
Contents of Appendix

A Extended Literature Review 14

B Time Uniform Lasso Analysis 15

C Results on Exploration 18
C.1 ALEXP with Uniform Exploration . 20

C.2 Proof of Results on Exploration . 20

D Proof of Regret Bound 23
D.1 Proof of Model Selection Regret . 24

D.2 Proof of Virtual Regret . 30

E Time-Uniform Concentration Inequalities 32

F Experiment Details 34
F.1 Hyper-Parameter Tuning Results . 34

A Extended Literature Review

The sparse linear bandit literature considers linear reward functions of the form ✓>x, where x 2 Rp,
however a sub-vector of size d is sufficient to span the reward function. This can be formulated as
model selection among M =

�p
d

�
different linear parametrizations, where each �j is a d-dimensional

feature map. We present the bounds in terms of d and M for coherence with the rest of the text,
assuming that M = O(p), which is the case when d⌧ p.

Table 2 compares recent work on sparse linear bandits based on a number of important factors. In this
table, the ETC algorithms follow the general format of exploring, performing parameter estimation
once at t = n0, and then repeatedly suggesting the same action which maximizes ✓̂>

n0
�(x). Explore-

then-(✏)Greedy takes a similar approach, however it does not settle on ✓̂n0 , rather it continues to update
the parameter estimate and select xt = argmax ✓̂>

t �(x). The UCB algorithms iteratively update
upper confidence bound, and choose actions which maximize them. The regret bounds in Table 2 are
simplified to the terms with largest rate of growth, the reader should check the corresponding papers
for rigorous results. Some of the mentioned bounds depend on problem-dependent parameters (e.g.
cK), which may not be treated as absolute constants and have complicated forms. To indicate such
parameters we use ⌧ in Table 2, following the notation of Hao et al. [2020]. Note that ⌧ varies across
the rows of the table, and is just an indicator for existence of other terms.

Abbasi-Yadkori et al. [2012] use the SEQSEW online regression oracle [Gerchinovitz, 2011] for
estimating the parameter vector, together with a UCB policy. The regression oracle is an exponential
weights algorithm, which runs on the squared error loss. This subroutine, and thereby the algorithm
proposed by Abbasi-Yadkori et al. [2012] are not computationally efficient, and this is believed to
be unavoidable. This work considers the data-rich regime and shows R(n) = O(

p
dMn), matching

the lower bound of Theorem 24.3 in Lattimore and Szepesvári [2020].

Carpentier and Munos [2012] assume that the action set is a Euclidean ball, and that the noise is
directly added to the parameter vector, i.e. yt = x>(✓ + "t). Roughly put, linear bandits with
parameter noise are “easier” to solve than stochastic linear bandits with reward noise, since the noise
is scaled proportionally to the features xi and does less “damage ” [Chapter 29.3 Lattimore and
Szepesvári, 2020]. In this setting, Carpentier and Munos [2012] present a O(d

p
n) regret bound.

Recent work considers contextual linear bandits, where at every step At, a stochastic finite subset of
size K from A, is presented to the agent. It is commonly assumed that members of At are i.i.d., and
the sampling distribution is diverse and time-independent. The diversity assumption is often in the

14

form of a restricted eigenvalue condition (Definition 2) on the covariance of the context distribution
[e.g. in, Kim and Paik, 2019, Bastani and Bayati, 2020]. Li et al. [2022] require a stronger condition
which directly assumes that �min(�t) the minimum eigenvalue of the empirical covariance matrix
is lower bounded. This is generally not true, but may hold with high probability. Hao et al. [2020]
assume that the action set spans RdM . We believe that this assumption is the weakest in the literature,
and conjecture that it is necessary for model selection. If not met, the agent can not explore in all
relevant directions, and may not identify the relevant features. Our diversity assumption is similar
to Hao et al. [2020], adapted to our problem setting. Mainly, we consider reward functions which
are linearly parametrizable, i.e. ✓>�(x), as oppose to linear rewards, i.e. ✓>x.

A key distinguishing factor between ALEXP and existing work on sparse linear bandit is that ALEXP
is horizon-independent and does not rely on a forced exploration schedule. As shown on Table 2,
majority of prior work relies either on an initial exploration stage, the length of which is determined
according to n [e.g., Carpentier and Munos, 2012, Kim and Paik, 2019, Li et al., 2022, Hao et al.,
2020, Jang et al., 2022], or on a hand crafted schedule, which is again designed for a specific horizon
[Bastani and Bayati, 2020]. Oh et al. [2021], which analyzes K-armed contextual bandits, does not
require explicit exploration, and instead imposes restrictive assumptions on the diversity of context
distribution, e.g. relaxed symmetry and balanced covariance. Regardless, the regret bounds hold in
expectation, and are not time-uniform.

Table 2: Overview of recent work on high-dimensional Bandits. Parameter ⌧ shows existence of
other problem-dependent terms which are not constants, and varies across different rows. The regret
bounds are simplified and are not rigorous.

|At|
data-
poor

adap.
exp.

any-
time

action
selection

policy

MS
algo

context
or action
assumpt.

Regret

Abbasi-Yadkori et al. 1 7 3 3 UCB EXP4 on
Sqrd error A is compact

p
dMn, w.h.p.

Foster et al. K 3 3 7 UCB EXP4 on
Sqrd error �min(⌃) � c�

(Mn)3/4K1/4 +
p
KdMn

w.h.p

Carpentier and Munos 1 3 7 7 UCB Hard
Thresh.

A is a ball
param. noise d

p
n, w.h.p.

Bastani and Bayati K 7 7 7
Explore

then
Greedy

Lasso (⌃) > cK
⌧Kd2(log n+ logM)2

w.h.p.

Kim and Paik K 7 7 7
Explore

then
✏-Greedy

Lasso (⌃) > cK ⌧d
p
n log(Mn), w.h.p.

Oh et al. K 3 3 7 Greedy Lasso (⌃) > c
+ other assums.

⌧d
p
n log(Mn)

in expectation

Li et al. K 3 7 7 ETC Lasso �min(⌃̂) > c�
⌧(n2d)1/3

p
logMn

in expectation

Hao et al. 1 3 7 7 ETC Lasso A spans RdM

+ is compact
(ndC�1

min)
2/3(logM)1/3

w.h.p.

Jang et al. 1 3 7 7 ETC Hard
Thresh.

A ⇢ [�1, 1]Md

+ spans RMd
(nd)2/3(C�1

min logM)1/3

w.h.p.

ALEXP (Ours) 1 3 3 3
Greedy
or UCB

EXP4 on
reward est.

Im(�j) spans Rd

A is compact

p
n logM(n1/4 + C�1

min logM)
w.h.p

B Time Uniform Lasso Analysis

We start by showing that the sum of squared sub-gaussian variables is a sub-Gamma process (c.f.
Definition 22).

Lemma 4 (Empirical Process is sub-Gamma). For t � 1, suppose ⇠t are a sequence conditionally
standard sub-Gaussians adapted to the filtration Ft = �(⇠1, . . . , ⇠t). Let vt 2 R, and Zt := ⇠2t � 1.
Define the processes St :=

Pt
i=1 Zivi and Vt := 4

Pt
i=1 v

2
i . Then (St)1t=0 is sub-Gamma with

variance process (Vt)1t=0 and scale parameter c = 4maxi�1 vi.

Proof of Lemma 4. By definition [c.f. Definition 1, Howard et al., 2021], St is sub-Gamma if for
each � 2 [0, 1/c), there exists a supermartingale (Mt(�))1t=0 w.r.t. Ft, such that EM0 = 1 and for
all t � 1:

exp

⇢
�St �

�2

2(1� c�)
Vt

�
Mt(�) a.s.

15

We show the above holds in equality by proving that the left hand side itself, is a supermartingale
w.r.t. Ft. We define, Mt(�) := exp{�St � �2Vt/2(1� c�)}, therefore,

E [Mt|Ft�1]  E

exp

✓
�St�1 �

�2

2(1� c�)
Vt�1 + �Ztvt �

2�2v2t
(1� c�)

◆
|Ft�1

�

= E [Mt�1|Ft�1]E [exp (�Ztvt) |Ft�1] exp

✓
�

2�2v2t
1� c�

◆

= Mt�1E [exp (�Ztvt) |Ft�1] exp

✓
�

2�2v2t
1� c�

◆
.

Note that Zt is Ft�1-measurable, conditionally centered and conditionally sub-exponential with
parameters (⌫,↵) = (2, 4) (c.f. Vershynin [2018, Lemma 2.7.6] and Wainwright [2019, Example
2.8]). Therefore, for � < 1/c,

E [exp (�vtZt) |Ft�1]  exp
�
2�2v2t

�
 exp

✓
2�2v2t
1� c�

◆
,

where the last inequality holds due to the fact that 0  1� c� < 1. Therefore,

E [Mt|Ft�1] Mt�1 exp

✓
2�2v2t
1� c�

◆
exp

✓
�

2�2v2t
1� c�

◆
= Mt�1.

for � 2 [0, 1/c), concluding the proof.

We now construct a self-normalizing martingale sequence based on `2-norm of the empirical process
error term, and recognize that it is a sub-gamma process. We then employ our curved Bernstein
bound Lemma 25 to control the boundary. This step will allow us to “ignore” the empirical process
error term later in the lasso analysis.
Lemma 5 (Empirical Process is dominated by regularization.). Let

Aj =
�
8 t � 1 :

��(�>
t "t)j

��
2
/t  �t/2

.

Then, for any 0  � < 1, the event A = \Mj=1Aj happens with probability 1� �, if for all t � 1,

�t �
2�
p
t

s

1 +
5
p
2

p
d (log(2M/�) + (log log d)+) +

12
p
2
(log(2M/�) + (log log d)+).

Proof of Lemma 5. This proof includes a treatment of the empirical process similar to Lemma B.1 in
Kassraie et al. [2022], but adapts it to our time-uniform setting. Since "i are zero-mean sub-gaussian
variables, as driven in Lemma 3.1 [Lounici et al., 2011], it holds that

Ac
j =

⇢
9t :

1

t2
"Tt �t,j�

>
t,j"t �

�2

4

�
=

(
9t :

Pt
i=1 vi(⇠

2
i � 1)

p
2kvtk

� ↵t,j

)

where ⇠i are sub-gaussian variables with variance proxy 1, scalar vi denotes the i-th eigenvalue of
�t,j�>

t,j/t with the concatenated vector vt = (v1, . . . , vt), and

↵t,j =
t2�2/(4�2)� tr(�>

t,j�t,j)
p
2
���>

t,j�t,j

��
Fr

.

We can apply Lemma 25 to control the probability of event Ac
j by tuning �. Mainly, for Ac

j to happen
with probability less than �/M , Lemma 25 states that the following must hold for all t,

p
2kvtk2↵t,j �

5

2

r
max

n
4kvtk

2
2, 1
o
!�/M (kvtk2) + 12!�/M (kvtk2)max

t�1
vt (4)

Recall that w.l.o.g. feature maps are bounded everywhere k�j(·)k2  1, and rank(�j)  d which
allows for the following matrix inequalities,

tr(�>
t,j�t,j) = tr(�t,j�

>
t,j) =

tX

i=1

�>
j (xi)�j(xi)  t

16

���t,j�
>
t,j

��  tr(�t,j�
>
t,j)  t

���t,j�
>
t,j

�� 
���t,j�

>
t,j

��
Fr


p

d
���t,j�

>
t,j

��  t
p

d

Therefore,
kvtk =

���t,j�
>
t,j

��
Fr
/t 

p

d, max
t�1

vt = max
t�1

���t,j�
>
t,j

��/t  1.

For Eq. (4) to hold, is suffices that for all t � 1,

� �
2�
p
t

s

1 +
5

2
p
2

p
4d (log(2M/�) + (log log d)+) +

12
p
2
(log(2M/�) + (log log d)+).

Therefore, if �t are chosen to satisfy the above inequality, each Ac
j happens with probability less

than �/M . Then by applying union bound, [Mj=1A
c
j happens with probability less than �.

Proof of Theorem 3. The theorem statement requires that the regularization parameter �t is chosen
such that condition of Lemma 5 is met, and therefore event A happens with probability 1 � �.
Throughout this proof, which adapts the analysis of Theorem 3.1. Lounici et al. [2011] to the
time-uniform setting, we condition on A happening, and later incorporate the probability.

Step 1. Let ✓̂t be a minimizer of L and ✓ be the true coefficients vector, then L(✓̂t;Ht,�t) 
L(✓;Ht,�t). Writing out the loss and re-ordering the inequality we obtain,

1

t

����t(✓̂t � ✓)
���
2

2


2

t
"Tt �t(✓̂t � ✓) + 2�t

MX

j=1

⇣
k✓jk2 �

���✓̂t,j
���
2

⌘
.

which is often referred to as the Basic inequality [Bühlmann and Van De Geer, 2011]. By Cauchy-
Schwarz and conditioned on event A,

"Tt �t(✓̂t � ✓) 
MX

j=1

��(�T
t "t)j

��
2

���✓̂t,j � ✓j
���
2


t�

2

MX

j=1

���✓̂t,j � ✓j
���
2

then adding �t
PM

j=1

���✓̂t,j � ✓j
���
2

to both sides, applying the triangle inequality, and recalling from
Section 3 that ✓j = 0 for j 6= j? gives

1

t

����t(✓̂t � ✓)
���
2

2
+ �t

MX

j=1

���✓̂t,j � ✓j
���
2
 2�t

MX

j=1

���✓̂t,j � ✓j
���
2
+ 2�t

MX

j=1

⇣
k✓jk2 �

���✓̂t,j
���
2

⌘

 4�t

���✓̂t,j? � ✓j?
���
2
.

Since each term on the left hand side is positive, then each is also individually smaller than the right
hand side, and we obtain,

1

t

����t(✓̂t � ✓)
���
2

2
 4�t

���✓̂t,j? � ✓j?
���
2

(5)

MX

j=1
j 6=j?

���✓̂t,j � ✓j
���
2
 3
���✓̂t,j? � ✓j?

���
2

(6)

Step 2. Consider a sequence (c1, . . . , ck, . . .), where c1 � · · · � ck . . . , then

ck 
1

k
(kck +

X

i>k

ci) 
X

i�1

ci
k
. (7)

Define J1 = {j?} and J2 = {j?, j0} where

j0 = argmax
j2[M]
j 6=j?

���✓̂t,j � ✓j
���
2
.

17

For any J ⇢ [M] the complementing set is denoted as Jc = [M] \ J . For simplicity let cj =���✓̂t,j � ✓j
���
2
, and let ⇡(k) denote the index of the k-th largest element of {cj : j 2 Jc

1}. By
definition of Jc

2 we have,
X

j2Jc
2

���✓̂t,j � ✓j
���
2

2
=

X

k>1
⇡(k)2Jc

1

c2k
(7)


X

k>1
⇡(k)2Jc

1

(
P

i2Jc
1
ci)2

k2


� X

i2Jc
1

ci
�2 X

k>1
⇡(k)2Jc

1

1

k2
(6)
 9c2j?

 9(c2j? + c2j0) = 9
X

j2J2

���✓̂t,j � ✓j
���
2

2
,

which, in turn, gives

���✓̂t � ✓
���
2
=

vuut
MX

j=1

���✓̂t,j � ✓j
���
2

2


s
10
X

j2J2

���✓̂t,j � ✓j
���
2

2
. (8)

Step 3. On the other hand, due to (6), and by definition of J2 it also holds that
X

j2Jc
2

���✓̂t,j � ✓j
���
2
 3

X

j2J2

���✓̂t,j � ✓j
���
2
.

From the theorem assumptions and Definition 2, we know that there exists 0 < (�t, 2), therefore by
Definition 2, the feature matrix �t satisfies,

X

j2J2

���✓̂t,j � ✓j
���
2

2


1

t2(�t, 2)

����t(✓̂t � ✓)
���
2

2

(5)


1

2(�t, 2)
4�t

���✓̂t,j? � ✓j?
���
2


1

2(�t, 2)
4�t

sX

j2J2

���✓̂t,j � ✓j
���
2

2
.

From here, by applying (8) we get,
���✓̂t � ✓

���
2


4
p
10�t

2(�t, 2)
.

If �t are chosen according to Lemma 5, event A and, in turn, the inequality above hold with probability
greater than 1� �.

C Results on Exploration

In this section we present lower-bounds on the eigenvalues of the covariance matrix �t�>
t , as it

is later used in our regret analysis. In particular, we show that the feature matrix �t satisfies the
restricted eigenvalue condition (Definition 2) required for valid Lasso confidence set (Theorem 3),
and calculate a lower bound on (�t, 2). The lower bound is later used by Lemma 19 and Lemma 20
to develop the model selection regret. We show this bound in three steps.

Equivalent to Definition 2, we write (�t, s) = infb2⌅s k�tbk2/
p
t where

⌅s :=
n
b 2 Rd

\{0}
���
P

j /2J kbjk2  3
P

j2J kbjk2,
qP

j2J kbjk
2
2  1 s.t. J ⇢ {1, . . . ,M}, |J |  s.

o
. (9)

For simplicity in notation, we further define

̃(A, s) := min
b2⌅s

b>Ab. (10)

since ̃(�
>
t �t

t , s) = 2(�t, s).

Step I. Consider the exploratory steps at which ↵t = 1. Let �⇡,t be a sub-matrix of �t where only
rows from exploratory steps are included. Note that �⇡,t 2 Rt0⇥dM is a random matrix, where the
number of rows t0 are also random. We show that 2(�t, s) is lower bounded by 2(�t,⇡, s).

18

Lemma 6. Suppose �⇡,t has t0 rows. Then,

2(�t, s) �
t0

t
2(�⇡,t, s)

Proof of Lemma 6. Let (t) = �(xt)�>(xt) 2 RdM⇥dM for all t = 1, . . . , n. Note that (t) is
positive semi-definite by construction. We have,

k�tbk
2
2 =

tX

s=1

b> (s)b =
tX

s2T⇡

b> (s)b+
tX

s/2T⇡

b> (s)b

where the set T⇡ contains the indices of the exploratory steps at which the action is selected according
to ⇡. Therefore,

2(�t, s) =
1

t
min
b2⌅s

k�tbk
2
2

= min
b2⌅s

1

t

X

s2T⇡

b> (s)b+
1

t

X

s/2T⇡

b> (s)b

� min
b2⌅s

1

t

X

s2T⇡

b> (s)b

where the last inequality holds due to (s) being PSD. Then we have,

2(�t, s) � min
b2⌅s

b>

1

t

tX

s2T⇡

 (s)

!
b =

|T⇡|

t
2(�⇡,t, s)

While the number of rows of �⇡,t is a random variable, we continue to condition on the event that
�⇡,t has t0 rows, and investigate the distribution of its restricted eigenvalues.

Step II. The restricted eigenvalues of the exploratory submatrix are well bounded away from zero.
Lemma 7. Let ⇡ be the solution to (2), and s 2 N. Suppose �⇡,t has t0 rows. Then for all � > 0,

P
✓
8t0 : 2(�⇡,t, s) � ̃(⌃, s)�

80s
p
t0

p
log(2Md/�) + (log log 4t0)+

◆
� 1� �

where ⌃ = ⌃(⇡,�) := Ex⇠⇡�(x)�>(x) and ̃ is defined in (10).

Step III. Remains to combine the two above lemmas and incorporate a high probability bound on t0,
showing that it is close to

Pt
s=1 �s.

Lemma 8. There exist absolute constants C1, C2 which satisfy,

P
⇣
8t � 1 : 2(�t, 2) � C1̃(⌃, 2)t

�1/4
� C2t

�5/8
p

log(Md/�) + (log log t)+
⌘
� 1� �

if �t = O(t�1/4). Let ⇡ be the solution to (2), then it further holds that

P
⇣
8t � 1 : 2(�t, 2) � C1Cmint

�1/4
� C2t

�5/8
p

log(Md/�) + (log log t)+
⌘
� 1� �

The regret analysis of Hao et al. [2020] also relies on connecting (�t, s) to Cmin, and for this,
they use Theorem 2.4 of Javanmard and Montanari [2014]. This theorem states that there exists a
problem-dependent constant C1 for which 2(�t, s) � C1Cmin with high probability, if t � n0 and
roughly n0 = O(3

p
n2 logM). We highlight that Lemma 8, presents a lower-bound which holds for

all t � 1, however this comes at the cost of getting a looser lower bound than the result of Javanmard
and Montanari [2014] for the larger time steps t. In fact, due to the sub-optimal dependency of
Lemma 8 on t, we later obtain sub-optimal dependency on the horizon for the case when n�M . It
is unclear to us if this rate can be improved without assuming knowledge of n, or that n � n0.

For the last lemma in this section we show that the empirical sub-matrices �t,j are also bounded
away from zero. This will be required later to prove Lemma 15.

19

Lemma 9 (Base Model �min Bound). Assume ⇡ is the maximizer of Eq. (2). Then, with probability
greater than 1� �, simultaneously for all j = 1, . . . ,M and t � 1,

�min(�
>
t,j�t,j) � C1Cmint

3/4
� C2t

3/8
p

log(Md/�) + (log log t)+

if �t = O(t�1/4).

C.1 ALEXP with Uniform Exploration

We presented our main regret bound (Theorem 1) in terms of Cmin, which only depends on properties
of the feature maps and the action domain. We give a lower-bound on Cmin for a toy scenario which
corresponds to the problem of linear feature selection over convex action sets.
Proposition 10 (Invertible Features). Suppose �(x) := Ax : Rd

! Rd is an invertible linear map,
and X 2 Rd is a convex body. Then,

Cmin �
�min(A)

�2
max(T)

> 0

where T is the transformation which maps X to an isotropic body.

The lower-bound of Proposition 10 is achieved by simply exploring via ⇡ = Unif(X). Inspired by
Schur et al. [2023, Lemma E.13], we show that even for non-convex action domains and orthogonal
feature maps, the uniform exploration yields a constant lower-bound on restricted eigenvalues.
Proposition 11 (Orthonormal Features). Suppose �j : X ! R are chosen from an orthogonal basis
of L2(X), and satisfy k�ikL2

µ(X)/Vol(X) � 1. Then there exist absolute constants C1 and C2 for
which the exploration distribution ⇡ = Unif(X) satisfies

P
⇣
8t � 1 : 2(�t, 2) � C1t

�1/4
� C2t

�5/8
p

log(Md/�) + (log log t)+
⌘
� 1� �.

The d = 1 condition is met without loss of generality, by splitting the higher dimensional feature
maps and introducing more base features, which will increase M . Moreover, the orthonormality
condition is met by orthogonalizing and re-scaling the feature maps. Basis functions such as Legendre
polynomials and Fourier features [Rahimi et al., 2007] satisfy these conditions.

By invoking Proposition 11, instead of Lemma 8 in the proof of Theorem 1, we obtain the regret of
ALEXP with uniform exploration.
Corollary 12 (ALEXP with Uniform Exploration). Let � 2 (0, 1]. Suppose �j : X ! R are chosen
from an orthogonal basis of L2(X), and satisfy k�ikL2

µ(X)/Vol(X) � 1. Assume the oracle agent
employs a UCB or a Greedy policy, as laid out in Section 5. Choose ⌘t = O(1/

p
tC(M, �, d)) and

�t = O(t�1/4) and �t = O(C(M, �, d)/
p
t), then ALEXP with uniform exploration ⇡ = Unif(X)

attains the regret

R(n) = O

⇣
Bn3/4 +

p
nC(M, �, d) logM +B2pn+B

p
n ((log log nB2)+ + log(1/�))

+ (n3/4 + log n)C(M, �, d) + n5/8
p
d log n+ log(1/�) +B2

⌘

with probability greater than 1� �, simultaneously for all n � 1. Here,

C(M, �, d) = O

✓q
1 +

p
d (log(M/�) + (log log d)+) + (log(M/�) + (log log d)+)

◆
.

C.2 Proof of Results on Exploration

As an intermediate step, we consider the restricted eigenvalue property of the empirical covariance
matrix. Given t0 samples, the empirical estimate of ⌃ is

⌃̂t0 :=
1

t0

t0X

s=1

�(xs)�
>(xs) (11)

where xs are sampled according to ⇡. We show that every entry of ⌃̂t0 is close to the corresponding
entry in ⌃, and later use it in the proofs of eigenvalue lemmas.

20

Lemma 13 (Anytime Bound for The Entries of Empirical Covariance Matrix). Let ⌃̂t0 be the
empirical covariance matrix corresponding to ⌃(⇡,�) given t0 samples. Then,

P
✓
9t0 : d1(⌃, ⌃̂t0) �

5
p
t0

p
((log log 4t0)+ + log(2Md/�))

◆
 �

where d1(A,B) := maxi,j |Ai,j �Bi,j |.

Proof of Lemma 13. We show the element-wise convergence of ⌃ to ⌃̂t for the (i, j) entry where
i, j = 1, . . . , dM . Consider the random sequence Xs := ⌃i,j � �i(xs)�j(xs). We show that
X1, . . . , Xn satisfies conditions of Lemma 26. We first observe that

E[Xs|X1:s�1] = EXs = ⌃(i, j)� Ex⇠⇡�i(x)�j(x) = 0

since by definition ⌃i,j = Ex⇠⇡�i(x)>�j(x). Moreover, we have normalized features k�(·)k  1,
therefore, each entry �i(·)�j(·) is also bounded, yielding |Xs|  2. Then Lemma 26 implies that for
all �̃ > 0,

P

0

@9t0 : 1

t0

t0X

s=1

Xs �
5
p
t0

r⇣
(log log 4t0)+ + log(2/�̃)

⌘
1

A  �̃.

Setting �̃ = �/(dM) and taking a union bound over all indices concludes the proof.

We are now ready to present the proofs to the lemmas in Appendix C.

Proof of Lemma 7. By (11) we have ⌃̂t0 =
�>

⇡,t�⇡,t

t0 , and thereby

2(�⇡,t, s) = min
b2⌅s

b>⌃̂t0b = ̃(⌃̂t0 , s).

Inspired by Lemma 10.1 in van de Geer and Bühlmann [2009], we show that element-wise closeness
of matrices ⌃ and ⌃̂t0 (c.f. Lemma 13) implies closeness in ̃:

��2(�⇡,t, s)� ̃(⌃, s)
�� =

���̃(⌃̂t0 , s)� ̃(⌃, s)
���

=
���̃
⇣
⌃̂t0 � ⌃, s

⌘���

 min
b2⌅s

d1(⌃, ⌃̂t0)kbk
2
1

where the last line holds due to Hölder’s. Moreover, since b 2 ⌅s, for any J ⇢ [dM] where |J |  s
it additionally holds that kbJk2  1 and

kbk1  (1 + 3)kbJk1  4
p
skbJk2  4

p
s

which gives,
2(�⇡,t, s) � ̃(⌃, s)� 16sd1(⌃, ⌃̂t0).

Therefore by Lemma 13,

2(�⇡,t, s) � ̃(⌃, s)�
80s
p
t0

p
((log log 4t0)+ + log(2Md/�)) (12)

with probability greater than 1� �, simultaneously for all t0 � 1.

Proof of Lemma 8. In Lemma 6 we showed that

2(�t, s) �
t0

t
2(�⇡,t, s)

where t0 indicates the number of rows in the exploratory sub-matrix of �t. Recall that t0 =
Pt

s=1 ↵s

where ↵s are i.i.d Bernoulli random variables with success probability of �s. Due to Lemma 24,

P (8t � 1 : |t0 � �t|  �t) � 1� �/2 (13)

21

where

�t :=
5

2

r
(log log t)+ + log(8/�)

t
, �t :=

tX

s=1

�s

Due to Lemma 7, with probability greater than 1� �/2 the following holds for all t � 1

2(�t, 2) �
t0

t
̃(⌃, 2)�

160
p
t0

t

p
(log log 4t0)+ + log(4Md/�)

�
�t ��t

t
̃(⌃, 2)� 160

r
�t +�t

t2

q
(log log (4�t +�t))+ + log(4Md/�)

where the second inequality holds with probability 1� �, by incorporating (13) and taking a union
bound. For the rest of the proof and to keep the calculations simple, we ignore the values of the
absolute constants. We use the notation g(t) = o(f(t)) to show that f(t) grows much faster than
g(t). More formally, if for every constant c there exists t0, where g(t)  c|f(t)| for all t � t0. Since
�s = O(s�1/4) there exists C such that �t = Ct3/4, then it is straightforward to observe that there
exists absolute constants C̃i which satisfy,

2(�t, 2) � C̃1t
�1/4̃(⌃, 2)�

5t�3/2̃(⌃, 2)

2

p
(log log t)+ + log(8/�)

� C̃2t
�5/8

p
log(Md/�) + (log log t)+ � o

⇣
t�5/8

p
log(Md/�) + (log log t)+

⌘

� C̃1t
�1/4̃(⌃, 2)� C̃3t

�5/8
p

log(Md/�) + (log log t)+

The last inequality holds since t�3/2
p
log log t = o(t�5/8

p
log log t). The above chain of inequali-

ties imply that there exist absolute constants C1, C2, for which

P
⇣
8t � 1 : 2(�t, 2) � C1̃(⌃, 2)t

�1/4
� C2t

�5/8
p

log(Md/�) + (log log t)+
⌘
� 1� �.

If ⇡ is chosen according to (2), then ̃(⌃, 2) � Cmin yielding the lemma’s second argument.

Proof of Lemma 9. Fix j 2 {1, . . . ,M}, and construct the set

⌅1,j =
n
b 2 Rd

\ {0}
���b = (b1, . . . , bM), s.t. bj 2 Rd, kbjk2  1 and 8j0 6= j : bj0 = 0

o
.

Note that ⌅1,j ⇢ ⌅s. Therefore,

inf
b2⌅1,j

k�tbk2 � inf
b2⌅s

k�tbk2 =
p
t(�t, s).

Moreover, by construction of ⌅1,j we have for all b 2 ⌅1,j that �tb = �t,jbj , therefore,

inf
b2⌅1,j

k�tbk
2
2 = inf

bj2Rd

kbjk2
21

k�t,jbjk
2
2 = �min(�

>
t,j�t,j).

From the above equations we conclude that �min(�>
t,j�t,j) � t2(�t, s), for all j = 1, . . . ,M .

Therefore, using Lemma 8 we obtain that there exists C1, C2 such that

P
⇣
8t � 1, j = 1, . . . ,M : �min(�>

t,j�t,j) � C1Cmint3/4 � C2t3/8
p
log(Md/�) + (log log t)+

⌘
� 1� �

Proof of Proposition 10. Since X is a convex body, then there exists an invertible map T , such
that T (X) is an isotropic body [e.g. Proposition 1.1.1., Giannopoulos, 2003]. Then by definition,
X̄ ⇠ Unif(T (X)) is an isotropic distribution and Cov(X̄) = Id [e.g., c.f. Chapter 3.3.5 Vershynin,
2018]. Since � is linear and invertible, it may be written is as �(x) = Ax, where A is an invertible
matrix. Therefore,

⌃(⇡,�) = Cov(�(X)) = A>Cov(X)A = A>Cov
�
T�1X̄

�
A = A>(T�1)2A.

As for the minimum eigenvalue, suppose v 2 Rd and kvk = 1, then

Cmin � �min (⌃(⇡,�)) � v>A>(T�1)2Av � kAvk2�min(T
�2) =

kAvk2
�2
max(T)

�
�min(A)

�2
max(T)

.

22

Proof of Proposition 11. By the assumption of the proposition, for all i 2M

[⌃(⇡,�)]i,i = Ex⇠⇡�
2
i (x) =

1

Vol(X)

Z

X
�2
i (x)dµ(x) � 1

and for all i 6= j,

[⌃(⇡,�)]i,j = Ex⇠⇡�i(x)�j(x) =
1

Vol(X)

Z

X
�i(x)�j(x)dµ(x) = 0

We use ⌃ = ⌃(⇡,�). For any b 2 RMd where kbk  1,

b>⌃b =
X

i,j2[M]

b>j ⌃i,jbi =
X

i2[M]

b>i ⌃i,ibi +
X

i,j2[M],i 6=j

b>j ⌃i,jbi

=
X

i2[M]

b>i ⌃i,ibi

� 1
X

i2[M]

kbik
2
2 � 1.

Which implies,
̃(⌃, s) = min

b2⌅s

b>⌃b � 1.

By Lemma 8, there exist absolute constants C1 and C2 for which,

P
⇣
8t � 1 : 2(�t, 2) � ̃(⌃, 2)C1t

�1/4
� C2t

�5/8
p

log(Md/�) + (log log t)+
⌘
� 1� �.

concluding the proof.

D Proof of Regret Bound

Theorem 14 (Anytime Regret, Formal). Let � 2 (0, 1] and ⇡ be the maximizer of (2). Assume
the oracle agent employs a UCB or a Greedy policy, as laid out in Section 5. Suppose ⌘t =
O(Cmint�1/2C(M, �, d)) and �t = O(t�1/4) and �t = O(C(M, �, d)t�1/2), then exists absolute
constants C1, . . . , C6 for which ALEXP attains the regret

R(n)  C1Bn3/4 + C2
p
nC�1

minC(M, �, d) logM

+ C3B
2Cmin

p
n+ C4B

p
n ((log log nB2)+ + log(1/�))

+ C5

⇣
1 + C�1

minn
�3/8

p
log(Md/�) + (log log n)+

⌘

⇥


Bn1/4 + (n3/4 +

log n

Cmin
)C(M, �, d) +

n5/8

p
Cmin

p
d log n+ log(1/�) +B2

�

with probability greater than 1� �, simultaneously for all n � 1. Here,

C(M, �, d) = C6�
q
1 +

p
d (log(M/�) + (log log d)+) + (log(M/�) + (log log d)+).

Our main regret bound is an immediate corollary of Lemma 15 and Lemma 16, considering the regret
decomposition of (3).

Lemma 15 (Virtual Regret of the Oracle). Let � 2 (0, 1] and �̃ > 0. Assume the oracle agent
employs a UCB or a Greedy policy, as laid out in Section 5. If �t = O(t1/4), there exists an absolute
constant C1 for which with probability greater than 1� �, simultaneously for all n � 1,

R̃j?(n) =
C1n

5/8
p
Cmin

⇣
1 + n�3/8C�1

min

p
log(Md/�) + (log log n)+

⌘

⇥

r
�2d log

⇣
n
�̃d

+ 1
⌘
+ 2�2 log(1/�) + �̃B2

23

Lemma 16 (Any-Time Model-Selection Regret, Formal). Let � 2 (0, 1] and ⇡ be the maximizer of
(2). Suppose ⌘t = O(Cmin/

p
tC(M, �, d)) and �t = O(t�1/4) and �t = O(C(M, �, d)/

p
t), then

exists absolute constants Ci for which ALEXP attains the model selection regret

R(n, j)  C1Bn3/4 + C2
p
nC�1

minC(M, �, d) logM

+ C3B
2Cmin

p
n+ C4B

p
n ((log log nB2)+ + log(1/�))

+ C5

✓
Bn1/4 + (n3/4 +

log n

Cmin
)C(M, �, d)

◆⇣
1 + C�1

minn
�3/8

p
log(Md/�) + (log log n)+

⌘

with probability greater than 1� �, simultaneously for all n � 1. Here,

C(M, �, d) = C6�
q
1 +

p
d (log(M/�) + (log log d)+) + (log(M/�) + (log log d)+).

D.1 Proof of Model Selection Regret

Our technique for bounding the model selection regret relies on a classic horizon-independent analysis
of the exponential weights algorithm, presented in Lemma 17.
Lemma 17 (Anytime Exponential Weights Guarantee). Assume ⌘tr̂t,j  1 for all 1  j M and
t � 1. If the sequence (⌘t)t�1 is non-increasing, then for all n � 1,

nX

t=1

r̂t,k �
nX

t=1

MX

j=1

qt,j r̂t,j 
logM

⌘n
+

nX

t=1

⌘t

MX

j=1

qt,j r̂
2
t,j

for any arm k 2 [M].

Proof of Lemma 17. Define R̂t,i :=
Pt

s=1 r̂s,i to be the expected cumulative reward of agent i after
t steps. We rewrite for a fixed k

nX

t=1

r̂t,k �
nX

t=1

MX

j=1

qt,j r̂t,j =
nX

t=1

r̂t,k �
nX

t=1

Ej⇠qt [r̂t,j]. (14)

We focus on a single term in the second sum. For any t, we have

�Ej⇠qt [r̂t,j] = log(exp(�Ej⇠qt [
⌘t
⌘t
r̂t,j])) = log(exp(�Ej⇠qt [⌘tr̂t,j])

1/⌘t)

=
1

⌘t
log(exp(�Ej⇠qt [⌘tr̂t,j]))

=
1

⌘t
log(Ei⇠qt exp(�Ej⇠qt [⌘tr̂t,j])) (15)

The inner expectation is over j, while the outer one is over i and therefore has no effect. Moreover,

1

⌘t
logEi⇠qt exp(�⌘tEj⇠qt [r̂t,j] + ⌘tr̂t,i) =

1

⌘t
log (exp(�⌘tEj⇠qt [r̂t,j])Ei⇠qt exp(⌘tr̂t,i))

=
1

⌘t
logEi⇠qt exp(�⌘tEj⇠qt [r̂t,j])

+
1

⌘t
logEi⇠qt exp(⌘tr̂t,i) (16)

where again, the expectation can be reintroduced to get the last line. Combining (15) and (16),

�Ej⇠qt [r̂t,j] =
1

⌘t
logEi⇠qt exp(�⌘tEj⇠qt [r̂t,j] + ⌘tr̂t,i)�

1

⌘t
logEi⇠qt exp(⌘tr̂t,i) (17)

This transformation is at the core of many exponential weight proofs [Bubeck et al., 2012, Lattimore
and Szepesvári, 2020]. We first bound the first term in (17):

logEi⇠qt exp(�⌘tEj⇠qt [r̂t,j] + ⌘tr̂t,i) = logEi⇠qt exp(⌘tr̂t,i)� ⌘tEj⇠qt r̂t,j

24

(I)
Ei⇠qt exp(⌘tr̂t,i)� 1� ⌘tEj⇠qt r̂t,j

= Ei⇠qt [exp(⌘tr̂t,i)� 1� ⌘tr̂t,i]
(II)
 Ei⇠qt

⇥
⌘2t r̂

2
t,i

⇤
(18)

where in (I) we use the fact that log(z)  z � 1 and in (II) we use the fact that for x  1, we have
exp(x)  1 + x+ x2, and hence exp(x)� 1� x  x2. For the second term in (17), we will mirror
the potential argument in Bubeck et al. [2012], but with a slightly different potential function. We
expand the definition of qt:

�
1

⌘t
logEi⇠qt exp(⌘tr̂t,i) = �

1

⌘t
log

PM
i=1 exp(⌘tR̂t,i)PM

i=1 exp(⌘tR̂t�1,i)

= �
1

⌘t
log

1

M

MX

i=1

exp(⌘tR̂t,i) +
1

⌘t
log

1

M

MX

i=1

exp(⌘tR̂t�1,i)

= Jt(⌘t)� Jt�1(⌘t), (19)

where we define Jt(⌘) = �
1
⌘ log 1

M

PM
i=1 exp(⌘R̂t,i). We also define Ft(⌘) =

1
⌘ log 1

M

PM
i=1 exp(�⌘R̂t,i). We observe the relation J(⌘) = F (�⌘). From this, it follows that for

any ⌘, we have J 0(⌘) = �F 0(�⌘)  0, by the argument in Bubeck et al. [2012, Theorem 3.1] that
shows F 0(⌘) � 0 for any ⌘.

Putting together the pieces Now, we can bound (17) by inputing (18) and (19):

�Ej⇠qt [r̂t,j]  Ei⇠qt

⇥
⌘tr̂

2
t,i

⇤
+ Jt(⌘t)� Jt�1(⌘t)

With this, we rewrite (14) as
nX

t=1

r̂t,k �
nX

t=1

Ej⇠qt [r̂t,j] =
nX

t=1

r̂t,k +
nX

t=1

Ei⇠qt

⇥
⌘tr̂

2
t,i

⇤
+

nX

t=1

Jt(⌘t)� Jt�1(⌘t) (20)

Potential manipulation We can do an Abel transformation on the sum of potentials in (20), namely
obtaining

nX

t=1

Jt(⌘t)� Jt�1(⌘t) =
n�1X

t=1

(Jt(⌘t)� Jt(⌘t+1)) + Jn(⌘n),

where we used that J0(⌘) = 0. We know J 0(⌘)  0 and so J is decreasing and since ⌘t+1  ⌘t, we
have J(⌘t+1) � J(⌘t) or (Jt(⌘t)� Jt(⌘t+1))  0, so that for any fixed k

nX

t=1

Jt(⌘t)� Jt�1(⌘t)  Jn(⌘n) 
log(M)

⌘n
�

1

⌘n
log

MX

i=1

exp(⌘nR̂n,i)

!

(⇤)


log(M)

⌘n
�

1

⌘n
log
⇣
exp(⌘nR̂n,k)

⌘

=
log(M)

⌘n
�

nX

t=1

r̂t,k (21)

where (⇤) follows because exp is positive and � log is decreasing (notice that we drop M � 1 terms
from the sum). Plugging (21) into (20), we obtain

nX

t=1

r̂t,k �
nX

t=1

Ej⇠qt [r̂t,j] 
nX

t=1

r̂t,k +
nX

t=1

Ei⇠qt

⇥
⌘tr̂

2
t,i

⇤
+

nX

t=1

Jt(⌘t)� Jt�1(⌘t)



nX

t=1

r̂t,k +
nX

t=1

Ei⇠qt

⇥
⌘tr̂

2
t,i

⇤
+

log(M)

⌘n
�

nX

t=1

r̂t,k



nX

t=1

Ei⇠qt

⇥
⌘tr̂

2
t,i

⇤
+

log(M)

⌘n

25

=
nX

t=1

⌘t

MX

j=1

qt,j r̂
2
t,j +

log(M)

⌘n
.

We expressed in Section 5.2, that the model selection regret of ALEXP, is closely tied to the bias and
variance of the reward estimates r̂t,j . The following lemma formalizes this claim.
Lemma 18. (Anytime Generic regret bound) If ⌘t is picked such that ⌘tr̂t,j  1 for all 1  j M
and 1  t almost surely, then Algorithm 1 satisfies with probability greater than 1 � 2�/3, that
simultaneously for all n � 1

R(n, i)  2B
nX

t=1

�t +
logM

⌘n
+

nX

t=1

⌘t

MX

j=1

qt,j r̂
2
t,j +

nX

t=1

(!t,i +
MX

j=1

qt,j!t,j)

+ 10B
p
n ((log log nB2)+ + log(12/�))

where !t,i = |rt,i � r̂t,i|.

Proof of Lemma 18. Let ↵t denote the Bernoulli random variable that is equal to 1 if at step t we
select actions according to ⇡ and 0 otherwise. At each step t with ↵t = 1 ALEXP accumulates a
regret of at most 2B, since k✓k1  B and k�(·)k  1. We can decompose the regret as,

R(n, i) 
nX

t=1

2B↵t + (rt,i � rt)(1� ↵t)

For the first term, by Lemma 24, we have

2B
nX

t=1

↵t  2B

nX

t=1

�t +
5

2

p
n ((log log n)+ + log(4/�1))

!
.

simultaneously for all n � 1, with probability 1� �1. Let r̂t :=
PM

j=1 qt,j r̂t,j . We may re-write the
second term of the regret as follows,

nX

t=1

(1� ↵t)
⇣
rt,i � rt

⌘


nX

t=1

(1� ↵t)
h
(rt,i � r̂t,i) + (r̂t,i � r̂t) + (r̂t � rt)

i



nX

t=1

!t,i + (1� ↵t)
h
(r̂t,i � r̂t) + (r̂t � rt)

i

We bound the second term on the right hand side, using Lemma 17
nX

t=1

(1� ↵t)(r̂t,i � r̂t) 
nX

t=1

(r̂t,i � r̂t) 
logM

⌘n
+

nX

t=1

⌘t

MX

j=1

qt,j r̂
2
t,j .

As for the third term,

(1� ↵t)(
MX

j=1

qt,j r̂t,j � rt) = (1� ↵t)
h MX

j=1

qt,j(r̂t,j � rt,j + rt,j)� rt
i



MX

j=1

qt,j!t,j + (1� ↵t)

0

@rt �
MX

j=1

qt,jrt,j

1

A .

It remains to bound the deviation term. For all t that satisfy ↵t = 0, the action/model is selected
according to qt,j , therefore the conditional expectation of rt can be written as

Et�1 rt =
MX

j�1

qt,jrt,j

26

The sequence Xt := rt�Et�1 rt is a martingale difference sequence adapted to the history Ht, since
for every t � 1,

Et�1 Xt = E [rt � Et�1 rt|Ht�1] = 0.

Since rt  B, then Xt  2B almost surely, which allows for an application of anytime Azuma-
Hoeffding (Lemma 26):

P

0

@9n :
nX

t=1

0

@rt �
MX

j=1

qt,jrt,j

1

A � 5B

2

p
n ((log log nB2)+ + log(2/�2))

1

A  �2

which, in turn, leads us to

nX

t=1

(1� ↵t)

0

@rt �
MX

j=1

qt,jrt,j

1

A a.s.


nX

t=1

0

@rt �
MX

j=1

qt,jrt,j

1

A

w.h.p.


5B

2

p
n ((log log nB2)+ + log(2/�2))

simultaneously for all n � 1. We set �1 = �2 = �/3, take a union bound and put the terms together
obtaining,

R(n, i)  2B
nX

t=1

�t +
logM

⌘n
+ ⌘

nX

t=1

MX

j=1

qt,j r̂
2
t,j +

nX

t=1

(!t,i +
MX

j=1

qt,j!t,j)

+
5B

2

p
n ((log log nB2)+ + log(6/�)) + 5B

p
n ((log log n)+ + log(12/�))

We upper bound the sum of last two terms to conclude the proof.

The next two lemmas bound the bias and variance terms which appear in Lemma 18.
Lemma 19 (Anytime Bound on the Bias Term). If the regularization parameter of Lasso is chosen at
every step as

�t =
2�
p
t

s

1 +
5
p
2

p
d (log(2M/�) + (log log d)+) +

12
p
2
(log(2M/�) + (log log d)+)

and �t = O(t�1/4), then with probability greater than 1� �, simultaneously for all n � 1,
nX

t=1

|r̂t,i � rt,i|  n3/4C�1
minC(M, �, d)

⇣
1 + n�3/8C�1

min

p
log(Md/�) + (log log n)+

⌘

where

C(M, �, d) := C�
q

1 +
p
d (log(M/�) + (log log d)+) + (log(M/�) + (log log d)+)

and C is an absolute constant.

Proof of Lemma 19. By the definition of the expected reward and its estimate,
nX

t=1

|r̂t,i � rt,i| =
nX

t=1

����
Z

X
(r(x)� r̂t(x))dpt+1,i(x)

����



nX

t=1

Z

X
|r(x)� r̂t(x)|dpt+1,i(x)

C.S.


nX

t=1

Z

X

���✓ � ✓̂t
���
2
k�(x)k2dpt+1,i(x)

bdd. �


nX

t=1

���✓ � ✓̂t
���
2

Z

X
dpt+1,i(x) =

nX

t=1

���✓ � ✓̂t
���
2
.

27

We highlight that the Cauchy-Schwarz step may be refined. By further assuming that ✓j? is bounded
away from zero (also called the beta-min condition [Bühlmann and Van De Geer, 2011]) one can
show that ✓ � ✓̂t is a 2-sparse vector. This will then allow one to only rely on boundedness of k�jk

rather than k�k to derive the last inequality, and relax our assumption of k�(·)k  1 to k�j(·)k  1
for all j 2 [M]. From Theorem 3, with probability greater than 1� �/2 simultaneously for all n � 1,

nX

t=1

|r̂t,i � rt,i| 
nX

t=1

4
p
10�t

2(�t, 2)
= C̃(M, �, d)

nX

t=1

1

2(�t, 2)
p
t

where,

C̃(M, �, d) := 8�

s

1 +
5
p
2

p
d (log(4M/�) + (log log d)+) +

12
p
2
(log(4M/�) + (log log d)+).

From Lemma 8, there exist absolute constants C1, C2 for which,

P
⇣
8t � 1 : 2(�t, 2) � C1Cmint

�1/4
� C2t

�5/8
p

log(Md/�) + (log log t)+
⌘
� 1� �.

Using Taylor approximation we observe that, 1
1�x�1 = 1+x�1+ o(x�1) = O(1+x�1). Therefore,

these exists absolute constant C3, C4, for which with probability greater than 1� � for all t � 1

nX

t=1

C̃(M, �, d)

2(�t, 2)
p
t


nX

t=1

C̃(M, �, d)
p
t

1

C1Cmint�1/4 � C2t�5/8
p
log(Md/�) + (log log t)+



nX

t=1

C̃(M, �, d)
p
t

C̃3

Cmint�1/4

1 +

C2t�5/8
p

log(Md/�) + (log log t)+
C1Cmint�1/4

!



nX

t=1

C̃3C̃(M, �, d)t�1/4

Cmin

✓
1 + C̃4

t�3/8

Cmin

p
log(Md/�) + (log log t)+

◆

=
C3C̃(M, �, d)n3/4

Cmin

✓
1 + C4

n�3/8

Cmin

p
log(Md/�) + (log log n)+

◆
.

Lemma 20 (Anytime Bound on Variance Term). Suppose �t is chosen according to Lemma 19,
�t = O(t�1/4) and ⌘t = O(Cmint�1/2/C(M, �, d)). Then with probability greater than 1� �, the
following holds simultaneously for all n � 1 and t � 1

r̂t,j 
4
p
10�t

2(�t, 2)
+B, 8j 2 [M]

nX

t=1

⌘t

MX

j=1

qt,j r̂
2
t,j  C1B

2Cmin
p
n+ C2Bn1/4

✓
1 +

n�3/8

Cmin

p
log(Md/�) + (log log n)+

◆

+ C(M, �, d)
log n

Cmin

✓
1 +

n�3/8

Cmin

p
log(Md/�) + (log log n)+

◆

where Ci are absolute constants, and C(M, �, d) is as defined in Lemma 19, up to constant factors.

Proof of Lemma 20. We start by upper bounding r̂t,j . For all j and t it holds that:

r̂t,j =

Z

X
h✓̂t,�(x)idpt+1,j(x) 

���✓̂t
���
Z

X
k�(x)kdpt+1,j(x) 

���✓̂t
���
2
 B +

���(✓̂t � ✓)
���
2

since k✓k2  B. To bound the last term, we only need to invoke Theorem 3, which, in turn, will
simultaneously bound r̂t,j for all j = 1, . . . ,M :

P

8t � 1, 8j 2 [M] : r̂t,j 

4
p
10�t

c2,t
+B

!
� 1� �

28

Which implies for all t � 1,

MX

j=1

qt,j r̂
2
t,j 

4
p
10�t

c2,t
+B

!2 MX

j=1

qt,j =
160�2

t

c4,t
+B2 +

8B
p
10�t

c2,t
.

For the last term, similar to the proof of Lemma 19 we have,
nX

t=1

⌘t
8B
p
10�t

c2,t
 C1Bn1/4

✓
1 +

n�3/8

Cmin

p
log(Md/�) + (log log n)+

◆

for some absolute constant C1. We treat the squared term similarly,
nX

t=1

⌘t
160�2

t

c4,t
 C(M, �, d)

nX

t=1

C̄3

tCmin

✓
1 + C̄4

t�3/8

Cmin

p
log(Md/�) + (log log t)+

◆

 C(M, �, d)
C3 log n

Cmin

✓
1 + C4

n�3/8

Cmin

p
log(Md/�) + (log log n)+

◆
.

Note that the last inequality is not tight. This term will not be fastest growing term in the regret, so
we have little motivation to bound it tightly. Therefore,

nX

t=1

⌘t

MX

j=1

qt,j r̂
2
t,j  C1B

2Cmin
p
n+ C2Bn1/4

✓
1 +

n�3/8

Cmin

p
log(Md/�) + (log log t)+

◆

+ C(M, �, d)
log n

Cmin

✓
1 + C4

n�3/8

Cmin

p
log(Md/�) + (log log n)+

◆

where Ci are absolute constants.

Proof of Lemma 16. We start by conditioning on the event E that ⌘t is picked such that ⌘tr̂t,j  1
for all t � 1 and j = 1, . . . ,M . Then by application of Lemma 18 we get with probability greater
than 1� 2�/3,

R(n, i)  2B
nX

t=1

�t +
logM

⌘n
+

nX

t=1

⌘t

MX

j=1

qt,j r̂
2
t,j +

nX

t=1

(!t,i +
MX

j=1

qt,j!t,j)

+ 10B
p
n ((log log nB2)+ + log(12/�))

We invoke Lemma 19 and Lemma 20 with � ! �/3 take a union bound, to bound the variance and
!t,i terms as well. These lemmas require one application of Theorem 3 to hold simultaneously and
no additional union bound is required between them, since the randomness comes only from the
confidence interval over ✓̂t.

R(n, i) C1Bn3/4 +
logM

⌘n

+ C2B
2Cmin

p
n+ C3Bn1/4

✓
1 +

n�3/8

Cmin

p
log(Md/�) + (log log n)+

◆

+ C(M, �, d)
log n

Cmin

✓
1 +

n�3/8

Cmin

p
log(Md/�) + (log log n)+

◆

+ n3/4C(M, �, d)

✓
1 +

n�3/8

Cmin

p
log(Md/�) + (log log n)+

◆

+ 10B
p
n ((log log nB2)+ + log(12/�))

with probability greater than 1 � �, conditioned on event E. Assuming that event E happens
with probability 1� 2�, let B = B(�̃,M, d, n,B,�, Cmin) denote the right-hand-side of the regret
inequality above.

29

By the chain rule we may write,

P
�
Reg(n, i)  B

�

� P
⇣
R(n, i)  B

���8t 2 [n], j 2 [M] : ⌘tr̂t,j  1
⌘
P (8t 2 [n], j 2 [M] : ⌘tr̂t,j  1)

� P
⇣
R(n, i)  B

��� 8t 2 [n], j 2 [M] : ⌘tr̂t,j  1
⌘
(1� 2�)

� (1� �)(1� 2�) � 1� 3�.

It remains to verify that event E is met with probability 1 � 2�. Recall that ⌘t =
O(Cmin/

p
tC(M, �, d)), and that from Lemma 8 with probability 1� �,

Cmin

4
p
tC(M, �, d)


C1Cmint1/4 � C2t�1/8

p
log(Md/�) + (log log t)+

4
p
10C(M, �, d)


2(�t, 2)

4
p
10�t

Therefore, from Lemma 20, there exists C⌘ such that ⌘t = C⌘Cmin/B
p
tC(M, �, d) satisfying,

P (8t � 1, j 2 [M] : ⌘tr̂t,j  1) � 1� 2�

The proof is then finished by setting � 3� (and updating the absolute constants).

D.2 Proof of Virtual Regret

Proposition 21. For any fixed �̃ > 0, there exists an absolute constant C1 such that

P
⇣
8t � 1 :

����̂t,j? � ✓j?
���
2
 !(t, �, d)

⌘
� 1� �.

where

!(t, �, d) := C1

r
�2d log

⇣
t
�̃d

+1
⌘
+2�2 log(1/�)+�̃B2

�̃+Cmint3/4

⇣
1 + C�1

mint
�3/8

p
log(Md/�) + (log log t)+

⌘
.

Moreover, for ut,j?(·) := �̂>
t,j?�j?(·) + !(t, �, d),

P (8t � 1, x 2 X : r(x)  ut,j?(x)) � 1� �.

Proof of Proposition 21. Define for convenience Vt = �>
t,j?�t,j? + �̃I . We first observe that

�̂t,j? = V �1
t (�t,j?)

>yt

We can apply results from Abbasi-Yadkori et al. [2011] to get an anytime-valid confidence set. Their
Theorem 2 asserts that with probability 1� �, for all t � 1 we have2

����̂t,j? � ✓j?
���
2

Vt

 �t

where

�t = 2�2 log

✓
det(Vt)1/2

det(�̃I)1/2�

◆
+ �̃B2

Clearly, Vt ⌫ �min(Vt)I , and therefore with high probability,

����̂t,j? � ✓j?
���
2


s
�t

�min(Vt)

uniformly over time. Our assumption is that k�j(x)k  1, and hence, denoting by ⌫i the eigenvalues
of Vt, the geometric-arithmetic mean inequality yields

det(Vt) 
dY

i=1

⌫i 

✓
1

d
trace(Vt)

◆d

.

2Their theorem statement is slightly different, but they prove the stronger version we state below.

30

Given that

trace(Vt) =
dX

i=1

tX

s=1

(�j?(x))
2
i + �̃d  t+ �̃d

we can conclude that

�t  2�2 log

(t/d+ �̃)d/2

�̃d/2�

!
+ �̃B2 = d�2 log

✓
t

�̃d
+ 1

◆
+ 2�2 log(1/�) + �̃B2

We note that
�min(Vt) = �min(�

>
t,j�t,j) + �̃.

Then due to Lemma 9, there exist absolute constants C1 and C2 such that for all t � 1,

�min(Vt) � �̃+ C1Cmint
3/4
� C2t

3/8
p
log(Md/�) + (log log t)+

therefore, there exists C3 and C4 such that
1p

�min(Vt)


1q
�̃+ C1Cmint3/4 � C2t3/8

p
log(Md/�) + (log log t)+


C3p

�̃+ C1Cmint3/4

1 +

t3/8
p

log(Md/�) + (log log t)+

�̃+ C1Cmint3/4

!


C4p

�̃+ C1Cmint3/4

⇣
1 + C�1

mint
�3/8

p
log(Md/�) + (log log t)+

⌘

with high probability for all t � 1. Setting

!(t, �, d) = C5

r
�2d log(t

�̃d
+1)+2�2 log(1/�)+�̃B2

�̃+Cmint3/4

⇣
1 + C�1

mint
�3/8

p
log(Md/�) + (log log t)+

⌘

where C5 is an absolute constant concludes the parametric confidence bound. The upper confidence
bound then simply follows: for any x 2 X

r(x)� �̂>
t,j?�j?(x) = h✓j? � �̂t,j? ,�j?(x)i 

���✓j? � �̂t,j?

���
2
k�j?(x)k2  !(t, �, d)

where the last inequality holds with high probability simultaneously for all t � 1.

Proof of Lemma 15. Using Proposition 21 and the Cauchy-Schwarz inequality we obtain,

R̃j?(n) =
nX

t=1

r(x?)� r(x̃t,j)

=
nX

t=1

r(x?)� r̂t(x
?) + r̂t(x

?)� r̂t(x̃t,j) + r̂t(x̃t,j)� r(x̃t,j)



nX

t=1

���✓j � ✓̂t,j
���
2

�
k�j(x

?)k2 + k�j(x̃t,j)k2
�
+ r̂t(x

?)� r̂t(x̃t,j)



nX

t=1

!(t, �, d)
�
k�j(x

?)k2 + k�j(x̃t,j)k2
�
+ r̂t(x

?)� r̂t(x̃t,j)

with probability 1� �. If the agent selects actions greedily, then r̂t(x?)  r̂t(x̃t,j), and

R̃j?(n) 
nX

t=1

!(t, �, d)
�
k�j(x

?)k2 + k�j(x̃t,j)k2
�


nX

t=1

2!(t, �, d)

since the feature map is normalized to satisfy k�j(·)k  1. If the agent selects actions optimistically
according to the upper confidence bound of Proposition 21, then

r̂t(x̃t,j) + !(t, �, d)k�j(x̃t,j)k � r̂t(x
?) + !(t, �, d)k�j(x

?)k

31

which implies

r̂t(x
?)� r̂t(x̃t,j)  !(t, �, d)k�j(x̃t,j)k � !(t, �, d)k�j(x

?)k

and therefore,

R̃j?(n) 
nX

t=1

2!(t, �, d)k�j(x̃t,j)k2 
nX

t=1

2!(t, �, d).

Then due to Proposition 21, with probability greater than 1� �, simultaneously for all n � 1,
nX

t=1

!(t, �, d) 
nX

t=1

C1

r
�2d log

⇣ t
�̃d

+1
⌘
+2�2 log(1/�)+�̃B2

�̃+Cmint
3/4

✓
1 + t�3/8

q
log(Md

�) + (log log t)+

◆

 C̃1n
5/8

r
�2d log

⇣ n
�̃d

+1
⌘
+2�2 log(1/�)+�̃B2

Cmin

✓
1 + C�1

minn
�3
8

q
log(Md

�) + (log log n)+

◆

concluding the proof.

E Time-Uniform Concentration Inequalities

We will make use of the elegant concentration results in Howard et al. [2021], which analyzes the
boundary of sub-Gamma processes.
Definition 22 (Sub-Gamma process). Let (St)1t=0 and (Vt)1t=0 be real-valued processes adapted to
(Ft)1t=1 with S0 = V0 = 0 and Vt non-negative. We say that St is sub-Gamma if for � 2 [0, 1/c),
there exists a supermartingale (Mt(�))1t=0 w.r.t. Ft, such that EM0 = 1 and for all t � 1:

exp{�St �
�2

2(1� c�)
Vt} Mt(�) a.s.

The following is a special case of Theorem 1 in Howard et al. [2021]. We have simplified it by
making a few straightforward choices for the parameters used originally by Howard et al. [2021],
which will yield an easier-to-use bound in our scenario.
Proposition 23 (Curved Boundary of Sub-Gamma Processes). Let (St)t�0 be sub-Gamma with scale
parameter c and variance process (Vt)t�0. Define the boundary

B↵(v) :=
5

2

s

max{v, 1}

✓
(log log ev)+ + log

✓
2

↵

◆◆
+ 3c

✓
(log log ev)+ + log

✓
2

↵

◆◆
,

for v > 0, where (x)+ = max(0, x). Then,

P(9t : St � B↵(Vt))  ↵.

Proof of Proposition 23. Suppose ⇠(·) denotes the Riemann zeta function. Theorem 1 in Howard
et al. [2021] states that if (St)t�0 is a sub-Gamma process with variance process (Vt)t�0 then the
boundary

S↵(v
0) = k1

s

v0
✓
s log log (⌘v0) + log

✓
⇣(s)

↵ logs ⌘

◆◆
+ ck2

✓
s log log (⌘v0) + log

✓
⇣(s)

↵ logs ⌘

◆◆
.

satisfies,
P(9t : St � S↵(max(Vt, 1)))  ↵

where

k1 :=
⌘1/4 + ⌘�1/4

p
2

and k2 := (
p
⌘ + 1)/2

and s, ⌘ � 1. Choosing s = 2 and ⌘ = e, we obtain ⇣(2) = ⇡2/6  2. Furthermore, we have
k1 

3
2 and k2 

3
2 . Then if v0 � 1 (which we will enforce by the construction v0 = max(1, v)), we

compute

s log log (⌘v0) + log

✓
⇣(s)

↵ logs ⌘

◆
 2(log log ev0)+ + log

✓
2

↵

◆
.

32

Therefore, we can upper bound (using our bounds on k1, k2)

S↵(v
0) 

5

2

s

v0
✓
(log log ev0)+ + log

✓
2

↵

◆◆
+ 3c

✓
(log log ev0)+ + log

✓
2

↵

◆◆
.

Now, since the boundary is given by S↵(max(v, 1)) and v0 = max(v, 1) � 1 we deduce that

B↵(v) :=
5

2

s

max{v, 1}

✓
(log log ev)+ + log

✓
2

↵

◆◆
+ 3c

✓
(log log ev)+ + log

✓
2

↵

◆◆
.

is an any-time valid boundary.

Lemma 24 (Time-Uniform Two-sided Bernoulli). Let X1, . . . , Xs, . . . , Xt be a martingale sequence
of Bernoulli random variables with conditional mean �s. Then for all � > 0,

P

9t :

�����

tX

s=1

(Xs � �s)

����� �
5

2

p
t ((log log t)+ + log(4/�))

!
 �,

Proof of Lemma 24. By Proposition 23, we know that if St is sub-Gamma with variance process Vt

and scale parameter c, then
P (9t : St � B�(Vt))  �,

where

B�(v) :=
5

2

p
max{1, v} ((log log ev)+ + log(2/�)) + 3c ((log log ev)+ + log(2/�)) .

By Howard et al. [2020], we know that if (Xt)1t=1 is a Bernoulli sequence, then St =
Pt

s=1(Xs��s)
is sub-Gamma with variance process Vt = t and scale parameter c = 0 (hence, sub-Gaussian). This
implies,

P

9t :

tX

s=1

(Xs � �s) �
5

2

p
t ((log log t)+ + log(2/�))

!
 �,

The above arguments also holds for the sequence Zs = �Xs. Then taking a union bound and
adjusting � �/2 concludes the proof.

Lemma 25 (Time-Uniform Bernstein). Let (⇠i)1i=1 be a sequence of conditionally standard sub-
gaussian variables, where each ⇠i is Fi�1 = �(⇠1, . . . , ⇠i) measurable. Then, for vi 2 R and
� 2 (0, 1]

P

9t :

tX

i=1

(⇠2i � 1)vi �
5

2

r
max

n
1, 4kvtk

2
2

o
!�(kvtk2) + 12!�(kvtk2)max

i�1
vi

!
 �

where, vt = (v1, . . . , vt) 2 Rt and !�(v) :=
�
log log(4ev2)

�
+
+ log(2/�).

Proof of Lemma 25. From Lemma 4, St =
Pt

i=1(⇠
2
i � 1)vi is sub-Gamma with variance process

Vt = 4
Pt

i=1 v
2
i and c = 4maxi�1 vi. By Proposition 23, we know that if St is sub-Gamma with

variance process Vt and scale parameter c, then

P (9t : St � B�(Vt))  �,

where

B�(v) :=
5

2

p
max{1, v} ((log log ev)+ + log(2/�)) + 3c ((log log ev)+ + log(2/�)) .

Lemma 26 (Time-Uniform Azuma-Hoeffding). Let X1, . . . , Xn be a martingale difference sequence
such that |Xt|  B for all t > 1 almost surely. Then for all � > 0,

P

9t :

tX

s=1

Xs �
5B

2

p
t ((log log etB2)+ + log(2/�))

!
 �,

33

Proof of Lemma 26. By Proposition 23, we know that if St is sub-Gamma with variance process Vt

and scale parameter c, then
P (9t : St � B�(Vt))  �,

where

B�(v) :=
5

2

p
max{1, v} ((log log ev)+ + log(2/�)) + 3c ((log log ev)+ + log(2/�)) .

By [Howard et al., 2020], we know that if (Xt)1t=1 is B-bounded martingale difference sequence,
then St =

Pt
s=1 Xs is sub-Gamma with variance process Vt = tB2 and scale parameter c = 0. This

implies,

P
✓
9t : St �

5B

2

p
t ((log log etB2)+ + log(2/�))

◆
 �,

concluding the proof.

F Experiment Details

Figure 5: Examples of possible reward functions r(·) in our experiments.

F.1 Hyper-Parameter Tuning Results

We implement 6 algorithms in our experiments, ETC [Algorithm 4, Hao et al., 2020], ETS (Algo-
rithm 5), CORRAL [Algorithm 6, Agarwal et al., 2017], ALEXP (Algorithm 1), and Lastly UCB
(Algorithm 3) with the oracle feature map �j? (Oracle), and UCB with the concatenated feature map
� (Naive). The Python code is available on github.com/lasgroup/ALEXP. When algorithms require
exploration, e.g., in the case of ETC or ALEXP, we simply set ⇡ = Unif(X). Figure 7 shows the
results of our hyperparameter tuning experiment. To ensure that the curves are valid, we run each

Figure 6: Bench-marking ALEXP and other baselines. Complete version of Fig. 1 and Fig. 2.

34

https://github.com/lasgroup/ALEXP

Algorithm 2 GetPosterior

Inputs: Ht, �, �̃
Let Kt [�>(xi)�(xj)]i,jt, and Vt (Kt + �̃2I), and k(·) [�>(xi)�(·)]it

Calculate µt(·) kT (·)V �1
t yt

Calculate �t(·)
q
�>(·)�(·)� k>(·)V �1

t k(·)
Return: µt, �t

Algorithm 3 UCB

Inputs: �̃, �t, �
for t = 1, . . . , n do

Choose xt argmaxut�1(x) = µt�1(x) + �t�t�1(x). . Choose actions optimistically
Observe yt = r(xt) + "t. . Receive reward
Ht Ht�1 [{(xt, yt)} . Append history
Update µt,�t GetPosterior(Ht,�, �̃)

end for

configuration for 20 different random seeds, i.e. on different random environments. The shaded areas
in Figure 7 show the standard error.

UCB. For all the experiments, we set the exploration coefficient of UCB to �t = 23 and choose
the regression regularizer from �̃ 2 {0.01, 0.1, 0.5}. We use PYTORCH [Paszke et al., 2017] for
updating the upper confidence bounds, which requires more regularization for longer feature maps
(e.g. when s = 8, p = 2), to be computationally stable.

Lasso. Every time we need to solve Eq. (1), we set �t according to the rate suggested by Theorem 3.
To find a suitable constant scaling coefficient, we perform a hyper-parameter tuning experiment
sampling 20 values in [10�5, 100]. We choose �0 = 0.009, and scale �t with it across all experiments.

ALEXP. We set the rates for �t and ⌘t as prescribed by Theorem 1. For the scaling constants, we
perform a hyper-parameter tuning experiment log-uniformly sampling 20 different configurations
from �0 2 [10�4, 10�1] and ⌘0 2 [100, 102]. For each problem instance (i.e. as s and p change) we
repeat this process. However we observe that the optimal hyper-parameters work well across all
problem instances.

ETC/ETS. For these algorithms, we separately tune n0 for each problem instance. We set �1 /p
logM/n0 according to Theorem 4.2 of [Hao et al., 2020] and scale it with �0 = 0.009, as stated

before. We uniformly sample 10 different values where n0 2 [2, 80] since the horizon is n = 100.
The optimal value often happens around n0 = 20.

CORRAL. We set the rates of the parameters as � = O(1/n) and ⌘ = O(
p
M/n) according to

Agarwal et al. [2017, Theorem 5,]. Then similar to ALEXP, we tune the scaling constants. The
procedure for tuning the constants is identical to ALEXP, as in we use the same search interval, and
try 10 different configurations for � and ⌘.

3To achieve the
p
dT log T regret, one has to set �t = O(

p
d log T) as shown in Proposition 21.

35

Algorithm 4 ETC [Hao et al., 2020]
Inputs: n0, n, �1, ⇡
Let H0 = ;
for t = 1, . . . , n0 do

Draw xt ⇠ ⇡. . Explore.
Observe yt = r(xt) + "t. . Receive reward
Ht Ht�1 [{(xt, yt)} . Append history

end for
✓̂n0 L(✓, Hn0 ,�1) . Perform Lasso once
for t = n0 + 1, . . . , n do

Choose xt = argmax ✓̂>
n0
�(x) . Choose actions greedily

end for

Algorithm 5 ETS

Inputs: n0, n, �1, �̃, �t, ⇡
Let H0 = ;
for t = 1, . . . , n0 do

Draw xt ⇠ ⇡. . Explore
Observe yt = r(xt) + "t. . Receive reward
Ht Ht�1 [{(xt, yt)} . Append history

end for
✓̂n0 L(✓, Hn0 ,�1) . Perform Lasso once
Ĵ {j | ✓̂n0,j 6= 0, j 2 [M]} . Get sparsity pattern
�Ĵ(·) [�j(·)]j2Ĵ . Model-select acc. to Ĵ
for t = n0 + 1, . . . , n do

Choose xt = argmaxut�1(x) = µt�1(x) + �t�t�1(x) . Choose actions optimistically
Observe yt = r(xt) + "t
Ht Ht�1 [{(xt, yt)}
Update µt,�t GetPosterior(Ht,�Ĵ , �̃)

end for

Algorithm 6 CORRAL [Agarwal et al., 2017]
Inputs: n, �, ⌘
Initialize � = e1/ lnn, ⌘1,j = ⌘, ⇢1,j = 2M for all j = 1, . . . ,M
Set q1 = q̄1 = 1

M and initialize base agents (p1,1, . . . , p1,M).
for t = 1, . . . , n do

Choose jt ⇠ q̄t. . Sample Agent
Draw xt ⇠ pt,jt . . Play action according to agent jt
Observe yt = r(xt) + "t.
Calculate IW estimates r̂t,j = yt

q̄t,j
I{j = jt} for all j = 1, . . . ,M .

Send r̂t,j =
yt

q̄t,j
I{j = jt} to agents and get updated policies pt+1,j .

qt+1 = LOG-BARRIER-OMD(qt, r̂t,jtejt ,⌘t) . Update agent probabilities
q̄t+1 = (1� �)qt+1 + � 1

M . Mix with exploratory distribution
for j = 1, . . . ,M do . Update parameters

if 1
q̄t+1,j

> ⇢t,j then ⇢t+1,j
2

q̄t,j
, and ⌘t+1,j �⌘t,j

else ⇢t+1,j ⇢t,j and ⌘t+1,j ⌘t,j
end if

end for
end for

Algorithm 7 LOG-BARRIER-OMD
Inputs: qt, `t, ⌘t

Find ⇠ 2 [minj `t,j ,maxj `t,j] such that
PM

j=1

�
q�1
t,j + ⌘t,j(`t,j � ⇠)

��1
= 1

Return: qt+1 where q�1
t+1,j = q�1

t,j + ⌘t,j(`t,j � ⇠) for all j 2 [M]

36

Figure 7: Results for different hyper-parameters across different problem instances. ALEXP is robust
to the choice of hyper-paramters.

37

	Introduction
	Related Work
	Problem Setting
	Method
	Main Results
	Proof Sketch
	Discussion

	Experiments
	Conclusion
	Extended Literature Review
	Time Uniform Lasso Analysis
	Results on Exploration
	ALExp with Uniform Exploration
	Proof of Results on Exploration

	Proof of Regret Bound
	Proof of Model Selection Regret
	Proof of Virtual Regret

	Time-Uniform Concentration Inequalities
	Experiment Details
	Hyper-Parameter Tuning Results

