
README.md 10/5/2021

1 / 2

Effective Sparsity

This repository contains code for the experimental section of the paper "Connectivity Matters: Neural Network

Pruning Through the Lens of Effective Sparsity".

Environment

To run code from this project, first clone the repository and install dependencies by executing pip install
-r requirements.txt. The code was tested for Python-3.6 and Python-3.8. For GPU support (not

available for macOS), add tensorflow-gpu===2.5.0 to the requirements.txt file.

Quick demonstration

Our original full-fledged experiments involved 5 different network architectures (3 of which require a GPU) and

15 pruning algorithms combined across about 30 sparsity levels and repeated 3 times for stability of results. In

total, this comes to almost 7,000 networks to be trained. For demonstration purposes, we provide a quick

lightweight demonstration demo.py that requires no flags or arguments and takes only a few minutes to

execute on a CPU-powered device. Run python demo.py for this demo.

Original experiments

To replicate our results, run python main.py with a selection of arguments (run python main.py --help
for a description). For example, python main.py --architecture=lenet300100 --pruner=snip -
-target_sparsity=0.99 --pruning_type=effective --train=1 will use SNIP to prune LeNet-

300-100 to 99% effective sparsity and train this subnetwork on MNIST. Provided --save=1 (default), all

output and log files are saved to {--out_path}/{--architecture}/{--pruner}/{--pruning_type}
in the following format: {--sample}_{compression}_{description_of_output}.{ext}, where .
{ext} can be either .log (as in info.log) or .npy for actual output files (e.g., 0_10_accuracies.npy).
{compression} value (direct or effective, depending on --pruning_type) is calculated using --
target_sparsity as 1/(1-target_sparsity) or --com_exp as 10^(com_exp). The latter flag
overrides --target_sparsity if specified. Note: LAMP and all magnitude-based pruners require output

files (final weights) generated after training an architecture with --pruner=dense.

Datasets

To use ResNet-18 on TinyImageNet, download the dataset by executing the following commands:

wget http://cs231n.stanford.edu/tiny-imagenet-200.zip
unzip tiny-imagenet-200.zip

and pass the path to this folder using --path_to_data. MNIST and CIFAR-10/100 will be downloaded

automatically when they are first needed (no need to specify --path_to_data for these three datasets).

Important: avoid multiple scripts downloading the same dataset concurrently as this may result in damaged

data files.

Visualizing results



README.md 10/5/2021

2 / 2

The visualization.py file produces plots out of output files generated in the above step. Execute python
visualization.py --help for the full list of flags and their description. To plot accuracies for LeNet-300-

100 effectively pruned by SNIP, SynFlow, and IGQ (random) averaged across 3 samples, run python
visualization.py --architecture=lenet300100 --pruners_to_display snip synflow
random/igq --num_samples=3 --pruning_type=effective --plot_type=accuracies. Plots
are saved to {--out_path}/{--architecture}/figures.


