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Abstract1

Clinical decisions often require balancing con-2

flicting priorities rather than simply selecting3

a single “correct” answer. We present an4

evaluation framework that probes the value5

judgments embedded in large language mod-6

els (LLMs) by testing how they assess qual-7

ity of glycemic control from continuous glu-8

cose monitoring (CGM) data. Using synthetic9

type 1 diabetes profiles, we asked five commer-10

cial LLMs to perform pairwise comparisons of11

CGM summary statistics and derived a per-12

centile ranking for each profile. We then quan-13

tified alignment with two reference metrics:14

time in range (TIR) and the expert-derived15

Glycemia Risk Index (GRI), which was de-16

veloped with clinician input regarding prefer-17

ences across glycemic ranges. Across three in-18

sulin therapy modalities, newer models showed19

stronger correlation with GRI than older mod-20

els, suggesting a generational shift toward ex-21

pert consensus. However, a perturbation anal-22

∗ These authors contributed equally (alphabetical)

ysis revealed instances of disagreement around 23

the weighting of mild hypoglycemia and mild 24

hyperglycemia relative to the GRI. These re- 25

sults demonstrate that high average agreement 26

with clinical metrics can mask clinically mean- 27

ingful misalignments in how LLMs prioritize 28

risks. Our proposed framework reveals how 29

LLM outputs reflect competing priorities in 30

clinical contexts. 31

Keywords: large language models, diabetes, 32

explainable artificial intelligence 33

Data and Code Availability We simu- 34

lated patient data using the UVA/Padova 35

T1D FDA-accepted patient simulator (Man 36

et al., 2014). We have included code at 37

https://github.com/lizhealey/LLMGRI. 38

Institutional Review Board IRB approval was 39

not necessary since this study used synthetic data. 40

© 2025 P. Chandak, E. Healey, M.F. Villa-Tamayo, A.F. Scheideman, M.M. Shao, C. Fabris, K.D. Mandl, I. Kohane & D.C. Klonoff.



What do large language models value?

1. Introduction41

Diabetes care is ripe for the deployment of LLMs42

(Pavon et al. (2025)), with recent work investigat-43

ing their potential to assist in the summarization44

of glucose data (Cardei et al. (2025); Healey et al.45

(2025); Choi and Raj (2025)). Despite their poten-46

tial, LLMs have seen limited adoption in medical47

decision-making scenarios, especially those that de-48

mand the balancing of competing risks and interpre-49

tation, such as in diabetes management. While ran-50

domized controlled trials (RCTs) (The Diabetes Con-51

trol and Complications Trial Research Group, 1993;52

ADVANCE Collaborative Group et al., 2008) have53

demonstrated a clear benefit of intensive insulin ther-54

apy to achieve glycemic control to avoid long-term di-55

abetes complications, intensive insulin therapy comes56

with the risk of hypoglycemia, which has its own57

acute and long-term consequences (McCall, 2012).58

Thus, clinicians frequently make clinical judgments59

when adjusting insulin regimens to achieve targets for60

glycemic control and while guidelines exist (ElSayed61

et al., 2022), there are information gaps around pre-62

cise recommendations for glycemic targets.63

This uncertainty is not limited to diabetes, as64

many areas of clinical decision-making lack evidence65

(Frieden, 2017; Bothwell et al., 2016; Djulbegovic and66

Guyatt, 2019). Both surgeons and psychiatrists have67

argued that it is inappropriate, and sometimes impos-68

sible, to evaluate interventions with RCTs (Bonchek,69

1979; Ablon and Jones, 2002). Even interventions70

that are backed by RCTs require weighing bene-71

fits against potential harms. For example, intensive72

blood pressure lowering reduces the risk of mortal-73

ity and cardiovascular events but increases the risk74

of acute kidney injury (SPRINT Research Group75

et al., 2015). In high-stakes scenarios with competing76

medical risks, clinical decision making is a balancing77

act between evidence-based medicine and consensus-78

based practice that requires constant value judge-79

ments (Frieden, 2017; Bothwell et al., 2016; Djulbe-80

govic and Guyatt, 2019). As LLMs become increas-81

ingly integrated into clinical workflows, an important82

question arises: do these models understand and re-83

flect the reasoning and expert medical judgment of84

clinicians (Andrew Taylor, 2025)?85

In diabetes management, clinicians frequently86

make judgments when adjusting insulin regimens to87

achieve targets for glycemic control. Clinician sub-88

jectivity is especially pronounced in interpretation89

of glycemic control derived from CGM data, which90

gives comprehensive insight into past glycemic con- 91

trol. In making insulin dosing recommendations, 92

clinicians must weigh the chronic, long-term risks 93

of hyperglycemia against the acute, potentially life- 94

threatening dangers of hypoglycemia (ElSayed et al., 95

2022). A long-standing indicator of glycemic qual- 96

ity derived from CGM, the percentage of time that 97

glucose remains in range (TIR) (Dovc and Battelino, 98

2021) has been criticized for its insensitivity to these 99

critical tradeoffs (Rodbard, 2021). In real-world 100

practice, interpretation of glycemic control often dif- 101

fers significantly across clinicians (Nimri et al., 2018; 102

Spartano et al., 2025). This reflects differing priori- 103

ties, risk tolerances, and value frameworks. However, 104

it remains unknown how LLMs make qualitative as- 105

sessments about glycemic control. 106

Although substantial portions of medical practice 107

are consensus-based, there are few evaluation meth- 108

ods specifically assessing whether LLMs reflect judge- 109

ments of expert clinicians (Yu et al., 2024). Tra- 110

ditional benchmarks tend to focus on clinical deci- 111

sions that are grounded in evidence, prioritizing fac- 112

tual accuracy and guideline adherence. Evaluation 113

frameworks often struggle with navigating a spec- 114

trum of subjective tradeoffs because they assume 115

that “correctness” can always be objectively bench- 116

marked against an established gold standard (Raji 117

et al., 2025). However, in contexts where clinical 118

judgement requires weighing competing harms, like 119

diabetes management, this assumption breaks down, 120

and evaluating LLM alignment becomes more com- 121

plex. 122

The challenge of consensus-based practice is fur- 123

ther compounded by the difficulty of articulating clin- 124

ical value frameworks. When assessing glycemic con- 125

trol, clinicians consider multiple contextual factors, 126

including the time spent in hypo– and hyperglycemia 127

and the severity of these glycemic excursions. These 128

judgments are often tacit and situational, making 129

them hard to quantify or encode into traditional 130

evaluation pipelines. To fill the gap for a consen- 131

sus–based measure of glycemic control, the Glycemia 132

Risk Index (GRI) was recently introduced as a met- 133

ric grounded in endocrinologists’ rankings of CGM 134

profiles (Klonoff et al., 2023). The GRI assigns dif- 135

ferent weights to the contextual factors of time spent 136

in hypoglycemia and hyperglycemia. This weight- 137

ing approximates the implicit values that clinicians 138

bring to their assessments of glycemic control. This 139

risk score presents an opportunity for evaluating how 140

well LLMs are aligned with the subjective tradeoffs 141
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when assessing the quality of glycemic control from142

CGM data.143

In this work, we introduce a framework for eval-144

uating whether LLMs align with the implicit judge-145

ments of clinical experts. Using the concrete exam-146

ple of glycemic control in the setting of type 1 di-147

abetes (T1D), we investigate whether LLM prefer-148

ences align more closely with the heuristics of TIR,149

or the expert-derived metric, the GRI. We compare150

five frontier models from two commercial creators151

(GPT 3.5, GPT 4.1, o4-mini, Claude 3.7 Sonnet, and152

Claude 3 Haiku ) against both TIR and GRI bench-153

marks. Notably, GPT 3.5 and Claude 3.7 Sonnet154

were developed prior to the introduction of the GRI,155

while the other models were developed after, which156

we hypothesize may have an effect on how the LLMs157

synthesize nuances of time spent in hypoglycemia and158

time spent in hyperglycemia. Through a series of159

perturbation experiments, we find areas of disagree-160

ment between LLMs and expert-derived metrics, par-161

ticularly around weighting of mild hypoglycemia and162

mild hyperglycemia. Through our explainable ar-163

tificial intelligence (AI) approach, we highlight the164

need for evaluation methods that move beyond bi-165

nary correctness and toward alignment with clinical166

reasoning. By grounding LLM assessment in real-167

world clinical tradeoffs, our approach contributes to168

the broader goal of value-sensitive AI in medicine. As169

LLMs are increasingly tasked with supporting clini-170

cal decisions, ensuring that they reason in ways that171

are interpretable, trustworthy, and aligned with ex-172

pert judgment will be essential for their future de-173

ployment.174

2. Background175

2.1. Glycemic control176

When reviewing glycemic profiles, clinicians typically177

refer to an Ambulatory Glucose Profile report (AGP)178

(International Diabetes Center). This report presents179

14 days of CGM data. It consists of a 24-hour mean180

glucose profile (also called the AGP), daily profiles,181

and a section comprised of seven key metrics: mean182

glucose, represented both by an average glucose con-183

centration and another number proportional to the184

mean glucose called the Glucose Management Indi-185

cator (GMI); coefficient of variation; time in range186

(TIR) (70 mg/dL – 180 mg/dL); time below range187

1 (≥ 54 mg/dL, < 70 mg/dL); time below range 2188

(< 54 mg/dL); time above range 1 (> 180 mg/dL,189

≤ 250 mg/dL); and time above range 2 (> 250 190

mg/dL) (Battelino et al., 2019). 191

Of these metrics, TIR has long been viewed as a 192

useful single metric to assess control because of its 193

correlation to HbA1c and diabetes outcomes (Dovc 194

and Battelino, 2021; Aleppo, 2021) . However, inter- 195

national guidelines on interpretation note that TIR 196

should be interpreted in the context of time spent in 197

hypoglycemia and time spent in hyperglycemia (Bat- 198

telino et al., 2019). 199

2.2. The Glycemia Risk Index 200

The Glycemia Risk Index (GRI) (Klonoff et al., 2023) 201

was developed in 2023 to serve as a single compos- 202

ite metric for assessment of glycemic control. It was 203

created through the input of clinicians and was de- 204

signed to align with how clinicians assess glycemic 205

control, given the metrics found on the AGP report 206

and the 24-hour glucose profile. Instead of leveraging 207

the seven metrics on the AGP individually, the GRI 208

accounts for all seven metrics weighted according to 209

preferences of 330 experienced endocrinologists and 210

calculated from a formula that incorporates percent- 211

ages spent in the four glucose ranges outside of TIR. 212

The GRI, as presented in Equation 1, is a linear com- 213

bination of percentages with a GRI of 0 correspond- 214

ing to perfect control (100% TIR), and a higher score 215

indicating worse control, with the most significant 216

weight on severe hypoglycemia. Klonoff et al. found 217

that the GRI was more closely aligned to the clini- 218

cian percentile ranking of CGM profiles than other 219

commonly used metrics, such as TIR. 220

GRI =(3.0 × Severe Hypo) + (2.4 × Hypo)

+(1.6 × Severe Hyper) + (0.8 × Hyper) (1)

where Severe Hypo, Hypo, Hyper, and Severe Hy- 221

per correspond respectively to the percentage of time 222

spent in the ranges < 54 mg/dL, ≥ 54 and < 70 223

mg/dL, > 180 and ≤ 250 mg/dL, and > 250 mg/dL. 224

The development of this risk index has positive im- 225

plications for how glycemic control can be assessed, as 226

the availability of a single, quantitative metric for de- 227

scribing the quality of glycemic control can be useful 228

in assessing how glycemic control changes over time. 229

In our setting of distilling values embedded in the 230

LLMs, the GRI can be useful because it serves as a 231

proxy for how clinicians assess the quality of glycemic 232

control. Although the fit of GRI to the clinician- 233

ranked percentile of CGM traces was not perfect (ad- 234
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justed R2 = 0.904) (Klonoff et al., 2023), given the235

expected variability in clinician assessment, we use it236

as a quantifiable metric of glycemic control.237

3. Methods238

Data. We simulated patient data using the239

UVA/Padova T1D FDA-accepted patient simulator240

(Visentin et al., 2018). We chose to use simulated241

data for multiple reasons. The patient simulator had242

100 unique metabolic profiles of adult subjects, al-243

lowing us to work with a large cohort of complete244

CGM profiles. By using simulated CGM data, we245

were also able to generate a range of glycemic pro-246

files with different levels of control. Additionally, the247

synthetic data allowed us to leverage commercial lan-248

guage models without restrictions for patient privacy.249

The simulator supports multiple treatment modal-250

ities. We generated three separate datasets corre-251

sponding to the following insulin therapies:252

1. MDI: Multiple daily injections regimen simu-253

lated with a daily long-acting insulin basal dose254

and fast-acting insulin boluses provided at meal-255

times.256

2. CSII: Continuous subcutaneous insulin infusion257

(open-loop pump therapy) simulated using indi-258

vidualized therapy profiles.259

3. CLC: Closed-loop control therapy simulated us-260

ing the USS-Virginia algorithm, the academic261

version of a commercially available automated262

insulin delivery system (Control-IQ).263

See Appendix A for detailed descriptions of the264

dataset generation.265

Figure 1: Assessing LLM alignment to the GRI. Each
dataset had 4950 pairwise comparisons of every pro-
file. Each of the 100 profiles was given a rank based
on the number of other profiles the LLM decided that
it was better than. This percentile rank was then
compared to the GRI.

LLM Alignment with the GRI. The first set of 266

experiments was designed to compare the preferences 267

embedded in LLMs to a known clinical risk index, 268

the GRI. This was done by having the LLM perform 269

pairwise comparisons to generate a percentile ranking 270

of glycemic profiles. Figure 1 shows the overview of 271

the LLM-ranking experiments. Our evaluation used 272

five commercial LLMs from two companies (Table 2). 273

We used three OpenAI GPT series models (OpenAI 274

et al., 2023; Brown et al., 2020) and two Anthropic 275

Claude series models (Anthropic, 2025b). Figure 2 276

shows the prompt design. See Appendix B for addi- 277

tional details on the setup. 278

Figure 2: Prompt for a given pairwise comparison.

Perturbation Analysis. To examine how LLMs 279

balance hypoglycemia and hyperglycemia, we gener- 280

ated additional synthetic glycemic profiles with sys- 281

tematically varied time in different glycemic ranges. 282

Models were prompted to make pairwise compar- 283

isons of which profiles were “better,” benchmarked 284

against 100 individuals from the CSII dataset. Two 285

experiments were performed: (1) varying mild hy- 286

poglycemia vs. mild hyperglycemia, and (2) varying 287

severe hypoglycemia vs. severe hyperglycemia. An 288

overview is shown in Figure 7 and details are pro- 289

vided in Appendix C. 290

Regression analysis. We used the LLMs per- 291

centile ranks to perform a regression analysis on the 292

four variables used in the GRI formula: % Severe 293

Hypo, % Mild Hypo, % Mild Hyper, and % Severe 294

Hyper. For the perturbation analysis, we used the 295

ranking against the profiles in the CSII dataset 296

and the percentage time spent in hypoglycemia 297

and hyperglycemia. The mild hypoglycemia and 298

mild hyperglycemia perturbation analysis used only 299

the percent time spent in mild hypoglycemia and 300

mild hyperglycemia in the regression. The severe 301

hypoglycemia and severe hyperglycemia perturba- 302
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Figure 3: Overview of perturbation analysis exper-
iments. Synthetic metric profiles were generated
based on different compositions of time in hyper-
glycemia and hypoglycemia. Top: perturbations of
mild hypoglycemia and mild hyperglycemia with se-
vere metrics fixed at 0%. Bottom: perturbations of
severe hypoglycemia and severe hyperglycemia with
mild metrics fixed at 2% and 30%, respectively. Each
metric profile was compared to 100 individuals from
the CSII dataset.

tion analysis used only the percent time spent in303

severe hypoglycemia and severe hyperglycemia in304

the regression. See Appendix E for details.305

306

Robustness analysis. We conducted two addi-307

tional analyses to assess the stability of the LLM re-308

sponses. In the first analysis, we tested the effect of309

order reversal. We did this by swapping the order of310

every pairwise comparison for all of the LLM align-311

ment experiments and reporting the consistency be-312

tween the decisions and correlation of the percentile313

ranking with the GRI and TIR. In the second anal-314

ysis, we tested the consistency of each model for315

three repeated runs of identical prompts for the CSII316

dataset. These analyses are detailed in Appendix D.317

4. Results318

4.1. Correlation of LLM rankings with GRI319

In Figure 4, we show the results of the GRI alignment320

experiments for all three datasets. We show the scat-321

terplot of the rankings for each model below. For322

the CLC dataset, o4-mini had the highest correlation323

to the GRI at 0.99 (p < 0.001), notably higher than324

the correlation to TIR (−0.975, p < 0.001). The re-325

sults for o4-mini were similar for the MDI and CSII326

dataset, with o4-mini having the highest correlation327

to the GRI of all models.328

Figure 4: Scatterplots showing the relationship of the
percentile rank to the GRI (y-axis left) and to TIR (y-
axis right). The columns represent a distinct insulin
regime datasets. Plots are labelled with Spearman
correlation coefficients.

Of the Anthropic models, Claude 3.7 Sonnet gen- 329

erally had higher correlation to the GRI across the 330

three datasets than Claude 3 Haiku. Notably, Claude 331

3 Haiku generally had higher correlation with TIR 332

than the GRI. These results highlight a generational 333

shift in alignment: newer models (o4-mini, Claude 334

3.7 Sonnet) are closer to expert-derived indices like 335

the GRI, whereas older models (e.g., Claude 3 Haiku) 336

show stronger alignment to TIR. 337

4.2. Concordance 338

Figure 5 shows the concordance of pairwise rankings 339

of the 4950 decisions for each dataset. Here, agree- 340

ment with GRI indicates a model that selected the 341

profile that with the lower GRI, and agreement with 342

TIR indicates a model that selected the profile with 343

the higher TIR. The agreement between GRI and 344

TIR indicates instances where the profile with the 345

higher TIR had the lower GRI. The profile with the 346

higher TIR had a lower GRI 92% of the time for the 347

CLC dataset, 90% of the time for the MDI dataset, 348
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and 89% of the time for the CSII dataset. In all349

datasets, o4-mini had the highest agreement rate with350

the GRI at 96%, 95%, and 95% respectively. Both351

o4-mini and Claude 3.7 Sonnet had high agreement352

with TIR, but higher agreement with the GRI in all353

datasets. This pattern reinforces the closer alignment354

of newer models with expert-derived metrics such as355

the GRI, compared to older models that align more356

strongly with TIR.357

Figure 5: Concordance of models across 4950 deci-
sions in each dataset. GRI and TIR decisions indi-
cate instances where the metric was higher (TIR) or
lower (GRI).

4.3. Case Studies358

While all LLMs seem to be highly correlated with359

clinical metrics on average, we highlight a few in-360

stances where model preferences differed. In Figure 6,361

we show two examples of pairwise comparisons where362

at least one model disagreed with the GRI.363

Figure 6: Case studies illustrating disagreements be-
tween LLMs and the GRI. The seven CGM-derived
metrics are shown for each patient profile. The un-
derlined GRI indicates the lower GRI, and the check-
marks indicate the “better” profile as determined by
each LLM.

Case Study #1 compares a profile with a percent-364

age of time spent in hypoglycemia of 6.2% and a per-365

centage of TIR of 56.3% to a profile with no hypo-366

glycemia (0%) and a percentage of TIR of 50.8%.367

Claude 3.7 Sonnet and o4-mini preferred the profile 368

with higher TIR, despite the higher time in hypo- 369

glycemia, which had a higher GRI (59.9 vs. 47.7). 370

Case Study #2 compares Profile A, which has 371

higher time in range (TIR) but also a high percent- 372

age of time spent in hypoglycemia, to Profile B, which 373

has lower TIR but less hypoglycemia. Both Claude 374

3 Haiku and Claude 3.7 Sonnet preferred Profile A, 375

despite its substantially higher GRI (71.0 vs. 57.1). 376

While Profile A had a higher TIR than Profile B, it 377

had a higher percentage of time spent in severe hy- 378

poglycemia, hypoglycemia, and severe hyperglycemia 379

than Profile B. These examples highlight specific ar- 380

eas where LLM judgments differ from expectations, 381

raising questions about how models internally weigh 382

trade-offs between hypoglycemia and hyperglycemia. 383

4.4. Perturbation Analysis 384

Figure 7 shows the results from the perturbation 385

analysis, where we create patient profiles by trad- 386

ing off hyperglycemia with hypoglycemia and assess 387

which profiles were rated “better” than 100 patients. 388

The results from the four models are compared to 389

the references of TIR and GRI computed for each of 390

the profiles in the grid. In panel A, we show the re- 391

sults from perturbations of mild hypoglycemia and 392

mild hyperglycemia. Notably, the heatmaps show 393

that Claude 3.7 Sonnet and o4-mini were not as sen- 394

sitive to mild hypoglycemia as expected given the 395

corresponding GRI. For example, when ranking the 396

profile (0%, 0%) compared to the profile (0% mild 397

hypoglycemia, 9% mild hyperglycemia), Claude 3.7 398

Sonnet’s rank changes from 100 to 99, o4-mini’s rank 399

changes from 100 to 95, yet the GRI changes from 400

8 to 30. Visually, the contours of the heatmap also 401

reveal the sensitivity to both mild hypoglycemia and 402

mild hyperglycemia. We observe that the contours for 403

Claude 3.7 Sonnet, Claude 3 Haiku, and o4-mini all 404

resembled the contour of TIR, and not GRI. In other 405

words, the models appear to be equally sensitive to 406

mild hyperglycemia as to mild hypoglycemia, while 407

the GRI penalizes mild hypoglycemia more than mild 408

hyperglycemia. This reveals divergence between the 409

GRI and LLMs that was not evident from previous 410

analyses such as correlation and concordance. 411

On the other hand, this inconsistency with the GRI 412

was not as pronounced in perturbations of severe hy- 413

poglycemia and severe hyperglycemia. In Panel B, 414

Claude 3.7 Sonnet and o4-mini appeared to be more 415

sensitive to severe hypoglycemia than severe hyper- 416
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A

B

Figure 7: Perturbation analysis. (A) Mild hypo-
glycemia vs. mild hyperglycemia. (B) Severe hypo-
glycemia vs. severe hyperglycemia. For all models
and GRI, we show the total number of individuals
from the CSII dataset that the profile rated was “bet-
ter” than compared to the CGM profile in the cell.
TIR is provided as a reference.

glycemia, as indicated by the steeper descent in rank-417

ing along the x-axis than the y-axis, similar to the418

GRI. This trend was less obvious for Claude 3 Haiku,419

where the model’s sensitivity to hypoglycemia over420

hyperglycemia was not as clearly visualized.421

4.5. Regressing LLM Preference Weights422

4.5.1. Regression on dataset rankings423

In Figure 8, we show the results of the regression424

analysis where the dependent variable is the derived425

percentile rank, the covariates are % Severe Hypo,426

% Mild Hypo, % Mild Hyper, and % Severe Hyper,427

and observations include all 100 patients in a given 428

dataset. Rather than focusing on the absolute coeffi- 429

cient values, we focus on evaluating their ratios as a 430

measure of the relative importance. 431

In the GRI, the ratio of coefficients for mild hy- 432

perglycemia (0.8) and severe hyperglycemia (1.6) is 433

1:2, implying that each percentage of time spent in 434

severe hyperglycemia is considered twice as bad as 435

time spent in mild hyperglycemia. Across all three 436

datasets, the coefficients generally have higher values 437

for the time spent in severe hyperglycemia as com- 438

pared to time spent in mild hyperglycemia. In fact, 439

for all LLMs except for GPT 3.5, the coefficient ratio 440

is very close to 1:2 implying strong consistency with 441

the GRI. GPT 3.5 has a more 1:1 ratio, which is more 442

closely reflective of TIR tradeoffs. 443

Figure 8: Regression analysis of the four out-of-range
indices and the percentile ranking. * < .05; ** < .01;
*** < .001

We similarly examine the relative risk of mild hy- 444

poglycemia to mild hyperglycemia. The GRI weights 445

time spent in mild hypoglycemia three times as much 446

as time spent in mild hyperglycemia. While GPT 4.1 447

and o4-mini reflect greater sensitivity to mild hypo- 448

glycemia, other models do not. The confidence in- 449

tervals for the regression coefficients for time spent 450

in severe hypoglycemia were large. This was likely 451

due to the fact that there were many profiles in the 452

simulated datasets with no time spent in severe hy- 453

poglycemia. 454
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Figure 9: Regression analysis including perturbed
profile. A positive coefficient indicates contribution
to the perturbation score, where a higher score in-
dicates worse glycemic control. Panels correspond
to coefficients from perturbation analysis of (A) mild
hypoglycemia and mild hyperglycemia and (B) severe
hypoglycemia and severe hyperglycemia. The legend
indicates the model and regression linear fit. * < .05;
** < .01; *** < .001

4.5.2. Regression on datasets and perturbed455

profiles rankings456

In Figure 9, we show regression analysis where the457

perturbation score is regressed on the two variables458

that were perturbed while controlling for the remain-459

ing two variables that were held constant in the per-460

turbation analysis. Observations include the per-461

turbed profiles and their ranking against the 100 pro-462

files in the CSII dataset.463

In 9A, we show the coefficients trading-off between464

mild hypoglycemia and mild hyperglycemia. The465

GRI assigns thrice the weight to mild hypoglycemia466

as it does to mild hyperglycemia. However for all467

models except o4-mini, this ratio is less than one, in-468

dicating higher relative importance placed on mild469

hyperglycemia. In 9B, we show coefficients weighing470

severe hypoglycemia against severe hyperglycemia.471

The GRI considers severe hypoglycemia to be roughly472

twice the weight as severe hyperglycemia. While473

Claude 3.7 Sonnet and o4-mini assign the same rel-474

ative importance, GPT 3.5 and Claude 3 Haiku do475

not.476

4.6. Robustness Analysis477

Our robustness analysis revealed there was an effect478

from the order of the pairwise comparison, but overall479

alignment to the GRI and TIR remained similar for 480

most models. When evaluating the effect of rerunning 481

the same prompts multiple times, we found all models 482

were generally stable, with the exception of GPT 3.5. 483

The results from both of these analyses can be found 484

in Appendix D. 485

5. Discussion 486

We presented a novel evaluation framework designed 487

to reveal implicit value judgments within LLMs when 488

no gold standard answer exists. Our methodology 489

can be generalized to any consensus-based medical 490

decision to evaluate alignment with complex clinical 491

judgments. We focused on the setting of assessing 492

the quality of glycemic control from CGM data in dia- 493

betes. Using the GRI as a proxy for expert judgment, 494

we assessed how well commercial LLMs contextual- 495

ize multiple glycemic metrics. This was followed by 496

a perturbation analysis designed to reveal the LLMs’ 497

relative weighting of hypo- and hyperglycemia. 498

Our findings suggest a generational shift in value 499

alignment. Older models, GPT-3.5 and Claude 3 500

Haiku, were more closely aligned to TIR than to the 501

GRI. Newer models, such as o4-mini and Claude 3.7 502

Sonnet, are more closely aligned to the GRI. Since the 503

GRI was not introduced until 2023, it is possible that 504

the older generation of LLMs were not trained on lit- 505

erature that used this metric when assessing glycemic 506

control. Another plausible explanation is that newer 507

models like o4-mini leverage advanced reasoning that 508

enables superior clinical reasoning. Since commercial 509

LLMs are constantly undergoing reinforcement learn- 510

ing from human feedback, evolving model behavior is 511

expected and has been documented previously (Chen 512

et al., 2024). This variation raises questions about 513

the stability and transparency of LLM alignment over 514

time. The fact that newer models better reflect clin- 515

ical priorities could signal progress in clinical align- 516

ment. However, without transparency into propri- 517

etary alignment datasets, it is unclear whether these 518

changes reflect deliberate improvements. This lack of 519

transparency challenges the feasibility of long-term 520

clinical trust. 521

Although LLMs demonstrated high correlation and 522

concordance with expert-derived metrics, we iden- 523

tified specific instances of disagreement. To better 524

understand how models evaluate glycemic extremes, 525

we conducted a perturbation analysis, a form of ex- 526

plainable AI, involving over 100,000 LLM API calls. 527

Notably, GPT-3.5 generated unexpected and incon- 528

8
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sistent responses, in contrast to other LLMs, which529

appeared to provide more stable responses. While the530

GRI places significantly greater weight on mild hypo-531

glycemia than mild hyperglycemia, our perturbation532

analysis revealed that some LLMs tended to weigh533

mild hyperglycemia and mild hypoglycemia equally.534

These inconsistencies were less pronounced in trade-535

offs between severe hypoglycemia and severe hyper-536

glycemia, where models showed more sensitivity to537

time spent in severe hypoglycemia than severe hy-538

perglycemia, which was in line with the GRI. Given539

the acuity of hypoglycemia, this behavior deviates540

substantially from clinical consensus and raises con-541

cerns about the clinical judgment embedded in cur-542

rent LLMs.543

Our work has several limitations. First, the GRI is544

an approximation of clinician consensus. Although it545

correlates strongly with expert assessments, the GRI546

does not perfectly fit the aggregate clinician rankings547

it was derived from (Klonoff et al., 2023). Conse-548

quently, differences between LLM-rankings and the549

GRI may reflect limitations in the GRI itself rather550

than true misalignment of the models. Future work551

should include direct comparisons of LLMs with indi-552

vidual clinicians to better ground LLM evaluation in553

real-world practice. Second, our technical evaluation554

focused on commercial LLMs using a standardized,555

minimal prompt format. We did not explore open-556

source LLMs, sensitivity to prompt engineering, vari-557

ations in phrasing, or inclusion of contextual informa-558

tion (e.g., treatment regimen). Nor did we ask models559

to explain their reasoning, which might have altered560

the responses and given insight into internal model561

reasoning. Future work should explore how LLM562

judgements might shift under more tailored prompt-563

ing strategies. Third, we used simulated CGM data564

from synthetic data. This was done in order to en-565

able controlled, large-scale evaluations of commercial566

LLMs without the constraints of patient privacy. Al-567

though synthetic CGM data is widely used in dia-568

betes technology research (Cobelli and Kovatchev,569

2023), replication using real CGM data is needed,570

particularly for edge cases that may be underrepre-571

sented in simulation environments. Together, these572

limitations highlight the need for continued develop-573

ment of evaluation frameworks that incorporate real574

clinician input, richer clinical context, and real-world575

patient data.576

6. Conclusion 577

In conclusion, we demonstrated that even subtle in- 578

consistencies in the alignment of LLMs for clini- 579

cal decision-making can result in recommendations 580

that conflict with safety norms. This demonstrated 581

an important challenge in deploying AI systems 582

in medicine: models may be misaligned with the 583

consensus-based reasoning that clinicians rely on 584

when making clinical judgements. We show that it is 585

important to investigate not only the generated out- 586

put of LLMs, but also the underlying value systems 587

driving outputs. The framework we have presented 588

in our work can be extended to other applications 589

for the evaluation of clinical LLMs in settings where 590

there are subjective trade-offs. Looking forward, we 591

argue for the evolution of regulatory frameworks to 592

include value-informed, explainable AI, where evalu- 593

ations probe whether LLMs encode clinical priorities 594

consistent with real-world expert reasoning. 595
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Appendix A. Data927

We simulated the following three insulin modalities:928

1. MDI: Multiple daily injections regimen simu-929

lated with a daily long-acting insulin basal dose930

and fast-acting insulin boluses provided at meal-931

times.932

2. CSII: Continuous subcutaneous insulin infusion933

(open-loop pump therapy) simulated using indi-934

vidualized therapy profiles.935

3. CLC: Closed-loop control therapy simulated us-936

ing the USS-Virginia algorithm, the academic937

version of a commercially available automated938

insulin delivery system (Control-IQ).939

We simulated patient data using the UVA/Padova940

T1D FDA-accepted patient simulator (Visentin et al.,941

2018). For each dataset, we generated 14 consecu-942

tive days of CGM data for each of the 100 synthetic943

adults. Each day included three meals and three944

snacks. To simulate realistic conditions, both behav-945

ioral and metabolic variability were introduced. Meal946

timing varied within typical breakfast (7:00), lunch947

(13:00), and dinner (19:00) windows (±1.5 h), with948

snacks scheduled between meals (±30 min). Carbo-949

hydrate amounts for meals and snacks were sampled950

from ranges proportional to body weight. Additional951

behavioral variability included carbohydrate count-952

ing errors of up to 20% and random meal announce-953

ments delays ranging from -15 to +15 minutes. There954

was also induced intra-day and inter-day metabolic955

variability represented by fluctuations in insulin sen-956

sitivity related parameters. Descriptive statistics and957

distributions for each dataset are shown in Table 1958

and Figure 10, respectively.959

Table 1: Statistics of CGM data by dataset. Mean
and standard deviation are shown.

MDI CSII CLC

Number of Patients 100 100 100
Length of CGM data (days) 14 ± 0 14 ± 0 14 ± 0
GRI 43.95 ± 16.38 44.37 ± 16.75 31.86 ± 12.78
Mean (mg/dL) 165.51 ± 15.04 165.82 ± 16.81 154.12 ± 8.78
CV (%) 34.71 ± 8.24 36.65 ± 6.95 33.38 ± 7.31
TIR (%) 59.95 ± 11.24 61.17 ± 11.19 70.60 ± 8.84
VLow (%) 0.08 ± 0.19 0.09 ± 0.21 0.09 ± 0.20
Low (%) 2.46 ± 2.45 2.45 ± 1.94 1.97 ± 1.68
High (%) 27.76 ± 7.68 24.81 ± 6.56 21.10 ± 5.45
VHigh (%) 9.75 ± 7.65 11.48 ± 8.59 6.24 ± 5.48

Figure 10: GRI distributions by dataset.

Appendix B. Measuring LLM 960

Alignment with the 961

Glycemic Risk Index 962

We used three OpenAI GPT series models (OpenAI 963

et al., 2023; Brown et al., 2020) and two Anthropic 964

Claude series models (Anthropic, 2025b). Our evalu- 965

ation used five commercial LLMs from two companies 966

Table 2). 967

Table 2: Description of LLMs models evaluated.

Abbrev. Full Model Name Release Date Training Cutoff

sonnet3.7 claude-3-7-sonnet-20250219 2025-02-19 Nov 2024
haiku3 claude-3-haiku-20240307 2024-03-07 Aug 2023
gpt3.5-turbo gpt-3.5-turbo-0125 2023-01-25 Aug 2021
gpt4.1 gpt-4.1-2025-04-14 2025-04-14 May 2024
o4-mini o4-mini-2025-04-16 2025-04-16 May 2024

For each patient, seven metrics were extracted from 968

the CGM data. These metrics were then used for 969

pairwise comparisons to all other patients in the 970

dataset. The prompt used for the comparisons is 971

shown in Figure 2. Each dataset had 100 patients, 972

corresponding to 4950 total comparisons. The LLM 973

was prompted to identify which patient had better 974

glycemic control. Each patient was then assigned a 975

score based on the number of other patients the LLM 976

deemed them “better than”, yielding a score from 0 977

to 99. Rankings were then assembled by subtracting 978

this score from 100. 979

Appendix C. Perturbation Analysis 980

To better understand how the models place value 981

on hypoglycemia and hyperglycemia, we performed a 982

perturbation analysis. In these experiments, we per- 983

turbed the metrics by reallocating percentages from 984
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one metric to another and making pairwise compar-985

isons to see which profiles the models deemed “bet-986

ter.” We leveraged the same prompt structure from987

Figure 2, except we removed Mean and CV from988

the prompt and only included the time in glycemic989

ranges. We created artificial profiles across a range of990

hypoglycemia and hyperglycemia levels. The goal of991

the perturbation analysis was to elucidate the values992

embedded in the LLM for hypoglycemia and hyper-993

glycemia.994

We did this by prompting the LLM to perform pair-995

wise comparisons of metric profiles with perturba-996

tions on hypoglycemia and hyperglycemia. Figure 7997

shows an overview of the experimental setup. By998

asking the models to decide which profile was “bet-999

ter,” we aimed to reveal how the models weigh hy-1000

poglycemia and hyperglycemia when assessing qual-1001

ity of glycemic control. We used the 100 individu-1002

als from the CSII dataset to compare each profile to.1003

Each profile was assessed based on how many of the1004

100 individuals the model deemed it was better than.1005

We performed two perturbation experiments:1006

1. Mild hypoglycemia vs. mild hyper-1007

glycemia: Mild hypoglycemia was varied from1008

0% to 9% and mild hyperglycemia from 10%1009

to 29%, both in 1% increments. Severe hyper-1010

glycemia and severe hypoglycemia were held con-1011

stant at 0%. This resulted in 200 profiles, corre-1012

sponding to 20,000 API requests per model.1013

2. Severe hypoglycemia vs. severe hyper-1014

glycemia: Severe hypoglycemia was varied from1015

0% to 4% and severe hyperglycemia from 0%1016

to 4%, both in 0.5% increments. Mild hypo-1017

glycemia was held constant at 2% and mild hy-1018

perglycemia at 30%.1019

Due to the computational cost of each perturbation1020

experiment, we reduced the number of LLMs studied1021

by evaluating two older models (GPT-3.5 and Claude1022

3 Haiku) and two newer models (o4-mini and Claude1023

3.7 Sonnet).1024

Appendix D. Robustness Analysis1025

D.0.1. Methodology1026

Testing the effect of order reversal. To better1027

understand the effect of the order of the comparisons1028

in the prompts, we conducted an additional analysis1029

where we reran the alignment experiments with every1030

pairwise comparison appearing in the reversed order.1031

For example, if in the original experiments patient X 1032

was first in the prompt when patient X was compared 1033

to patient Y, the reversed prompt put patient Y first. 1034

Testing the stability of repeated runs. We fur- 1035

ther evaluated the stability of answers in repeated 1036

runs using the same prompts. In this analysis, we fo- 1037

cused on the CSII dataset and ran the original experi- 1038

ment three additional times. For the OpenAI models, 1039

these were ran three additional times in the reversed 1040

order. For the Anthropic models, these were ran three 1041

additional times in the non-reversed order. 1042

D.0.2. Results 1043

Results of order reversal 1044

In Table 3, we show the alignment of the models 1045

when each pairwise comparison is reversed. The con- 1046

cordance represents the overall agreement of each of 1047

the 4950 pairs between the original prompts and the 1048

prompts with the order reversed. 1049

Results of multiple iterations In Table 4, we 1050

show the results from three additional repeated runs 1051

for the CSII dataset. 1052

Appendix E. Statistical Analysis and 1053

Software 1054

Language models. OpenAI models were lever- 1055

aged using the v1/responses endpoint in batch mode 1056

(Version 1.84.0) (OpenAI, 2025). Claude models were 1057

leveraged using Anthropic’s Message Batch API (Ver- 1058

sion 0.55.0) (Anthropic, 2025a). 1059

Comparison to GRI. We computed the GRI for 1060

each patient. For each dataset, we measured the cor- 1061

relation of the LLM-ranked percentiles and the GRI 1062

using the Spearman correlation coefficient. We also 1063

measured the correlation with the other seven met- 1064

rics, including TIR. This analysis was conducted us- 1065

ing scipy (Version 1.13.0). 1066

Regression analysis. Regression analysis was 1067

conducted for each model using statsmodels (Ver- 1068

sion 0.14.2), allowing for a y-intercept, and plotting 1069

confidence intervals for each covariate. All analyses 1070

were performed in Python (Version 3.12.3). The re- 1071

gression for all analyses used the ranking as the out- 1072

put, where a higher rank corresponded to a worse 1073

profile. This was computed by counting the total 1074

number of profiles that the profile was seen as ”bet- 1075

ter” than and subtracting that number from 100. 1076
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Table 3: Results from order reversal. Table shows the
correlation of the LLM percentile rank with the GRI
and TIR for each model and dataset. The Reversed
column indicates whether the pairwise comparison
was reversed. The concordance represents the per-
cent agreement between the reversed results and the
non-reversed result for each model and dataset.

Dataset Model Reversed GRI corr TIR corr Concordance

MDI

haiku 3 No 0.93 -0.98
0.84

Yes 0.90 -0.97
sonnet 3.7 No 0.97 -0.98

0.94
Yes 0.97 -0.98

gpt 3.5-turbo No 0.79 -0.84
0.60

Yes 0.76 -0.81
gpt 4.1 No 0.98 -0.95

0.89
Yes 0.99 -0.95

o4-mini No 0.99 -0.97
0.95

Yes 0.99 -0.96

CSII

haiku 3 No 0.95 -0.96
0.84

Yes 0.93 -0.96
sonnet 3.7 No 0.98 -0.96

0.93
Yes 0.98 -0.96

gpt 3.5-turbo No 0.76 -0.75
0.56

Yes 0.72 -0.76
gpt 4.1 No 0.98 -0.93

0.88
Yes 0.99 -0.93

o4-mini No 0.99 -0.96
0.94

Yes 0.99 -0.96

CIQ

haiku 3 No 0.96 -0.97
0.84

Yes 0.93 -0.95
sonnet 3.7 No 0.98 -0.96

0.93
Yes 0.99 -0.97

gpt 3.5-turbo No 0.89 -0.90
0.67

Yes 0.83 -0.87
gpt 4.1 No 0.98 -0.94

0.89
Yes 0.99 -0.95

o4-mini No 0.99 -0.97
0.95

Yes 0.99 -0.98

Table 4: Results of multiple additional runs. The
results show the correlation of the LLM percentile
rankings to the GRI and TIR for each additional run.
All prompts were kept exactly the same for each ad-
ditional run.

Model Dataset run GRI
corr

TIR
corr

haiku 3 CSII 0 0.946 -0.962

haiku 3 CSII 1 0.945 -0.963

haiku 3 CSII 2 0.944 -0.963

sonnet 3.7 CSII 0 0.977 -0.959

sonnet 3.7 CSII 1 0.976 -0.961

sonnet 3.7 CSII 2 0.978 -0.96

gpt 3.5-turbo CSII 0 0.68 -0.73

gpt 3.5-turbo CSII 1 0.721 -0.763

gpt 3.5-turbo CSII 2 0.731 -0.759

gpt 4.1 CSII 0 0.986 -0.928

gpt 4.1 CSII 1 0.986 -0.929

gpt 4.1 CSII 2 0.986 -0.928

o4-mini CSII 0 0.99 -0.956

o4-mini CSII 1 0.989 -0.958

o4-mini CSII 2 0.989 -0.959
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