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A In what sense is evaluating max(z1, xo, 3, 24, 5) hard?

To motivate the fundamental differences of the max function with higher dimensionality, in this short section,
we argue that there is unlikely to be a simple generalization of the correspondence between maximum and
ReLU in d = 2 to general d. The idea is entirely due to [Blatter| (2011), though any mistakes in the
interpretation are ours alone.

Theorem 6. There is no algebraic expression for

(xl,x2,$3,1‘4,:175) = ma‘X(Ila I2ax37x47x5)'

Proof. max(x1,x2, 23,24, 25) is a root of the polynomial (x — x1)(x — x2)(x — x3)(x — 24)(x — x5). Suppose
that there was an algebraic expression for the largest of (21, x9, x3, x4, x5), say f(x1, T2, x3, 24, s5) then, then
the roots of (z —x1)(z — x2)(z —x3)(x —x4)(x —x5) /(v — f(x1, X2, 3, T4, z5)) could be found via the quartic
equation, and we would have an algebraic expression for all five roots. However, Abel’s Theorem states that
there is no algebraic expression for general quintic polynomials.

O

The argument is subtle, so consider the same argument applied to the maximum of two values. The two roots
of (x — x1)(z — x2) are well known to be (z1 + 22)/2 & /(1 + 72)2 — 4x122/2, and the larger corresponds
to adding the discriminant:

(331 + 1‘2) + \/(.131 —|—.Z‘2)2 — 4x1x9 . (.231 + .132) + (.231 — .132)2 _ (171 + 1‘2) + |171 — 172|

2 2 2

Which is a well-known trick for reasoning mathematically about the maximum of two variables. A corre-
sponding expression comes from solving the cubic equation

}$1(|I1 — xa| + |z — x3]) + x2(|ry — 22| + |22 — 23]) + 23(|w2 — 23] 4 |21 — 23])
2 ‘x1—$2|+|$2—$3‘+|$1—$3|

|z1 — x2| + |22 — 23] + |71 — 73]
+ 1 .

max (21, Ta, T3) =

This equation is tractable because we can assess the min and max similar to above, and impute the third
value from the averageﬁ It is not clear what the analogous interpretation is for the quartic equation, though
one presumably exists.

However, for fifth and higher-order polynomials we cannot generally even write down an algebraic expression
for the roots, so determining by inspection which will be the greatest seems unlikely.

B Proofs
B.1 Proof of [Theorem 4

Proof. Let perm(d) denote the set of all permutations of {1,2,...,d}, and let

MG(R) = {m € M4(R) : m(z1,x2,...,24) = M(Ts,, Ty, .-, To,) for all o € perm(d)}

denote the restriction of M4(R) to those elements that are invariant to a reordering of its arguments. Because
max is symmetric in this sense, any optimal approximation to it must lie in M$(R):

3See also the excellent exposition given at https://math.stackexchange.com/a/89702/92999!
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Theorem 7. For all R,

min _||m —max||o = min ||m — max || .
meMg(R) meM§(R)

Proof. Assume otherwise, that is:

min _||m —max || < min |[m —max||s.
meMg(R) meM§(R)

Meaning that there is an m that is not symmetric and an « such that m(z’) < m®(x) for all symmetric m®
and all /. In particular m(x,) < m®(x) for all permutations x, of z. Thus

’ o€perm(x)

However, z — 4 > () M(25) < m®(x) is evidently symmetric, a contradiction.

oeperm

O

Thus, it is without loss of generality to optimize over M?®(R) rather than M(R), and we turn to oper-
ationalizing the symmetry assumption in terms of the coefficients. For r > 1, w;,(1q — eqx) = 1E| for
all k=1,2,...,dand all j =1,..., (f) since there is only a single non-one value. Thus all terms of order

greater than 1 are equal, and the sums are equal by symmetry, so we necessarily have that for all f € M3(R),
Bt =p? =...=p¢ Call this single value 1, and (for 0,1 € R)

()
MGR) =S e Bo+ BS(z;L,d)+ Y > Bls(x;C(j,r,d): B, Bo, 1 €R

reR\{0,1} j=1

Repeating this process for pools consisting of entirely of 2, except for 3,4, ...,d—1 zeros in turn implies that
the estimator must be a function of S(z;r,d) alone, and not the individual terms of the sum separately:

M(R) = {x — ZIBTS(SC;T, d):p, € R} )
reER
So, the maximization over all m € My(R) can be reduced to the maximization of |R| scalar coeflicients.

We want to show that
1d—-1

i — By — B1S(x:1,d)]|c0 = = 13
min lz1) = Bo — B1S(z; 1, d)]| 5 d (13)
énin 21y = Ba—1S(x;d = 1,d)|[c = 1/(2d — 1) (14)
d—1
min ey — o~ f 1Stz — L)l = 1/(24) (15)
0,Pd—1
min ey o~ S d) ~ faaS(ad — L d)lo = 1/ +1) (16
0,P1,Pd—1
min l|xy — Bo — B1S(x;1,d) — Ba—2S(w;d — 2,d) — Ba—1S(x;d — 1,d)]||0c = 1/d? (17)
Bo,B1,8a—2,8d—1
min [l = fo— BiS(@iLd) = ... — far S(aid — 1,d)] o = 1/2° (18)
Bo:B1,---,Ba—1

4w is defined in [subsection 4.1} recall.
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where the L., norm is taken over values of z.

The proof of each is similar, to facilitate their analysis, we distill the essence of each into a “meta”-proof.
There are three essential steps:

1. Conjecture coefficients, 8* with the help of [Appendix D]

2. Lower bound: for any f and for any set of points P C [0, 1]¢,

min max |f(B,x)| > min max (B, 2)| = max |£(5",2)]

where we prove the equality by contradiction: suppose there is a better 5/, and derive a contradiction.

3. Upper bound: for any f,

mBin max |f(5,x)| < max |f(8%,x)|.
x x
Then we show that max, |f(8*,x)| < 8§ by writing it as a linear combination of order statistics.

For [Equation 13} let (85 B7) = ((d—1)/(2d) 1). Suppose that there were some () /) achieving a
criterion < 3. Evaluating the error at x = (1 1 ... 1) and x = (1 0 ... O)7 this implies

1—50—61/d<+55 andl—ﬁo—ﬂl>—ﬂa — (d—l)(1—50)<(d+1)56

d+1 , N
<:r> Bo>l—mﬁozﬁo

A contradiction to the condition at zero. Thus, ming, g, [|z(1) — o — B1.S(z;1,d)|[c > 5.
On the other hand, from

1 1
zy — By — S(z;1,d) = <1 - d> CO R (z@) + - +a@) — B € [-55,+55] -

For |[Equation 14} let 55 | = %. Suppose that there were some (/,_; achieving a criterion strictly less than
1/(2d —1). Evaluating the criterion at x = (1 1 ... 1) and z = (1 1 ... 1 0), this is only possible
if

1 1 2d ) 2d
d g —
— > B4 an Bd71>2d717

and 1 —B&fld;

1—5;1>—# <
B 2d —1 2d —1 2d -1

which is to say it is impossible. On the other hand, from

2d 2d d—1 1
T T g @wd T Ld) =T g ( g fot df”<2>>
Ty — 21‘(2) _ 1 1
T 2d-1 e{ 2d—1't2d—1]
|
For let (B85 B;_1) = (1/(2d) 1). Suppose that there are some () f,_;) achieving a
criterion < 3. Evaluating the errorat z = (1 1 1 ... 1) implies
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—1/(2d) <1 =By — Baoy <= Ba_y <1- 55 +1/(2d). (19)
Evaluating the errorat z = (1 0 0 ... 0) implies

1By —Bg1(d—1)/d < +1/(2d) <= 1- 5y —1/(2d) < By_,(d—1)/d

d , , (20)
= 01 (1—85—1/(2d)) < Bg_1-
Combining [Equation 19| and [Equation 20|
o a_g1yed) <1 +1/ed) — (= _1a—gy< L1+
d—1 0 0 d—1 07 24 d—1
2d — 1
1 —py < 24t (21)
— ( ) < 57
1
/ —
= B> 50"

An obvious contradiction to the condition at 0 that |5)| < 1/(2d).

On the other hand, from

1

1 1 1 1
~ % —S(x;d—1,d) = 7 (x(l) —x(g)) ~ 54 € |:—,+:| .

ta 2d’ " 2d

|
For let (B85 Bf Bi) = (1/2 —d/(d—2) d(d—1)/(d—2))/(d + 1). Suppose

that there were a (8) i f_,) achieving a criterion less than B3, then the condition at z =
(1,1,...,1),(1,1,0,...,0),(1,0,...0) imply, respectively:

L= By =01 =By <46y = 1-061 =By < +28)
2 2
1= G B2 By > > 1= A2 A ~0
1 d—1 1 d—1
1—%—53&—5&—17 <46y = 1—ﬁia—ﬁé_17 < +28;

combining the first and the second implies fd%dzﬂ(’) < B, while combining the second and third implies

2
B < deQB(') — de2‘ Combining these

2d 2d% d , 1
a2 < g T gz T P sy
a contradiction to the condition at x = 0.
On the other hand, from
1 1 (d—1)
- - ((d—1
07 3@a D T @rna—g “0 T ) T grpa—g (47 Dro +re)
=y ) b (g bt ) - o€ |
A+ 1WA T =2 ® T T T o) 2d+1) "2(d+1)]"
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For [Equation 17t (83,65, 85_5.65_1) = (d% ﬁ -1- ﬁ 2). Suppose that there were a

(ﬂ{) B Bh_s 51/171) achieving a criterion less than 83. In order to scale up the proof by contraction,
we use

Theorem 8 (Carver| (1922), Theorem 3). Az < b is consistent <= y = 0 is the only solution for y > 0,
y ' A=0,9"b<0.

Applying the assumed condition at z = (0,0,...,0), (1,1,...,1), (1,1,1,0,...,0), (1,1,0,...,0), and
(1,0,...0) imply, respectively thatﬂ

By < +85

1—By— 01— Bao—By1>-5
3 .

1— By — 518 — Ba—o — Ba—1 < +55

(d+1)(d—-2)

! /2 /!
1_50_51E_ﬁd72 d(d*l)

—Ba1> =5

1 d—2 d—1 .
17/8(/)761g7/8/d—2 d 7/8/d—1 d <+/80
or Ax < b for
+1 0 0 0 , 6
+1 +1 +1 +1 0 BE+1
A=|-1 —% d1—1d2 -1 , T = 1 ,and b= | 35 —1
i +% ( —'ll_(ald)(izl—i)r ) —211 Zj Bé +1
i B By —1
It is straightforward to verify that
1/d
(d—2)/(2d)
y=| (a2-1)
(d—1)/2
1

satisfes yT A = 0and y"b = (B5d—1/d) = 0. The last equality is because 35 = 1/d?. We have demonstrated
ay >0,y #0withy b < 0, thus the system is not consistent, which forms a contradiction to the supposition
that there exists a (8) 3] fj_, [,_,) achieving a criterion less than /.

On the other hand, from

1 2 1 (d—=2)(d-1) 2
- = —_2 d—2,d) — = ((d—1
W E T gt re) g gy 28(@d = 2,d) - 5 (- Dea + o))
2 2 2 2 1 1 1 1
:ﬁx(l) - ﬁx(g) + ﬁx(g) — ﬁid — 3(1‘(4) + ...+ a:(d)) — ? S _ﬁ’ +ﬁ

1 d—1 d—2 d—3
S(x;d —2,d) = (dfz) ((d B 3)90(1) + (d _ 3)z(2) + (d— 3)90(3))
1 2(d —2 2
=3 ((d = 2)zq) + ﬁf‘@) + mxm)
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For The idea is the same, but handling d + 1 equations simultaneously requires more powerful
notation. Let B(d) be the d—1 x d matrix with (r, ¢)th element (f:f)/(f) if r+¢ < d+1, and zero otherwise.
We can write the condition simultaneously for all  as

S(x;0,d) T INT
ng;l,dg .
Sl‘;2,d 1 0
. \T A I 1xd—1 1xd
s 2| s | = [0 (on, Ba) R (22)
S(x;d—1,d) ()

We have indicated the dimensionality of the zero vectors with subscripts.

Let V(d) be the d x d + 1 matrix

0 1 1 11
0 0 1 11

(23)
0 0 0 11
00 0 ... 01

of points at which we evaluate the estimator. Let s(d) be the d 4+ 1-dimensional vector starting and ending
with jth element (—1)7~1; diag(s(d)) encodes the signs of the binding inequalities. Let

0

1 i !

A = diag(s(d)) (B(lcf);%)) ,b=1/27 + diag(s(d)) 1
1

where we indicate the dimensionality of the d + 1-dimensional vector of ones. Here

satisfies y T A = 0 and y" b = 0. Thus, there are no parameters achieveing a criterion < 1/2%, by

For the other direction, let

. —-1/2¢
0 (—1/2)%1 (%)
goo | TP 2o | ((1/2)972(9)

i (1721}
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Then, by the binomial theorenﬂ

1/2¢
1—2/2¢

(1 Oixa—1) ox _ +2/24
(del B(d)T)’B | 2/

Thus

d
x 2 ; 1 1
(1) — S(l‘;d)—rﬂ = 1/2d+z27x(j)(—1)]+1 S |:_2d’+2d:| .

O
Theorem 9 (Fundamental perturbation analysis of L., optimization over Ag). Given a vector v € R%:
(v +1a))/2 = arg min max RERNT (24)
— 2= A— 25
() = Y@)/2 = min max [y"A —al. (25)

Proof. The maximum absolute value element is given by |[z||o = maxyca, |27 A| = max{|zq)l|, |z@q)}-

For [Equation 24, for any A € Ag, |[y"A —a| = |(y — 14 x a)TA|. For any fixed a, the largest element (in

magnitude) of v — 14 x a will be achieved at the coordinate of either the highest or lowest element of v, and
the inner optimization evaluates to

max{|y) — al, [va) — al}-
Let a* = (v1)+(ay)/2- Suppose that a = a*+-¢ for € > 0. Then |y1)—al < |y@)y—al = [(—y) +’y(d))/2—e\ =
(vay = Y@)/2 + €, thls quantity can be reduced by setting € to zero. Thus the optimal a is < a*

Now, suppose that a = a* —e for € > 0. Then |y —a| < |yq)—al = [(va) = Y@)/2 =€ = (va) =) /2 +¢€,
this quantity can be reduced by setting € to zero. Thus the optimal a is > a*.

follows straightforwardly from plugging into the criterion (1) + v())/2 implies
that the largest value of v — 14 x a is (v(1) — Y(a))/2, and the smallest value is (y(q) — Y(1))/2, with all other

values in-between. O

Theorem 10. Let L(3) = (0 1 ...1) — 3T B(d)V(d), then

ﬁg,ﬁf,...,ﬁzz_lé argmin  max |L(B1, ..., Bi—1)X — Bol
Bo,B1ye-Ba—1 AEAA

satisfies L(BY, ..., B3_1) 2 0, 8" = argming || L(B)]| o, and B5 = ||L(B)|]oo-

Proof. Note that the first column of B(d)V(d) is entirely zero, so L(B1,...,84-1)1 = 0 for all 81,...,B4_1.
Thus, if L(B1,...,84—1) > 0, then the smallest element will be zero, and the last two assertions follow
directly from [Equation 24| and [Equation 25|

> e 0( ) P=(4n)m
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Thus, we need only to show that at any candidate optimum L(Bi,...,B4-1) > 0 for all i <«—
(Br B2 ... Pa—1)B(@V(d) < 1 for all i Note that no candidate solution would have
((Br ... Ba—1) B(d)V(d)); < 0 for any i since this would result in a criterion > 1/2, which is trivially
attainable with 8; = ... = B4_1 = 0.

Suppose that at a candidate 3, m £ max; (87 B(d)V(d)); > 1, then the minimum element of L will be
1 —m <0, and by the attained criterion will then be

(max L(B); — (1 —m))/2.

7

And max; L(8); = max(0,1 — min; (37 B(d)V(d));). We have shown that
(Br ... Bi—1) B(d)V(d) >0,

thus max; L(8/m); > max; L(f);, and we have that

max L(B/m); < (mzax L(B)i—(1—=m)) <= (1-m) < max L(B); — max L(B/m);.

We need to consider three separate cases:

1. 0 =max; L(8/m); = 0= max; L(B); in which case the inequality holds strictly.
2. L(B); = 0 but max; L(B/m); > 0 then max; L(8/m); =1 — L min; (3" B(d)V(d));. This holds
only if min; (37 B(d)V(d)); > 1, so

1-m<—1x (1 ~ L in (BTB(d)V(d))i> = 2.<m + min (BT B(d)V(d));/m

m o
which follows from the AM-GM inequality: a > 1,b> 1 = (a4 b/a)/2 > Vb > 1.

3. If both terms are nonzero, then

1-m<

T min (87 B()V(d)); <= m = min(3T Bd)V(d)):.

Theorem 11. An optimal estimator is increasing.
Proof. Two points x1,xs will have x1 > x5 if and only if their V representations are similarly ordered, thus
f will be increasing if and only if 87 B(d)V (d) > 0.

Suppose otherwise, that for some i (37 B(d)V(d)); < 0. Then the criterion will be > (1-3T B(d)V (d));)/2 >
1/2 by However, by setting 8 = 0, a criterion of 1/2 can always be achieved, thus 8 cannot be
optimal. 0

B.2 Proof of [Theorem 5

Proof. shows that an optimal estimator is weakly increasing. Thus, for § < £, p =
(6,0,...,0) = f(p) > Bo = f(0) = 5 > § = max(p) and means an error of at least S5 — J. So at
p, the error will be at least € iff 35 — e > §. This is true for all p € [0,4]4, thus [0, 85 — €]? C W(e; R) =
vol(W(e; R)) > (85 — ).

Theorem 10| shows that 5 = dist(R)/2, and the assertion is proven.
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This volume bound could be improved by including more than just the intercept in the computation of the
bound. And, as one might intuit, a similar analysis holds at all vertices.

C L, problem

For brevity in what follows, let x(d) = B(d)V(d) € R¥"1X4+1 then the difference between the fitted and
actual values, as a function of A is:

A= (1d+1 — 6d+1,1)—r)\ — BO — ﬂ—rl{(d))\ = —50 + ((]—d+1 - €d+1,1) - H(d)TB)T)\ (26)

From [Equation 26| the squared Lo error isE]

/A (Bo— (La — ear) — £(d)T8)TA)2dA. (27)

To lighten the notation, we wrap this optimization problem into
Theorem 12. Let ap € R, a € R?, A € R¥! and E € RHIX, et v(d) = fAd d), then

min / (a0 — (A —Za)TA)2d\ = v(d)AT (I ~2(d)E (E'2(d)E) ETz(d)) A (28)
Ag

o,
Proof. Expanding the criterion above:

agv(d) — 2a9(A —Za) T </Ad Ad)\> +(A-Za)" ( )\/\TdA> (A —Za).

Agq

The first order criterion for optimality of «q evidently requires that

ap=(A—Za)" (/Ad )\d/\) Jv(d),

thus, the criterion equals

v(d) x (A—Za)" </Ad M TdN/v(d) — /Ad Ad)\/v(d)/ )\Td)\/v(d)> (A —Za).

Ay

Write the inner term — the covariance matrix of a Dirichlet(1,1,...,1) distribution — as ¥(d), then this
weighted least squares problem is solved by

o = (E275(d)2) 27 5(d) A.
Plugging this equation into the criterion gives O
Phrasing in terms of we have that the squared Lo error of the optimal coefficients

1S:

n

o(d)(1g — ear) " (I — S(d)r(d) T (k(d)S(d)r(d)T) Ii(d)z(d)) (1 — ear). (29)

7Ag denotes the d-dimensional unit simplex.
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The hat matrix X(d)r(d) " (Ii(d)Z(d)/{(d)T)T k(d)X(d) has rank d — 1, thus (14 — eq1) cannot possibly lie
in the nullspace of the projection operator, and we have a strictly positive error. We skip deriving the
exact expressions as a function of d and note that the same analysis could be straightforwardly conducted
constraining different coefficients to equal zero.

D Bounding the error and complexity of a general R-estimator
In this section, we present a method for computing nontrivially tight lower bounds on the error from a

general R C {0,1,2,...,d — 1,d} estimator. For any set of points P C [0,1]%, we have that

[[m — max || > max |m(z) — max(z)| =
zeP

min  ||m —max|| > min max |m(z) — max(x)|.
meMS(R) meMS(R) z€P

Apply this with P equal to d + 1 corners of the unit cube containing zero, one, two, etc. ones:

[|m — max |0 > merr/\l/ligl(R) max {{/m((0 0 ... 0 0))],
Im((1 0 ... 0 0))—1],
Im((1 1 ... 0 0))—1],
Im((1 1 ... 1 0))-1],
m((1 1 ... 1 1))—1[}

Finally, we write this as the convex optimization problem, in 2(d 4+ 1) constraints, and 1 + |R| variables,
using a a standard trick for rewriting Lo, optimization (see [Boyd & Vandenberghe| (2004)).

min subject to |8y + B:S((0 0 ... 0 0);rd)|<g,
9:0,(Br.7CR) g5 ’ TERZ\:{O} . ) =9

Bo— > BS((1 0 ... 0 0)ind -1 <y,

reR\{0}

By — Z BrS((1 1 ... 0 0);rd) —1<g,

reR\{0}
Bo— > BS(1 1 ... 1 0);rd)—1)<g,
re R\{0}

fo — Z /B’I”S((l 1 ... 1 1);7ﬂ7d)_1 <g.

re R\{0}

This computation scales well, essentially linear programs such as this can be simply solved on a desktop
computer using standard software for thousands of variables and constraints.
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E Implementing an R estimator as a purely feedforward network

In this section, we show how to cast a general R estimator as the forward pass of a purely feedfoward
network. This analysis is necessary to give a benchmark against which to compare stochastic gradient descent
fitting. The reasoning is complex, so will skip some low-level details. The code, in idiomatic PyTorch and
accompanied by extensive test cases, is available at xxx.com.

First, we describe a concept called the R-mapping, then we describe an algorithm for computing R-mappings,
and then we show how to use an R-mapping to construct a purely feedforward network that is an R-estimator.

E.1 R-mapping definition and motivation

An R-mapping describes an R-estimator as a sequence of pairwise maxes. For d € N and r € {1,2,...,d}
let C(r,d) = {{1,2,...,7},{1,3,...,7r+ 1},...,{d — r,...,d}} denote the set of size (f) of all subsets of
(1,2,...,d) of size r.

Definition 1. An R-mapping for R C {0,1,2,...,d} is a sequence of sets ti,ta,...,ts with s < [logyd]
satisfying:

o forallr € R,r > 0 there is some j such that C(r,d) C t;, and

. tj+1 - {T1 Ut 171,72 € tj}.

At a high level: Each element of an R-mapping corresponds to a set of indices into the input, and at the
jth layer computes the max of the input over all indices in ¢;. The first defining characteristic of an R-
mapping ensures that the indices permit the evaluation of all required subpool max averages. And the second
condition insures that a purely feedforward network can compute the maxes over the implied indices.

To simplify the subsequent discussion, we hereafter assume that {0,1} C R for all R. Since the first two
terms are trivially uncomplicated — a constant bias, and the grand mean of the inputs are linear features —
this assumption is without any loss of generality and could be easily relaxed.

E.2 Computing R-mappings

In this section, we show how to compute an R-estimator. We say that R is adequate if max(R) < 2 X
max (RN [0, 2U°g2(ma"(3)*1”}). If R is adequate then it possible to form the greatest remaining term from
pairwise maxes of terms that are a lower power of two — a condition necessary to enforce the second condition
in[ll If R is not adequate, then it can be made adequate by appending an additional term.

Let R = a(R), where a : {0,...,d} — {0,...,d} is defined recursively as:

R if R =1{0,1}
a(R) = { {max(R)} Ua(R\{max(R)}) if R is adequate (30)
{max(R)} Ua(R\{max(R)}) U {[max(R)/2]} otherwise.

The third case covers the situation where it would not be possible to compute an R-mapping out of terms
in R, and so an additional term is appended. For example, a({0,1,2,5,6}) = {0,1,2,3,5,6}: 3 has been
appended since it is impossible to compute the maxes of five and six terms using only pairwise maxes (r = 2)
of pairs of variables. a(R) essentially reduces its argument by one term with each recursive call, and thus it
is fast and straightforward to evaluate.

By construction, every truncation of R is adequate, thus for every 7 € R with 7 > 1 there exists an # € R
with 7 > #/2. This means that C(1,d), C(2,d), Urern(3,4C(7,d), ..., Urerna/2,qC(r,d), is a R-mapping,
however if R C R, then there will be smaller R-mappings since it is possible to skip the computation of some
terms in C(r,d). For example, continuing our example above, there are 56 subsets of size 3 of d = 8 values,
but 36 terms of length 3 can be combined to form all subsets of size 5 and 6.
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Algorithm 1 Computation of an R-mapping

Input: R C{0,1,...,d}
Output: R-mapping suitable for evaluating f
R+ a(R) // Augment R with needed terms
s = [logy(max R)]
Rj < RN{i:ieN,Jlogyi| =j} for j =1,2,...,5 // group R by power of 2
R — RnN{i:ieN,[logyi] =j} for j=1,2,...,s // group R by power of 2
for 1=0,1,...,s—1do

js— i — 1 // backward index

if + =0 then

Nj «— 0
else
N; < tj+1 // terms needed for subsequent layer

end if

X; «{Ck,r,d): k=1,..., (‘Tl),r € R;} terms needed for this layer

Y < X; UN;

kj max( ) // tuple width in this mapping term

tj < FLATSPLITy, (Y;)
end for
Return t1,%q,... 1t

For a vector A € Rf with £ > k, let sPLIT; : R — R* x R¥ be the function that splits its argument into
the first and last &k elements: SPLITi(A) = (A, .-, Aw)), (Aw—k),---> A@y). And let FLATSPLIT be the
set-valued function that applies SPLIT to each of its inputs and collects the outputs into a single set

FLATSPLIT, ({AY, A%, ... A"})
== {(A%1)7 e 7A%k))7 (A%K—k)7 e ’A%Z))’ ey (14?1)7 ey ?’C))’ (A?ffk?)’ e 7A?£))}.

gives one approach to compute an R-mapping that improves upon naively computing all subpool
maxes of order 7 € R: The idea is to include only those terms in R only minimally in order to support the
computation of subsequent terms. Despite being awkward to state this algorithm runs quickly, requiring

O rer (f)) space and time.

E.3 R-mappings to neural network R-estimators

An R-mapping, as introduced in is a sequence of sets that is defined so that each element of
a constituent set is associated with a pair of elements in the previous set. Thus, it is well-suited to compute
pairwise maxes via a simple linear-ReLU-linear block as shown in Computing the average of all
subpooled values is of course a linear operation.

An important book-keeping challenge with this approach is to enable the network to convey the average
of low-order subpool maxes through the network. To do this, we append to the network a “memory”
— additional neurons which carry forward values computed earlier in the network via identity mappings
(propagated through ReLUs via = ReLU(+xz) — ReLU(—z)) through until the end — a layer of width |R)|,
containing all needed subpool max averages. Finally, then, these values are aggregated according to .

Our code is written in three stages: (1) compute a base network consisting of the linear layers implied by
then (2) append the subpool averages and their attendant memory neurons, and finally (3)
aggregate the penultimate layer value with the coefficients. One helpful trick to developing this logic is to
leave each step above as consecutive linear layers, then once everything is complete, to fuse them all together.

This approach perhaps does not result in the smallest possible purely feedforward network that could imple-
ment an R-estimator but it is relatively simple to code, fast to run, and the architecture is very descriptive
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Figure 5: Effect of perturbations with Lo, < € on the accuracy of the ResNet model variants on the CIFAR10
dataset. Mean accuracy and +1.96 standard deviation over the course of three runs are depicted. The legend
indicates the number of parameters of each model in parentheses. The models omitting max pool pay a price
in either (robust) accuracy or model complexity (in terms of parameters).

of the logic the network implements. It seems unlikely that a large improvement on this general scheme is
possible, though we do not attempt to prove this speculation.

F Analysis

We have strictly looked at the accuracy implications of approximating the max function in isolation. In this
short and speculative section, we examine briefly the practical takeaways for adversarial robustness.

F.1 Adversarial robustness

Our hypothesis is that max pooling can be more robust than strided convolution and ReLU nonlinearity,
since genuine max pooling admits only a single direction along which features can change — the max. ReLU,
by contrast, can be moved with only low correlation changes, and a random perturbation will in general
change the output.

Our experiments corroborate this intuition; omitting max pooling results in lower robust accuracy in several
different model classes, ranging from simple Convolutional Neural Networks to ResNets. Our experimental
approach is to adversarially attack models with and without max pooling. We use the Fast Gradient Sign
Method by (Goodfellow et al| (2015). Specifically, starting from a model incorporating max pool layers, we
replace them with strided convolution + ReLU. We examine four different models and report the robust
accuracy inon the CIFAR10 dataset (Krizhevsky] (2009)). The Max pool model is from Page| (2018)
and includes four max pool layers. The baselines make the following modifications: Conv-Small and Conv-
Large replace the max pool layers with a convolutional one, with kernel size one and three, respectively.
The Conv-Strided model uses a strided convolution in lieu of the max pool layer and the convolution that
precedes it. More details on the models as well as experiments with LeNet architecture can be found in

of the appendix.

We performed the computation on an internal computation cluster of Tesla V100-SXM2-32GB GPUs. All
experiments presented here can be done in less than seven Tesla V100 days. All software and data are
standard academic tools and present no licensing issues.
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Figure 6: Effect of perturbations with /., < € on the accuracy of the LeNet model variants on the MNIST
dataset.

The experimental results showcase a tradeoff between model complexity (in terms of number of parameters)
and robust accuracy. The Max pool model is more adversarially robust than the baselines Conv-Small and
Conv-Strided. This effect is further highlighted for larger perturbations e. An exception to this trend lies
in the Conv-Large model which is able to match the robust accuracy of the Max pool model, but requires
more than twice as many parameters.

G Experimental Details

In this section, we present in greater detail our experimental framework. The goal is to show the greater
adversarial robustness of models with max pool layers than those without. Specifically, Convolutional Neural
Nets (CNNs) and Residual Networks (ResNets) are trained on the MNIST and CIFAR10 data sets. Then,
an adversarial attack is performed for various levels of perturbations, denoted by €, and the robust accuracy
(mean and standard deviation) of the various models is reported over three different random seeds. We
present results for the Fast Gradient Sign Method |Goodfellow et al.| (2015) attack.

In each experiment, we create a model incorporating max pool layer(s). Then, the network is modified by
replacing each max pool layer with a trainable variant, ensuring that the output of the original layer and
the modified one have the same shape.

The legend of each figure presents the name of the model variant as well as the number of trainable parameters
in parentheses. The width of the lines is proportional to the number of parameters in the model. The max
pool model variant is always depicted in blue.

G.1 Technology stack

The experiments are developed in PyTorch |Paszke et al.| (2017) and PyTorch Lightning |Falcon| (2019) with
the help of the foolbox Rauber et al| (2017) library for the adversarial attack. We use a ResNet variant
in our experiments [Page| (2018)). We use the publicly available datasets MNIST (LeCun et al., |2010) and
CIFARI10 Krizhevsky| (2009).
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Figure 7: Effect of perturbations with £,, < € on the accuracy of the LeNet model variants on the CIFAR10
dataset.

G.2 Experimental configurations

LeNet experiment on MNIST We train two convolutional neural networks (CNNs) on the digit classi-
fication dataset MNIST. The results are shown in

The first model, in blue, has 259 106 trainable parameters and consists of two convolutional layers, with 32
and 64 channels. Their kernel size is equal to five. Both layers are succeeded by a two-dimensional max pool
with kernel size, stride and padding equal to three, two and one, respectively. The network is completed with
two fully-connected layers of 1024 and 200 neurons, leading to the output of ten logits. The second model, in
red, has 305 282 trainable parameters and has the same structure as the previous model. However, the max
pool layers are replaced by a convolutional layer with the same number of input channels as the output of
the preceding convolutional layer, hence the increase in parameters. Both models are trained for ten epochs
of Stochastic Gradient Descent with learning rate and momentum equal to 0.01 and 0.9, respectively.

LeNet experiment on CIFAR10 A similar experiment is performed on the more challenging CIFAR10
dataset. The results are shown in

The max pool model, in blue, has 232 162 parameters and consists of three convolutional layers of 32, 64, 128
channels, respectively. Again, each of these layers is succeeded by max pool module identical to the MNIST
experiment. The convolutional variant, depicted in green, has 253 890 parameters has a similar modification
as before, i.e. the max pool layer is replaced by a convolutional one with kernel size, stride and padding
identical to the corresponding max pool layer. Finally, the strided variant, in gray, has the same number
of parameters as the original max pool model. In this case, we replace the block of convolution and max
pool with a strided convolution of stride equal to two. Hence, this modification does not incur an increase
in number of parameters, while maintaining the same output shape at all intermediate steps. The models
are trained for 100 epochs of SGD with learning rate and momentum equal to 0.01 and 0.9 respectively. The
learning rate is decayed by a parameter v = 10 in epochs 50, 70 and 90. The batch size is 128.

ResNet experiment on CIFAR10 We use the ResNet variant proposed in [Page| (2018). This model

consists of a preparatory whitening layer, three residual blocks and a classifier layer. First, the preparatory
layer has two convolutions and Ghost Batch Normalization Hoffer et al| (2017). The three residual blocks
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have identical structure, with the exception of the number of channels in the convolutional layer; the channels
are doubled with each layer, from 64 to 128 to 256. Each of these layers consists of two blocks: the first one
has a convolutional layer, a max pool layer with kernel size and stride equal to two and Ghost Batch Norm,
while the second block employs a residual connection with similar structure as the previous block modulo
the max pool. Finally, the classifier layer is comprised of a max pooling layer of kernel size and stride equal
to four and a fully connected layer resulting in ten outputs.

Overall, the Maxpool model, in blue, has four max pooling layers and 4 666 265 parameters. The large convo-
lutional model, depicted in red, has 10 238 233 parameters and replaces the Maxpool layers by convolutional
ones with the same kernel size, stride and padding. The small convolution variant, depicted in green, has
5273881 parameters and the kernel size is set to one for all max pooling replacements. Finally, the strided
model, depicted in gray, has 4928921 parameters and. for each residual layer, the pair of convolution and
max pooling is replaced by a strided convolution, while the max pooling layer preceding the fully connected
one is replaced with a convolutional layer of kernel size equal to one. The stride remains equal to four, as in
the corresponding max pooling layer.

The models are trained for 50 epochs using float 16 precision. The learning rate follows a piecewise linear
schedule; starting at zero the learning rate linearly increases to 0.4 until the fifth epoch and then linearly
decays to zero until the final epoch.

G.3 Analysis

Our objective lies in showing the superior adversarial robustness of models incorporating max pooling. In
each experiment, we use a max pooling model, drawn from widely used neural networks such as LeNet and
ResNet. We modify the original model to produce comparisons. Specifically, the modifications simply replace
the max pooling layer with a convolutional layer, or the pair of convolutional layer and max pooling (which
traditionally come succession) with a strided convolution. In both cases, the new layer produces outputs of
the same shape as the original layer, lending itself to an one-to-one comparison in terms of performance on
(robust) accuracy. It is important to note that the first modification results in an increase in the number of
trainable parameters. Subsequently, we perform an adversarial attack, FGSM in our case, to illuminate the
adversarial robustness properties of each model. A common theme of all experiments is that the exclusion
of the max pooling layer results in a tradeoff between (robust) accuracy and model complexity.

First, in the MNIST experiment both variants reach similar levels of performance on the clean accuracy
(e = 0); the max pool variant achieves 99.19 + 0.06 while the convolutional model 98.54 £ 0.14. This is not
surprising given the low difficulty of the dataset. Nevertheless, the model with max pooling is characterized
by strictly higher adversarial robustness, since the difference in performance heightens for larger €. In the
CIFARI10 experiment, the observations are similar in nature; replacing max pooling with a trainable layer
renders the model more susceptible to adversarial perturbations. However, the modified models do not
exhibit the same level of clean accuracy, despite the increase in model complexity. Specifically, the mean
clean accuracies (over 3 runs with different random seeds) of the max pool, small convolutional and strided
convolution models are 82.89 & 0.08%, 80.94 +0.26% and 80.45 4+ 0.66%, respectively. It is important to note
that the LeNet architecture does not achieve state-of-the-art results on any of the model variants presented.
However, it serves as a direct comparison with the previous experiment. Finally, the ResNet experiment
perhaps illuminates the tradeoff more clearly. (see main text) presents a dichotomy due to the
exclusion of the max pool layer; the practitioner should choose between model complexity (measured in
number of trainable parameters and, by extension, training and inference times) and (robust) accuracy. The
large convolution model achieves a clean accuracy of 93.37+0.14% compared to 94.49 +0.20% of the original
model and is able to match its robust accuracy for different €, while using more than double the parameters.
The other two variants, however, have lowest clean accuracies (89.22 + 0.09% for the strided model and
87.46 + 0.99% for the small convolutional) and present a faster deterioration in adversarial robustness.

G.4 Detailed Results

For completeness, we present the experimental results in tabular form. The experiments were repeated three
times (with different random seeds) and the mean + standard deviation is reported.
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Table 2: Detailed results on MNIST.

€ Maxpool Conv
0.000 | 99.194+0.06 98.54+0.14
0.001 | 99.194+0.06 98.54+0.14
0.002 | 99.194+0.06 98.54+0.14
0.003 | 99.194+0.06 98.54+0.14
0.010 | 99.194+0.06 98.54+0.14
0.100 | 99.18 +£0.05 98.50 £0.16
0.300 | 99.144+0.04 98.45+0.16
0.500 | 99.00+0.07 98.33+0.11
1.000 | 98.34 +£0.09 97.724+0.07
1.200 | 97.16 +£0.08 95.47 +0.15
1.400 | 95.14 £0.38 91.86 + 0.97
1.600 | 92.59 +0.72 86.74 +1.81
1.800 | 89.16 +£1.05 79.97+3.15
2.000 | 84.90+1.46 71.07+4.14
2.200 | 83.44+£1.62 68.43+4.22
2.500 | 81.20+£1.77 63.91£4.27
3.000 | 75.95+2.20 55.55+3.99
3.500 | 68.58 £2.69 45.65+ 3.32
5.000 | 27.67+£2.71 15.02+0.46
7.500 8.24 +2.22 6.98 & 1.31
10.000 | 8.244+2.22  6.98+1.31

Table 3: Detailed results on CIFAR10 with LeNet.

€

Maxpool

Conv-small

Strided

0.000
0.001
0.002
0.003
0.010
0.100
0.300
0.500
1.000
1.200
1.400

82.89 £ 0.09
82.42 £0.11
82.00 £ 0.08
81.56 £0.13
78.37 £0.03
45.56 £ 0.54
22.64 +0.32
18.00 £ 0.42
12.48 £1.08
10.97 £ 0.90
10.10 £0.81

80.94 £ 0.27
80.51 £0.19
80.09 £0.20
79.68 £0.21
76.80 £0.17
45.16 £0.41
21.12 +0.68
15.05 £ 0.65
10.29 £ 0.96
9.50 £ 0.90
9.15+0.75

80.45 £ 0.67
80.08 +0.60
79.70 £ 0.58
79.31 £ 0.66
76.64 = 0.30
46.02 £0.30
19.51 £1.61
12.39 £ 1.96
8.44 £ 0.52
8.28+£0.21
8.22 £ 0.46
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