
Autodecoding Latent 3D Diffusion Models
Supplementary Material

Anonymous Author(s)
Affiliation
Address
email

A Additional Experiments and Results1

A.1 Geometry Generation Evaluation2

Following the point cloud evaluation protocol of [1], we measure the Coverage Score (COV) and the3

Minimum Matching Distance (MMD) for points sampled from our generated density volumes. Given4

a distance metric for two point clouds X and Y , e.g. the Chamfer Distance (CD),5

CD(X,Y) =
∑
x∈X

min
y∈Y

‖x− y‖22 +
∑
y∈Y

min
x∈X

‖x− y‖22, (1)

COV measures the diversity of the generated point cloud set Sg, with respect to a reference point6

clout set Sr, by finding the closest neighbor in the reference set to each one in the sample set, and7

computing the fraction of the reference set covered by these samples:8

COV(Sg, Sr) =
|{argminY ∈Sr CD(X,Y)|X ∈ Sg}|

|Sr|
. (2)

MMD, in contrast, measures the the overall quality of these samples, by measuring the average9

distance between each sampled point cloud and its closest neighbor in the reference set:10

MMD(Sg, Sr) =
1

|Sr|
∑
Y ∈Sr

min
X∈Sg

CD(X,Y). (3)

We compute these metrics for the PhotoShape Chairs and ABO Tables datasets, comparing our11

generated results to points sampled from the the same reference meshes used in the data splits from12

the evaluations in DiffRF [18]. For each generated object, we sample 2048 points from a mesh13

extracted from the decoded density volume V Density (see Sec. 3.1) using the Marching Cubes [16]14

algorithm. We use a volume of resolution 643 and 1283 for training the Chairs and Tables models,15

respectively. However, we note that downsampling these density volumes to 323, as is used in16

DiffRF, before applying this point-sampling operation did not noticeably impact the results of these17

evaluations.18

The results can be seen in Tab. 4, alongside the perceptual metrics from the main paper. Interestingly,19

these results show that, despite the increased flexibility of our approach, and DiffRF’s restrictive use20

of both 2D rendering and 3D supervision on synthetic data when training their diffusion model, we21

obtain comparable or superior geometry compared to their approach, while substantially increasing22

the overall perceptual quality for these datasets. We also substantially outperform prior state-of-the-art23

approaches using GAN-based [2, 3] methods across both perceptual and geometric comparisons with24

these metrics.25

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

PhotoShape Chairs [22] ABO Tables [4]
Method FID ↓ KID ↓ COV ↑ MMD ↓ FID ↓ KID ↓ COV ↑ MMD ↓
π-GAN [2] 52.71 13.64 39.92 7.387 41.67 13.81 44.23 10.92
EG3D [3] 16.54 8.412 47.55 5.619 31.18 11.67 48.15 9.327
DiffRF [18] 15.95 7.935 58.93 4.416 27.06 10.03 61.54 7.610

Ours 15.05 7.751 64.20 4.4450 18.44 6.854 60.25 6.684
Table 4: Quantitative comparison of unconditional generation on the PhotoShape Chairs [22] and
ABO Tables [4] datasets. Our method achieves a better perceptual quality, while maintaining similar
geometric quality to the state-of-the-art diffusion-based approaches. MMD and KID scores are
multiplied by 103.

Figure 6: In real video datasets, e.g. CelebV-Text[36], we have a diverse set of foreground shapes and textures
with a common background color. In these cases, we find that supervising the autodecoder with a foreground
mask loss is important for the network to properly learn the shape of the object. Both examples shown after
training for ∼9 million frames.

Figs. 7 and 8 show qualitative comparisons between the unconditional generation results rendered26

using our method and DiffRF for each of these datasets. In each case, it is clear that for similar27

objects, our method produces more coherent and complete shapes without missing features, e.g. legs,28

and textures that are more realistic and detailed, leading to better and more consistent image synthesis29

results.30

A.2 Foreground Supervision31

For some datasets with foregrounds with complex and varying appearance which can easily be mixed32

with the background environment, we found it necessary to supplement our primary autodecoder33

reconstruction loss (Sec. 3.2) with an additional foreground supervision loss. This loss measures34

how well depicted objects are separated from the background during rendering. To evaluate the effect35

of this foreground supervision, we ran experiments on the CelebV-Text [36] dataset both with and36

without this loss. We conduct our training until the autodecoder has seen a total of 9 million frames37

from the training set, then reconstruct examples from the learned embeddings.38

The result can be seen in Fig. 6. As depicted, the reconstructions without foreground supervision39

not only lack fidelity to the target appearance, but the estimated opacity and surfaces normals clearly40

show that the overall geometry is insufficiently recovered.41

A.3 Animated Results42

Please see the corresponding supplementary web page for additional video results, showing43

consistent novel-view synthesis for rigid objects from multi-category datasets and animated articulated44

objects sampled using our approach, and results demonstrating both conditional and unconditional45

generation.46

2

DiffRF Ours

Figure 7: Qualitative comparison of unconditional generation using DiffRF [18] (left) and our approach
(right) on the ABO Tables dataset [4]. In contrast to DiffRF, we train diffusion in the latent features of an
autodecoder. Decoupling the expensive and demanding training from the output voxel-grid size lets us increase
the resolution of our 3D representation. For this dataset, our output voxel resolution is 1283, compared to the 323

resolution of DiffRF. Our method improves the perceptual quality of the results, as it as shown in the reported
FID and KID.

DiffRF Ours

Figure 8: Qualitative comparison of unconditional generation using DiffRF [18] (left) and our approach
(right) on the PhotoShapes Chairs dataset [22]. For this dataset, our output voxel resolution is 643. As above,
our results are both qualitatively and quantitatively superior.

3

B Method Details47

B.1 Volumetric Autodecoder48

Volumetric Rendering. We use learnable volumetric rendering [17] to generate the final images49

from the final decoded volume. Given a camera intrinsic and extrinsic parameters for a target image,50

and the radiance field volumes generated by the decoder, for each pixel in the image, we cast a ray51

through the volume, sampling the color and density values to compute the color C(r) by integrating52

the radiance along the ray r(t) = o+ td, with near and far bounds tn and tf :53

C(r) =

∫ tf

tn

T (t)δ(r(t))c(r(t),d)dt, (4)

where δ, c are the density and RGB values from the radiance field volumes sampled along these rays,54

and T (t) = exp
{
−
∫ t

tn
σ(r(s))ds

}
is the accumulated transmittance between tn and t.55

To supervise the silhouette of objects, we also render the 2D occupancy map O using the volumetric56

equation:57

O(r) =

∫ tf

tn

T (t)δ(r(t))dt. (5)

We sample 128 points across these rays for radiance field rendering during training and inference.58

Articulated Animation. As our approach is flexibly designed to support both rigid and articulated59

subjects, we employ different approaches to pose supervision to better handle each of these cases.60

For articulated subjects, poses are estimated during training, using a set of learnable 3D keypoints61

K3D and their predicted 2D projections K2D in each image in an extended version of the Perspective-62

n-Point (PnP) algorithm [12]. To handle articulated animation, however, rather than learn a single63

pose per image using these points, we assume that the target subjects can be decomposed into Np64

regions, each containing Nk points K3D
p points and their corresponding K2D

p projections per image.65

These points are shared across all subjects, and are aligned in the learned canonical space, allowing66

for realistic generation and motion transfer between these subjects. This allows for learning Np poses67

per-frame defining the pose of each region p relative to its pose in the learned canonical pose.68

To successfully reconstruct the training images for each subject thus requires learning the appropriate69

canonical locations for each region’s 3D keypoints, to predict the 2D projections of these keypoints in70

each frame, and the pose best matching the 3D points and 2D projections for these regions. We can71

then use this information in our volumetric rendering framework to sample appropriately from the72

canonical space such that the subject’s appearance and pose are consistent and appropriate throughout73

their video sequence. Using this approach, this information can be learned along with our autodecoder74

parameters for articulated objects using the reconstruction and foreground supervision losses used for75

our rigid object datasets.76

As noted in Sec. 3.2, to better handle non-rigid shape deformations corresponding to this articulated77

motion, we employ volumetric linear blend skinning (LBS) [13]. This allows us to learn the weight78

each component p in the canonical space contributes to a sampled point point in the deformed space79

based on the spatial correspondence between these two spaces:80

xd =

Np∑
p=1

wc
p(xc) (Rpxc + trp) , (6)

where Tp = [Rp, tp] = [R−1,−R−1 tr] is the estimated pose of part p relative to the camera (where81

T = [R, tr] ∈ R3×4 is the estimated camera pose with respect to our canonical volume) ; xd is the82

3D point deformed to correspond to the current pose; xc is its corresponding point when aligned in83

the canonical volume; and wc
p(xc) is the learned LBS weight for component p, sampled at position84

xc in the volume, used to define this correspondence. 185

1In practice, as in [30], we compute an approximate solution using the inverse LBS weights following
HumanNeRF [33] to avoid the excessive computation required by the direct solution.

4

Thus, for our non-rigid subjects, in addition to the density and color volumes needed to integrate86

Eqns. 4 and 5 above, our autodecoder learns to produce a volume V LBS ∈ RS3×Np containing the87

LBS weights for each of the Np locally rigid regions constituting the subject.88

We assign Nk = 125 3D keypoints to each of the Np = 10 regions. For these tests, we assume89

fixed camera intrinsics with a field-of-view of 0.175 radians, as in [19]. We use the differentiable90

Perspective-n-Point (PnP) algorithm [12] implementation from PyTorch3D [26] to accelerate this91

training process.92

As this approach suffices for objects with standard canonical shapes (e.g., human faces) performing93

non-rigid motion in continuous video sequences, we employ this approach for our tests on the94

CelebV-Text dataset. While in theory, such an approach could be used for pose estimation for95

rigid objects (with only 1 component) in each view, for we find that this approach is less reliable96

for our rigid object datasets, which contain sparse, multi-view images from randomly sampled,97

non-continuous camera poses, depicting content with drastically varying shapes and appearances98

(e.g., the multi-category object datasets described below). Thus, for these objects, we use as input99

either known ground-truth or estimated camera poses (using [28]), for synthetic renderings or real100

images, respectively. While some works [32, 14, 35] perform category-agnostic object or camera101

pose estimation without predefined keypoints from sparse images of arbitrary objects or scenes,102

employing such techniques for such data is beyond the scope of this work.103

Architecture. Our volumetric autodecoder architecture follows that of [30], with the key extensions104

described in this work. Given an embedding vector e of size 1024, we use a fully-connected layer105

followed by a reshape operation to transform it into a 43 volume with 512 features per cell. This is106

followed by a series of four 3D residual blocks, each of which upsamples the volume resolution in107

each dimension and halves the features per cell, to a final resolution of 643 and 32 features. 2 These108

blocks consist of two 3× 3× 3 convolution blocks each followed by batch normalization in the main109

path, while the residual path consists of four 1× 1× 1 convolutions, with ReLU applied after these110

operations. After the first of these blocks we have the 83 volume with 256 features per cell used for111

training our diffusion network, as in our final experiments. In this and the subsequent block, we apply112

self-attention layers [31] as described in Sec. 3.1. After the final upsampling block, we apply a final113

batch normalization followed by a 1× 1× 1 convolution to produce the final 1 + 3 density V Density114

and RGB color features V RGB used in our volumetric renderer.115

Non-Rigid Architecture. For non-rigid subjects, our architecture produces 1 + 3 + 10 output116

channels, with the latter group with the LBS weights for the np = 10 locally rigid components each117

region corresponds to in our canonical space. Our unsupervised 2D keypoint predictor uses the U-Net118

architecture of [29], which operates on a downsampled 64× 64 input image to predict the locations119

of the keypoints corresponding to each of the 3D keypoints used to determine the pose of the camera120

relative to each region of the subject when it is aligned in the canonical volumetric space.121

B.2 Latent 3D Diffusion122

Diffusion Architecture and Sampling. For our base diffusion model architecture, we use the Ablated123

Diffusion Model (ADM) of Dhariwal et al. (2021) [7], a U-Net architecture originally designed for124

2D image synthesis. We incorporate the preconditioning enhancements to this model described in125

Karras et al. (2022) [9]. As this architecture was originally designed for 2D, we adapt all convolutions126

and normalizations operations, as well as the attention mechanisms, to 3D.127

For the cross-attention mechanism used for our conditioning experiments, we likewise extend the128

latent-space cross-attention mechanism from Rombach et al. (2022) [27] to our 3D latent space.129

Robust Normalization. Autoencoder-based latent diffusion models impose a prior to the learned130

latent vector [27]. We find the latent features learned by our 3D autodecoder already form a bell-like131

curve. However, we also observe extreme values that can severely affect the calculation of the132

mean and standard deviation. As discussed in the main manuscript, we deploy the use of robust133

normalization to adjust the latent features. In particular, we take the median m as the center of the134

distribution and approximate its scale using the Normalized InterQuartile Range (IQR) [34] for a135

normal distribution: 0.7413× IQR. We visualize its effect in Fig. 9. This is a crucial aspect of our136

approach, as in our experiments we find that without it, our diffusion training is unable to converge.137

2We add one block to upsample to 1283 for our aforementioned experiments with the ABO Tables dataset.

5

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
1e7

0

2500

5000

7500

10000

12500

15000

17500

No Scale

30000 20000 10000 0 10000 20000 30000
0

2500

5000

7500

10000

12500

15000

17500

Scale (-3 ,3) - Classic Statistics

150 100 50 0 50 100
0

500

1000

1500

2000

2500

3000
Scale (-3 ,3) - Robust Statistics

Robust Mean
Classic Mean

Latent Features Distribution

Figure 9: We present the latent feature distribution of a 3D AutoDecoder trained on MVImgNet[37]. The
features are extracted at the 83 resolution, where we apply diffusion. The three subplots show different levels
of “zooming in.” We see that the distribution spans a great range due to extreme outliers. Using classic mean
and standard deviation computation, as we see in the middle subplot, still provides quite a large range of values.
Normalizing the features using classic statistics leads to convergence failure for the diffusion model. We propose
using robust statistics to normalize the distribution to [−1, 1], before training the diffusion model. During
inference, we de-normalize the diffusion output before feeding them to the upsampling layers of the autodecoder.

4x4x4 8x8x8 16x16x16

Figure 10: Qualitative comparison of models trained at different latent resolutions. All visualizations
produced with 64 diffusion steps. We find that the model train on 83 latent features gives the best trade-off
between quality and training speed, rendering it the best option for training on large-scale 3D datasets.

Ablating the latent volume resolution used for diffusion. We trained three diffusion models138

models for the same time, resources, and number of parameters, for diffusion at 3 resolutions in our139

autodecoder: 43, 83, and 163. We find that the 43 models, even when they train faster, often fail to140

converge to something meaning full and produce partial results. Most samples produced by the 163141

models are of reasonable quality. However, many samples also exhibit spurious density values. We142

hypothesize that this is due to the model being under-trained. The 83 model produces the best results,143

and its fast training speed makes it suitable for large-scale training. We visualize the results in Fig. 10144

C Implementation Details145

C.1 Dataset Filtering146

CelebV-Text [36]. Some heuristic filtering was necessary to obtain sufficient video quality and147

continuity for our purposes. We omit the first and last 10% of each video to remove fade-in/out148

effects, and any frames with less than 25% estimated foreground pixels. We also remove videos with149

less than 4 frames remaining after this, and any videos less than 200 kilobytes due to their relatively150

low quality. We also omit a small number of videos that were unavailable for download at the time of151

our experiments (the dataset is provided as a set of URLs for the video sources).152

6

MVImgNet [37]. For these annotated video frames depicting real objects in unconstrained settings153

and environments, we applied Grounded Segment Anything [11] for background removal. However,154

as this process sometimes failed to produce acceptable segmentation results, we apply filtering to155

detect these case. We first remove objects for which Grounding DINO [15] fails to detect bounding156

boxes. We then fit our volumetric autodecoder (Secs. 3.1-2) to only the masks produced by this157

segmentation (as monochrome images with a white foreground and a black background). For objects158

that are properly segmented in each frame, this produces a reasonable approximation of the object’s159

shape that is consistent in each of the input frames, while objects with incorrect or inconsistent160

segmentation will not be fit properly to the input images. Thus, objects for which the fitting loss is161

unsually high are removed.162

Objaverse [5]. While Objaverse contains ∼800K 3D models, we found that the overall quality of163

these varied greatly, making many of them unsuitable for multi-view rendering. We thus filtered164

models without texture, material maps, or other color and appearance properties suitable, as well as165

models with an insufficient polygon count for realistic rendering. Interestingly, given the simplicity166

of the objects when rendered against a monochrome background, we found that the foreground167

segmentation supervision used for the other experiments described in Sec. 3.2 of the main paper was168

unnecessary. Given the scale of this dataset (∼300K unique objects, with 6 frames per object), we169

thus omit this loss from our training process for this dataset for our final experiments for the sake of170

improved training efficiency. For datasets with more complex motion and real backgrounds, such171

as the real image datasets mentioned above, we found this supervision to be essential, as shown in172

Sec. A.2 and Fig. 6.173

Training Details. Our experiments are implemented in the PyTorch [23, 24], using the174

PyTorch Lightning [8] framework for fast automatic differentiation and scalable GPU-accelerated175

parallelization. For calculating the perceptual metrics (FID and KID), we used the Torch Fidelity [21]176

library.177

We run our experiments on 8 NVIDIA A100 40GB GPUs per node. For some experiments, we use a178

single node, while for larger-scale experiments, we use up to 8 nodes in parallel.179

We use the Adam optimizer [10] to train both the autodecoder and the diffusion Model. For the first180

network, we use a learning rate lr = 5e− 4 and beta parameters β = (0.5, 0.999). For diffusion, we181

set the learning rate to lr = 4.5e− 4. We apply linear decay to the learning rate.182

Preparing the Text Embeddings for Text-Driven Generation. We train our model for text-183

conditioned image generation on three datasets: CelebV-Text [36], MVImgNet [37] and Objaverse [5].184

The two latter datasets provide the object category of each sample, but they do not provide text185

descriptions. Using MiniGPT4 [38], we extract a description by providing a hint and the first view186

of each object along with the question: “<ImageHere> Describe this <hint> in one187

sentence. Describe its shape and color. Be concise, use only a single sentence.” For MVImgNet, this188

hint is the “class name”, while it is the “asset name” for Objaverse.189

With the text-image pairs for these three datasets, we use the 11-billion parameter T5 [25] model to190

extract a sequence of text-embedding vectors. The dimensionality of these vectors is 1024. During191

training, we fix the length of the embedding sequence to 32 elements. We trim longer sentences and192

pad smaller sentences with zeroes.193

D Additional Observations from Our Experiments194

D.1 Hash Embedding195

Each object in the training set is encoded by an embedding vector. However, as we employ multi-196

view datasets of various scales, up to ∼300K unique targets from multiple categories, storing a197

separate embedding vector for each object depicted in the training images is burdensome 3. As such,198

we experimented with a technique enabling the effective use of a significantly reduced number of199

embeddings (no more than ∼32K are required for any of our evaluations), while allowing effective200

content generation from large-scale datasets.201

3E.g., the codebook alone would require six times the parameters of the largest model in our experiments.

7

ABO-Tables Chairs CelebV-Text MVImgNet Objaverse

3D AutoDecoder

z-length 1024 1024 1024 1024 1024
MaxChannels 512 512 512 512 512
Depth 2 4 2 4 4
SA-Resolutions 8,16 8,16 8,16 8,16 8,16
ForegroundLoss λ 10 10 10 10 0
#Renders/batch 4 4 4 4 4
VoxelGridSize 1283 × 4 643 × 4 643 × 14 643 × 4 643 × 4
Learning Rate 5e-4 5e-4 5e-4 5e-4 5e-4

Latent 3D Diffusion Model

z-shape 83 × 256 83 × 256 83 × 256 83 × 256 83 × 256
Sampler edm edm edm edm edm
Channels 128 128 192 192 192
Depth 2 2 3 3 3
Channel Multiplier 3,4 3,4 3,4 3,4 3,4
SA-resolutions 8,4 8,4 8,4 8,4 8,4
Learning Rate 4.5e-5 4.5e-5 4.5e-5 4.5e-5 4.5e-5

Conditioning None None None/CA None/CA None/CA
CA-resolutions - - 8,4 8,4 8,4
Embedding Dimension - - 1024 1024 1024
Transformers Depth - - 1 1 2

Table 5: Architecture details for our models for each dataset. SA and CA stand for Self-Attention and
Cross-Attention respectively. z refers to our 1D embedding vector and our latent 3D volume for the
autodecoder and diffusion models, respectively. Note that for CelebV-Text, the output volume has 14
channels per cell: 3 for color values, 1 for density and 10 for part assignment.

Similar to the approach in [20], we instead employ concatenations of smaller embedding vectors to202

create more combinations of unique embedding vectors used during training. For an embedding vector203

length lv, the input embedding vector Hk ∈ Rl used for an object to be decoded is a concatenation204

of smaller embedding vectors hj
i , where each vector is selected from an ordered codebook with nc205

entries, with each entry containing collection of nh embedding vectors of length lv/nc:206

Hk =
[
hk1
1 , hk2

2 , ..., h
knc
nc

]
, (7)

where ki ∈ {1, 2, ..., nh} is the set of indices used to select from the nh possible codebook entries for207

position i in the final vector. This method allows for exponentially more combinations of embedding208

vectors to be provided during training than must be stored in learned embedding vector library.209

However, while in [20], the index j for the vector hj
i at position i is randomly selected for each210

position to access its corresponding codebook entry, we instead use a deterministic mapping from211

each training object index to its corresponding concatenated embedding vector. This function is212

implemented using a hashing function employing the multiplication method [6] for fast indexing213

using efficient bitwise operations. For object index k, the corresponding embedding index is:214

m(k) = [(a · k) mod 2w] � (w − r), (8)

where the table has 2r entries. w and a are heuristic hashing parameters used to reduce the number of215

collisions while maintaining an appropriate table size. We use 32 for w. a must be an odd integer216

between 2w−1 and 2w [6]. We give each smaller codebook its own a value:217

ai = 2w−1 + 2 ∗ i2 + 1, (9)

where i is the index of the codebook.218

8

Discussion. In our experiments, we found that employing this approach had negligible impact on219

the overall speed and quality of our training and synthesis process. During training the memory of220

the GPU is predominantly occupied by the gradients, which are not affected by this hashing scheme.221

For Objaverse, our largest dataset using ∼300K images, using this technique saves approximately222

800MB of storage space.223

Interestingly, this also suggests that scaling this approach to larger datasets, should they become224

available, will require special handling. Learning this per-object embedding would soon become225

intractable. However, simply using this hash embedding approach reduces the model storage226

requirements by ∼75% for this dataset.227

In our experiments, we use hashing for ABO Tables, CelebV-Text and Objaverse, with codebook228

sizes nc = of 256, 8192 and 32768, respectively. We set the number of smaller codebooks (nh) to229

256 for each dataset.230

9

References231

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning Representations232

and Generative Models for 3D Point Clouds. In Proceedings of the International Conference on Machine233

Learning, 2018.234

[2] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. pi-GAN: Periodic235

Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis. In Proceedings of the IEEE236

Conference on Computer Vision and Pattern Recognition, 2021.237

[3] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio238

Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, and Gordon Wetzstein. Efficient239

Geometry-aware 3D Generative Adversarial Networks. In Proceedings of the IEEE Conference on240

Computer Vision and Pattern Recognition, 2022.241

[4] Jasmine Collins, Shubham Goel, Kenan Deng, Achleshwar Luthra, Leon Xu, Erhan Gundogdu, Xi Zhang,242

Tomas F Yago Vicente, Thomas Dideriksen, Himanshu Arora, Matthieu Guillaumin, and Jitendra Malik.243

ABO: Dataset and Benchmarks for Real-World 3D Object Understanding. In Proceedings of the IEEE244

Conference on Computer Vision and Pattern Recognition, 2022.245

[5] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig Schmidt,246

Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A Universe of Annotated 3D Objects. In247

arXiv, 2022.248

[6] Srini Devadas and Konstantinos Daskalakis. MIT 6.006, Lecture 5: Hashing I: Chaining, Hash Functions,249

2009.250

[7] Prafulla Dhariwal and Alexander Nichol. Diffusion Models Beat Gans on Image Synthesis. In Proceedings251

of the Neural Information Processing Systems Conference, 2021.252

[8] William Falcon et al. PyTorch Lightning. GitHub. Note: https://github.com/PyTorchLightning/pytorch-253

lightning, 3, 2019.254

[9] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the Design Space of Diffusion-Based255

Generative Models. In Proceedings of the Neural Information Processing Systems Conference, 2022.256

[10] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Proceedings of the257

IEEE Conference on Computer Vision and Pattern Recognition, 2015.258

[11] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,259

Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Segment Anything.260

In arXiv, 2023.261

[12] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. EPnP: An Accurate O(n) Solution to the PnP262

Problem. In International Journal of Computer Vision, 2009.263

[13] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose Space Deformation: A Unified Approach to Shape264

Interpolation and Skeleton-Driven Deformation. In ACM Transactions on Graphics, 2000.265

[14] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey. BARF: Bundle-Adjusting Neural266

Radiance Fields. In Proceedings of the IEEE International Conference on Computer Vision, 2021.267

[15] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang,268

Hang Su, Jun Zhu, et al. Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set269

Object Detection. In arXiv, 2023.270

[16] William E. Lorensen and Harvey E. Cline. Marching Cubes: A High Resolution 3D Surface Construction271

Algorithm. In ACM Transactions on Graphics, 1987.272

[17] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.273

NeRF: Representing scenes as Neural Radiance Fields for View Synthesis. In Proceedings of the European274

Conference on Computer Vision, 2020.275

[18] Norman Müller, Yawar Siddiqui, Lorenzo Porzi, Samuel Rota Bulò, Peter Kontschieder, and Matthias276

NieSSner. DiffRF: Rendering-Guided 3D Radiance Field Diffusion. In Proceedings of the IEEE Conference277

on Computer Vision and Pattern Recognition, 2023.278

[19] Michael Niemeyer and Andreas Geiger. GIRAFFE: Representing Scenes as Compositional Generative279

Neural Feature Fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,280

2021.281

10

[20] Evangelos Ntavelis, Mohamad Shahbazi, Iason Kastanis, Radu Timofte, Martin Danelljan, and Luc Van282

Gool. StyleGenes: Discrete and Efficient Latent Distributions for GANs. In arXiv, 2023.283

[21] Anton Obukhov, Maximilian Seitzer, Po-Wei Wu, Semen Zhydenko, Jonathan Kyl, and Elvis Yu-Jing Lin.284

High-fidelity performance metrics for generative models in PyTorch, 2020. URL https://github.com/285

toshas/torch-fidelity. Version: 0.3.0, DOI: 10.5281/zenodo.4957738.286

[22] Keunhong Park, Konstantinos Rematas, Ali Farhadi, and Steven M. Seitz. PhotoShape: Photorealistic287

Materials for Large-Scale Shape Collections. In ACM Transactions on Graphics, 2018.288

[23] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming289

Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic Differentiation in PyTorch, 2017.290

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor291

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,292

Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie293

Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In294

Proceedings of the Neural Information Processing Systems Conference, 2019.295

[25] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi296

Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer Learning with a Unified Text-to-Text297

Transformer. In The Journal of Machine Learning Research, 2020.298

[26] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin Johnson, and299

Georgia Gkioxari. Accelerating 3D Deep Learning with PyTorch3D. In arXiv, 2020.300

[27] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-Resolution301

Image Synthesis With Latent Diffusion Models. In Proceedings of the IEEE Conference on Computer302

Vision and Pattern Recognition, 2022.303

[28] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-Motion Revisited. In Proceedings of304

the IEEE Conference on Computer Vision and Pattern Recognition, 2016.305

[29] Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, and Nicu Sebe. First Order306

Motion Model for Image Animation. In Proceedings of the Neural Information Processing Systems307

Conference, 2019.308

[30] Aliaksandr Siarohin, Willi Menapace, Ivan Skorokhodov, Kyle Olszewski, Hsin-Ying Lee, Jian Ren,309

Menglei Chai, and Sergey Tulyakov. Unsupervised Volumetric Animation. In Proceedings of the IEEE310

Conference on Computer Vision and Pattern Recognition, 2023.311

[31] Vaswani, Ashish and Shazeer, Noam and Parmar, Niki and Uszkoreit, Jakob and Jones, Llion and Gomez,312

Aidan N and Kaiser, Łukasz and Polosukhin, Illia. Attention is all you need. In Proceedings of the Neural313

Information Processing Systems Conference, 2017.314

[32] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Victor Adrian Prisacariu. NeRF−−: Neural315

Radiance Fields Without Known Camera Parameters. In arXiv, 2021.316

[33] Chung-Yi Weng, Brian Curless, Pratul P Srinivasan, Jonathan T Barron, and Ira Kemelmacher-Shlizerman.317

HumanNeRF: Free-Viewpoint Rendering of Moving People from Monocular Video. In Proceedings of the318

IEEE Conference on Computer Vision and Pattern Recognition, 2022.319

[34] Dewey Lonzo Whaley III. The Interquartile Range: Theory and Estimation. PhD thesis, East Tennessee320

State University, 2005.321

[35] Lumin Xu, Sheng Jin, Wang Zeng, Wentao Liu, Chen Qian, Wanli Ouyang, Ping Luo, and Xiaogang322

Wang. Pose for Everything: Towards Category-Agnostic Pose Estimation. In Proceedings of the European323

Conference on Computer Vision, 2022.324

[36] Jianhui Yu, Hao Zhu, Liming Jiang, Chen Change Loy, Weidong Cai, and Wayne Wu. CelebV-Text: A325

Large-Scale Facial Text-Video Dataset. In Proceedings of the IEEE Conference on Computer Vision and326

Pattern Recognition, 2023.327

[37] Xianggang Yu, Mutian Xu, Yidan Zhang, Haolin Liu, Chongjie Ye, Yushuang Wu, Zizheng Yan, Chenming328

Zhu, Zhangyang Xiong, Tianyou Liang, Guanying Chen, Shuguang Cui, and Xiaoguang Han. MVImgNet:329

A Large-scale Dataset of Multi-view Images. In arXiv, 2023.330

[38] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. MiniGPT-4: Enhancing331

Vision-Language Understanding with Advanced Large Language Models. In arXiv, 2023.332

11

https://github.com/toshas/torch-fidelity
https://github.com/toshas/torch-fidelity
https://github.com/toshas/torch-fidelity

	Additional Experiments and Results
	Geometry Generation Evaluation
	Foreground Supervision
	Animated Results

	Method Details
	Volumetric Autodecoder
	Latent 3D Diffusion

	Implementation Details
	Dataset Filtering

	Additional Observations from Our Experiments
	Hash Embedding

