperparameter configura-
tions are primarily based on those used in 3DGS (Kerbl
et al. 2023). We use Structure-from-Motion (SfM) tools (e.g.,
COLMAP) to reconstruct the input multi-view images. STM
produces a sparse 3D point cloud along with the intrinsic and
extrinsic parameters for each camera view.



Table 5: Quantitative evaluation on the Nerfies’ quasi-static scenes datasets.

Method Glasses Beanie Curls Kitchen Lamp Toby Sit Mean
PSNR LPIPS | PSNR LPIPS | PSNR LPIPS | PSNR LPIPS | PSNR LPIPS | PSNR LPIPS | PSNR LPIPS
NeRF (Mildenhall et al. 2020) 18.1 474 16.8 .583 14.4 .616 19.1 434 17.4 444 22.8 463 18.1 .502
NeRF + latent 19.5 463 19.5 .509 15.0 .589 20.2 402 18.1 438 20.9 .386 18.7 472
Neural Volumes (Lombardi etal. 2019) | 152 616 | 157 595 | 137 598 | 166 392 | 138 538 | 137 562 | 150  .562
NSFF' 18.8 490 18.4 538 16.3 529 20.5 402 18.4 409 22.0 412 19.3 455
Nerfies 242 .307 232 391 24.9 312 235 279 23.7 .230 22.8 174 23.7 287
L4ADGS 38.0 .020 39.0 .020 36.0 .030 40.0 .010 42.0 .010 38.0 .020 38.8 .018
Table 6: Quantitative evaluation on the Nerfies’ dynamic scenes datasets.
Method Drinking Tail Badminton Broom Mean
PSNR LPIPS | PSNR LPIPS | PSNR LPIPS | PSNR LPIPS | PSNR LPIPS
NeRF (Mildenhall et al. 2020) 18.6 397 23.0 571 18.8 392 21.0 567 20.3 .506
NeRF + latent 19.2 388 24.9 504 19.5 .360 20.2 452 20.7 453
Neural Volumes (Lombardi et al. 2019) 14.7 .398 15.8 559 13.6 531 13.7 .606 14.9 537
NSFF’ 21.5 381 242 .396 20.6 376 22.1 453 20.8 420
Nerfies 224 .0962 23.6 175 22.1 132 22.0 .168 229 185
L4DGS 42.0 .040 41.0 .060 37.5 .080 40.0 .060 40.1 .060

Table 7: Benchmark results on the iPhone dataset.

Method PSNRT SSIM{ LPIPS|
T-NeRF 1696 0577 0379
NSFF (Li et al. 2021) 1546 0551  0.396
Nerfies (Park et al. 2021a) 1645 0570  0.339
HyperNeRF (Park et al. 2021b)  16.81  0.569  0.332
L4DGS 4200 0990  0.030

HyperParameters settings The multi-resolution HexPlane
module R(i, 7) is initialized with a base resolution of 64, and
subsequently upsampled by factors of 2 and 4 during training.
We use a learning rate schedule that begins at 1.6 x 10~3 and
gradually decays to 1.6 x 10~%. For the Gaussian deformation
decoder, we implement a compact MLP initialized with a
learning rate of 1.6 x 10—, which is reduced to 1.6 x 10~°
over time. Training is performed using a batch size of 1.
Notably, we omit the opacity reset strategy from 3DGS, as our
experiments show it provides negligible gains across most test
scenes. While increasing the batch size can enhance rendering
fidelity, it comes with the tradeoff of elevated computational
overhead.

Our evaluation spans datasets captured under varying con-
ditions. The D-NeRF dataset (Pumarola et al. 2021), being
synthetic and monocular in nature—with a single frame avail-
able per timestamp—offers a relatively simple training sce-
nario due to its lack of complex backgrounds. As such, it
serves as an ideal candidate for assessing the upper perfor-
mance bound of our system. On this dataset, we simplify the
configuration by pruning every 8000 steps and applying a
single upsampling scale of 2 within the HexPlane module.
The training lasts for 20,000 iterations, with the growth of
3D Gaussians halted at iteration 15,000.

The Plenoptic Video dataset (Li et al. 2022), in con-

Algorithm 1: L4ADGS Training and Inference

Require: Video frames with poses, language input, ground-
truth images/depths; hyperparameters

: Init: 4D Gaussians (position, rotation, scaling), fusion
weights, encoders

: for each training step do

Sample time ¢ and the unit time interval {0t}

Render features and depth

Encode language and vision into multi-scale tokens

SMSAM SMSALY « CoMPUTESMS A(vision,
language tokens)

w® «— COMPUTEATTENTIONWEIGHTS(vision at-
tention, valid mask M (1))

LStaticsem> Lsuticpepth <~ STATICLOSSES(SM SAff),
rendered features, depth, w®), M (1)

1

kv

— DYNAMI-

]*)ynamicSem’ ]*)ynamicDeplh
CLOSSES(SMSAY, SMSALHY,
deltas, depth deltas, w®), M)

*

fused/rendered

. * . *
10: — ‘CDynamicDepth + )\dynamZC‘CDynamicSem

Dynamic
11 ;tatic — ﬁ;taticSem + AStatiC‘CgtaticDepth
12: Zz‘ZDSem — ’CEynamic + )\’Cgtatic
13: Liecon ¢ M Lgsim + A2L1 + A3Lyy
14: L L} psem T MaLrecon
15: Update Gaussians and network via backprop on £
16: end for
17: Inference: Given novel time and language query, com-

pute fused representation via SMSA and render image.

trast, includes sequences captured from 15 to 20 static view-
points. This makes it straightforward to extract structure-
from-motion (SfM) points (Schonberger and Frahm 2016)
from the initial frame. To manage GPU memory usage, we
reconstruct a dense point cloud and downsample it to fewer



than 100,000 points. Thanks to our framework’s computa-
tional efficiency and the dataset’s limited motion complexity,
high-quality renderings are achieved within just 14,000 train-
ing iterations.

Definition and Sensitivity of 5t We set ¢ = 0.001s in all
experiments. In practical applications, the optimal value of
0t can be adjusted based on different scenarios. For scenes
involving very fast motion, reducing ¢ from 0.02s to 0.0001s
significantly enhances temporal stability.

Methodology

To enable a language-guided dynamic rendering, we summa-
rize the unified training and inference pipeline of L4DGS in
Algorithm 1.
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Figure 1: Qualitative comparison on the Plenoptic Video dataset.
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