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Abstract ysis revealed instances of disagreement around
the weighting of mild hypoglycemia and mild
hyperglycemia relative to the GRI. These re-
sults demonstrate that high average agreement
with clinical metrics can mask clinically mean-
ingful misalignments in how LLMs prioritize
risks. Our proposed framework reveals how
LLM outputs reflect competing priorities in
clinical contexts.

Clinical decisions often require balancing con-
flicting priorities rather than simply selecting
a single “correct” answer. We present an
evaluation framework that probes the value
judgments embedded in large language mod-
els (LLMs) by testing how they assess qual-
ity of glycemic control from continuous glu-
cose monitoring (CGM) data. Using synthetic
type 1 diabetes profiles, we asked five commer-
cial LLMs to perform pairwise comparisons of
CGM summary statistics and derived a per-
centile ranking for each profile. We then quan-
tified alignment with two reference metrics:

Keywords: large language models, diabetes,
explainable artificial intelligence

time in range (TIR) and the expert-derived Data and Code Availability We simu-
Glycemia Risk Index (GRI), which was de- lated patient data using the UVA/Padova
veloped with clinician input regarding prefer- T1D FDA-accepted patient simulator (Man
ences across glycemic ranges. Across three in- et al., 2014). We have included code at
sulin therapy modalities, newer models showed https://github.com/lizhealey /LLMGRI.

stronger correlation with GRI than older mod-
els, suggesting a generational shift toward ex-
pert consensus. However, a perturbation anal-
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1. Introduction

Diabetes care is ripe for the deployment of LLMs
(Pavon et al. (2025)), with recent work investigat-
ing their potential to assist in the summarization
of glucose data (Cardei et al. (2025); Healey et al.
(2025); Choi and Raj (2025)). Despite their poten-
tial, LLMs have seen limited adoption in medical
decision-making scenarios, especially those that de-
mand the balancing of competing risks and interpre-
tation, such as in diabetes management. While ran-
domized controlled trials (RCTs) (The Diabetes Con-
trol and Complications Trial Research Group, 1993;
ADVANCE Collaborative Group et al., 2008) have
demonstrated a clear benefit of intensive insulin ther-
apy to achieve glycemic control to avoid long-term di-
abetes complications, intensive insulin therapy comes
with the risk of hypoglycemia, which has its own
acute and long-term consequences (McCall, 2012).
Thus, clinicians frequently make clinical judgments
when adjusting insulin regimens to achieve targets for
glycemic control and while guidelines exist (ElSayed
et al., 2022), there are information gaps around pre-
cise recommendations for glycemic targets.

This uncertainty is not limited to diabetes, as
many areas of clinical decision-making lack evidence
(Frieden, 2017; Bothwell et al., 2016; Djulbegovic and
Guyatt, 2019). Both surgeons and psychiatrists have
argued that it is inappropriate, and sometimes impos-
sible, to evaluate interventions with RCTs (Bonchek,
1979; Ablon and Jones, 2002). Even interventions
that are backed by RCTs require weighing bene-
fits against potential harms. For example, intensive
blood pressure lowering reduces the risk of mortal-
ity and cardiovascular events but increases the risk
of acute kidney injury (SPRINT Research Group
et al., 2015). In high-stakes scenarios with competing
medical risks, clinical decision making is a balancing
act between evidence-based medicine and consensus-
based practice that requires constant value judge-
ments (Frieden, 2017; Bothwell et al., 2016; Djulbe-
govic and Guyatt, 2019). As LLMs become increas-
ingly integrated into clinical workflows, an important
question arises: do these models understand and re-
flect the reasoning and expert medical judgment of
clinicians (Andrew Taylor, 2025)?

In diabetes management, clinicians frequently
make judgments when adjusting insulin regimens to
achieve targets for glycemic control. Clinician sub-
jectivity is especially pronounced in interpretation
of glycemic control derived from CGM data, which

gives comprehensive insight into past glycemic con-
trol. In making insulin dosing recommendations,
clinicians must weigh the chronic, long-term risks
of hyperglycemia against the acute, potentially life-
threatening dangers of hypoglycemia (ElSayed et al.,
2022). A long-standing indicator of glycemic qual-
ity derived from CGM, the percentage of time that
glucose remains in range (TIR) (Dovc and Battelino,
2021) has been criticized for its insensitivity to these
critical tradeoffs (Rodbard, 2021). In real-world
practice, interpretation of glycemic control often dif-
fers significantly across clinicians (Nimri et al., 2018;
Spartano et al., 2025). This reflects differing priori-
ties, risk tolerances, and value frameworks. However,
it remains unknown how LLMs make qualitative as-
sessments about glycemic control.

Although substantial portions of medical practice
are consensus-based, there are few evaluation meth-
ods specifically assessing whether LLMs reflect judge-
ments of expert clinicians (Yu et al., 2024). Tra-
ditional benchmarks tend to focus on clinical deci-
sions that are grounded in evidence, prioritizing fac-
tual accuracy and guideline adherence. Evaluation
frameworks often struggle with navigating a spec-
trum of subjective tradeoffs because they assume
that “correctness” can always be objectively bench-
marked against an established gold standard (Raji
et al., 2025). However, in contexts where clinical
judgement requires weighing competing harms, like
diabetes management, this assumption breaks down,
and evaluating LLM alignment becomes more com-
plex.

The challenge of consensus-based practice is fur-
ther compounded by the difficulty of articulating clin-
ical value frameworks. When assessing glycemic con-
trol, clinicians consider multiple contextual factors,
including the time spent in hypo— and hyperglycemia
and the severity of these glycemic excursions. These
judgments are often tacit and situational, making
them hard to quantify or encode into traditional
evaluation pipelines. To fill the gap for a consen-
sus—based measure of glycemic control, the Glycemia
Risk Index (GRI) was recently introduced as a met-
ric grounded in endocrinologists’ rankings of CGM
profiles (Klonoff et al., 2023). The GRI assigns dif-
ferent weights to the contextual factors of time spent
in hypoglycemia and hyperglycemia. This weight-
ing approximates the implicit values that clinicians
bring to their assessments of glycemic control. This
risk score presents an opportunity for evaluating how
well LLMs are aligned with the subjective tradeoffs
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when assessing the quality of glycemic control from
CGM data.

In this work, we introduce a framework for eval-
uating whether LLMs align with the implicit judge-
ments of clinical experts. Using the concrete exam-
ple of glycemic control in the setting of type 1 di-
abetes (T1D), we investigate whether LLM prefer-
ences align more closely with the heuristics of TIR,
or the expert-derived metric, the GRI. We compare
five frontier models from two commercial creators
(GPT 3.5, GPT 4.1, o4-mini, Claude 3.7 Sonnet, and
Claude 3 Haiku ) against both TIR and GRI bench-
marks. Notably, GPT 3.5 and Claude 3.7 Sonnet
were developed prior to the introduction of the GRI,
while the other models were developed after, which
we hypothesize may have an effect on how the LLMs
synthesize nuances of time spent in hypoglycemia and
time spent in hyperglycemia. Through a series of
perturbation experiments, we find areas of disagree-
ment between LLMs and expert-derived metrics, par-
ticularly around weighting of mild hypoglycemia and
mild hyperglycemia. Through our explainable ar-
tificial intelligence (AI) approach, we highlight the
need for evaluation methods that move beyond bi-
nary correctness and toward alignment with clinical
reasoning. By grounding LLM assessment in real-
world clinical tradeoffs, our approach contributes to
the broader goal of value-sensitive Al in medicine. As
LLMs are increasingly tasked with supporting clini-
cal decisions, ensuring that they reason in ways that
are interpretable, trustworthy, and aligned with ex-
pert judgment will be essential for their future de-
ployment.

2. Background

2.1. Glycemic control

When reviewing glycemic profiles, clinicians typically
refer to an Ambulatory Glucose Profile report (AGP)
(International Diabetes Center). This report presents
14 days of CGM data. It consists of a 24-hour mean
glucose profile (also called the AGP), daily profiles,
and a section comprised of seven key metrics: mean
glucose, represented both by an average glucose con-
centration and another number proportional to the
mean glucose called the Glucose Management Indi-
cator (GMI); coefficient of variation; time in range
(TIR) (70 mg/dL — 180 mg/dL); time below range
1 (> 54 mg/dL, < 70 mg/dL); time below range 2
(< 54 mg/dL); time above range 1 (> 180 mg/dL,

< 250 mg/dL); and time above range 2 (> 250
mg/dL) (Battelino et al., 2019).

Of these metrics, TIR has long been viewed as a
useful single metric to assess control because of its
correlation to HbAlc and diabetes outcomes (Dove
and Battelino, 2021; Aleppo, 2021) . However, inter-
national guidelines on interpretation note that TIR
should be interpreted in the context of time spent in
hypoglycemia and time spent in hyperglycemia (Bat-
telino et al., 2019).

2.2. The Glycemia Risk Index

The Glycemia Risk Index (GRI) (Klonoff et al., 2023)
was developed in 2023 to serve as a single compos-
ite metric for assessment of glycemic control. It was
created through the input of clinicians and was de-
signed to align with how clinicians assess glycemic
control, given the metrics found on the AGP report
and the 24-hour glucose profile. Instead of leveraging
the seven metrics on the AGP individually, the GRI
accounts for all seven metrics weighted according to
preferences of 330 experienced endocrinologists and
calculated from a formula that incorporates percent-
ages spent in the four glucose ranges outside of TIR.
The GRI, as presented in Equation 1, is a linear com-
bination of percentages with a GRI of 0 correspond-
ing to perfect control (100% TIR), and a higher score
indicating worse control, with the most significant
weight on severe hypoglycemia. Klonoff et al. found
that the GRI was more closely aligned to the clini-
cian percentile ranking of CGM profiles than other
commonly used metrics, such as TIR.

GRI =(3.0 x Severe Hypo) + (2.4 x Hypo)

+(1.6 x Severe Hyper) + (0.8 x Hyper) (1)
where Severe Hypo, Hypo, Hyper, and Severe Hy-
per correspond respectively to the percentage of time
spent in the ranges < 54 mg/dL, > 54 and < 70
mg/dL, > 180 and < 250 mg/dL, and > 250 mg/dL.

The development of this risk index has positive im-
plications for how glycemic control can be assessed, as
the availability of a single, quantitative metric for de-
scribing the quality of glycemic control can be useful
in assessing how glycemic control changes over time.
In our setting of distilling values embedded in the
LLMs, the GRI can be useful because it serves as a
proxy for how clinicians assess the quality of glycemic
control. Although the fit of GRI to the clinician-
ranked percentile of CGM traces was not perfect (ad-
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justed R? = 0.904) (Klonoff et al., 2023), given the
expected variability in clinician assessment, we use it
as a quantifiable metric of glycemic control.

3. Methods

Data. We simulated patient data using the
UVA /Padova T1D FDA-accepted patient simulator
(Visentin et al., 2018). We chose to use simulated
data for multiple reasons. The patient simulator had
100 unique metabolic profiles of adult subjects, al-
lowing us to work with a large cohort of complete
CGM profiles. By using simulated CGM data, we
were also able to generate a range of glycemic pro-
files with different levels of control. Additionally, the
synthetic data allowed us to leverage commercial lan-
guage models without restrictions for patient privacy.
The simulator supports multiple treatment modal-
ities. We generated three separate datasets corre-
sponding to the following insulin therapies:

1. MDI: Multiple daily injections regimen simu-
lated with a daily long-acting insulin basal dose
and fast-acting insulin boluses provided at meal-
times.

2. CSII: Continuous subcutaneous insulin infusion
(open-loop pump therapy) simulated using indi-
vidualized therapy profiles.

3. CLC: Closed-loop control therapy simulated us-
ing the USS-Virginia algorithm, the academic
version of a commercially available automated
insulin delivery system (Control-1Q).

See Appendix A for detailed descriptions of the
dataset generation.

TereeReRROOORY

— hﬁ Quality of Glycemic Control 100" ——p o
worst

Percentlc Rank

100 CGM Profiles 4950 Comparisons Percentile Rank Comparison to GRI

Figure 1: Assessing LLM alignment to the GRI. Each
dataset had 4950 pairwise comparisons of every pro-
file. Each of the 100 profiles was given a rank based
on the number of other profiles the LLM decided that
it was better than. This percentile rank was then
compared to the GRI.

LLM Alignment with the GRI. The first set of
experiments was designed to compare the preferences
embedded in LLMs to a known clinical risk index,
the GRI. This was done by having the LLM perform
pairwise comparisons to generate a percentile ranking
of glycemic profiles. Figure 1 shows the overview of
the LLM-ranking experiments. Our evaluation used
five commercial LLMs from two companies (Table 2).
We used three OpenAl GPT series models (OpenAl
et al., 2023; Brown et al., 2020) and two Anthropic
Claude series models (Anthropic, 2025b). Figure 2
shows the prompt design. See Appendix B for addi-
tional details on the setup.

Prompt

type 1
jabetes.

5 Is glucose less than 54
£ ma/dL, mild hypoglycemia is glucose between 54 mg/dL and 70 mg/dL, mild
£ hypergiycemia s glucose between 180 mg/dL and 250 mg/dL, and severe
S hyperglycemia s glucose above 250 mg/dL.

Raw CGM Data

1will show you data from two patients, Patient A and Patient B. Which patient
control?

Patient A: Mean 203.93 mg/dL, Time in
0.4%, Mild

range 40.23%, CV 49.47%, Severe
pogly 3
g 1801% Severe Hyperglycemia 35.07

& atient B: Mean 152.74 mg/dL, Time n range 70.04%, CV 33.01%, Severe
0.0% Mild

24.28%, Severe Hyperglycemia 4.51%.

be either °A" or B, additional

£
£ Your
2 text
&
H

LLM Pairwise Comparison

Figure 2: Prompt for a given pairwise comparison.

Perturbation Analysis. To examine how LLMs
balance hypoglycemia and hyperglycemia, we gener-
ated additional synthetic glycemic profiles with sys-
tematically varied time in different glycemic ranges.
Models were prompted to make pairwise compar-
isons of which profiles were “better,” benchmarked
against 100 individuals from the CSII dataset. Two
experiments were performed: (1) varying mild hy-
poglycemia vs. mild hyperglycemia, and (2) varying
severe hypoglycemia vs. severe hyperglycemia. An
overview is shown in Figure 7 and details are pro-
vided in Appendix C.

Regression analysis. We used the LLMs per-
centile ranks to perform a regression analysis on the
four variables used in the GRI formula: % Severe
Hypo, % Mild Hypo, % Mild Hyper, and % Severe
Hyper. For the perturbation analysis, we used the
ranking against the profiles in the CSII dataset
and the percentage time spent in hypoglycemia
and hyperglycemia. The mild hypoglycemia and
mild hyperglycemia perturbation analysis used only
the percent time spent in mild hypoglycemia and
mild hyperglycemia in the regression. The severe
hypoglycemia and severe hyperglycemia perturba-
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Mild Hypoglycemia vs Mild Hyperglycemia

Severe Hypoglycemia vs Severe Hyperglycemia

=ie

— I -
B

Examples

Generation of
Synthetic Metric
Profiles

100 Pairwise
Comparisons

Derived Rank

Perturbation Space

Figure 3: Overview of perturbation analysis exper-
iments. Synthetic metric profiles were generated
based on different compositions of time in hyper-
glycemia and hypoglycemia. Top: perturbations of
mild hypoglycemia and mild hyperglycemia with se-
vere metrics fixed at 0%. Bottom: perturbations of
severe hypoglycemia and severe hyperglycemia with
mild metrics fixed at 2% and 30%, respectively. Each
metric profile was compared to 100 individuals from
the CSII dataset.

tion analysis used only the percent time spent in
severe hypoglycemia and severe hyperglycemia in
the regression. See Appendix E for details.

Robustness analysis. We conducted two addi-
tional analyses to assess the stability of the LLM re-
sponses. In the first analysis, we tested the effect of
order reversal. We did this by swapping the order of
every pairwise comparison for all of the LLM align-
ment experiments and reporting the consistency be-
tween the decisions and correlation of the percentile
ranking with the GRI and TIR. In the second anal-
ysis, we tested the consistency of each model for
three repeated runs of identical prompts for the CSII
dataset. These analyses are detailed in Appendix D.

4. Results

4.1. Correlation of LLM rankings with GRI

In Figure 4, we show the results of the GRI alignment
experiments for all three datasets. We show the scat-
terplot of the rankings for each model below. For
the CLC dataset, o4-mini had the highest correlation
to the GRI at 0.99 (p < 0.001), notably higher than
the correlation to TIR (—0.975, p < 0.001). The re-
sults for o4-mini were similar for the MDI and CSII
dataset, with o4-mini having the highest correlation
to the GRI of all models.

MDI Dataset

CSlI Dataset CLC Dataset

GRI
r=0891
<0.001

GRI
r=0762
“p<0.001

TIR

TIR

TIR

r=-0975
p <0001

TIR

TIR

Percentile

Percentile

Figure 4: Scatterplots showing the relationship of the
percentile rank to the GRI (y-axis left) and to TIR (y-
axis right). The columns represent a distinct insulin
regime datasets. Plots are labelled with Spearman
correlation coefficients.

Of the Anthropic models, Claude 3.7 Sonnet gen-
erally had higher correlation to the GRI across the
three datasets than Claude 3 Haiku. Notably, Claude
3 Haiku generally had higher correlation with TIR
than the GRI. These results highlight a generational
shift in alignment: newer models (o4-mini, Claude
3.7 Sonnet) are closer to expert-derived indices like
the GRI, whereas older models (e.g., Claude 3 Haiku)
show stronger alignment to TIR.

4.2. Concordance

Figure 5 shows the concordance of pairwise rankings
of the 4950 decisions for each dataset. Here, agree-
ment with GRI indicates a model that selected the
profile that with the lower GRI, and agreement with
TIR indicates a model that selected the profile with
the higher TIR. The agreement between GRI and
TIR indicates instances where the profile with the
higher TIR had the lower GRI. The profile with the
higher TIR had a lower GRI 92% of the time for the
CLC dataset, 90% of the time for the MDI dataset,
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and 89% of the time for the CSII dataset. In all
datasets, o4-mini had the highest agreement rate with
the GRI at 96%, 95%, and 95% respectively. Both
o4-mini and Claude 3.7 Sonnet had high agreement
with TIR, but higher agreement with the GRI in all
datasets. This pattern reinforces the closer alignment
of newer models with expert-derived metrics such as
the GRI, compared to older models that align more
strongly with TIR.

MDI Dataset

GPT35Turbo
GPT4.1

04 Mini

Figure 5: Concordance of models across 4950 deci-
sions in each dataset. GRI and TIR decisions indi-
cate instances where the metric was higher (TIR) or
lower (GRI).

4.3. Case Studies

While all LLMs seem to be highly correlated with
clinical metrics on average, we highlight a few in-
stances where model preferences differed. In Figure 6,
we show two examples of pairwise comparisons where
at least one model disagreed with the GRI.

Case study #1 Case study #2

Patient A ] - Patient B Patient A . | Patient B
i i i
ean 1575 0v 492 I I """ e 1665 ovsas [ I  wemtszonsso
GRI 59.9 | 47.7 71.0 | 571
GPT3.5 v v
GPT4.1 v v
od-mini v v
Haiku 3 v v

Sonnet 3.7 v v

Figure 6: Case studies illustrating disagreements be-
tween LLMs and the GRI. The seven CGM-derived
metrics are shown for each patient profile. The un-
derlined GRI indicates the lower GRI, and the check-
marks indicate the “better” profile as determined by
each LLM.

Case Study #1 compares a profile with a percent-
age of time spent in hypoglycemia of 6.2% and a per-
centage of TIR of 56.3% to a profile with no hypo-
glycemia (0%) and a percentage of TIR of 50.8%.

Claude 3.7 Sonnet and o4-mini preferred the profile
with higher TIR, despite the higher time in hypo-
glycemia, which had a higher GRI (59.9 vs. 47.7).
Case Study #2 compares Profile A, which has
higher time in range (TIR) but also a high percent-
age of time spent in hypoglycemia, to Profile B, which
has lower TIR but less hypoglycemia. Both Claude
3 Haiku and Claude 3.7 Sonnet preferred Profile A,
despite its substantially higher GRI (71.0 vs. 57.1).
While Profile A had a higher TIR than Profile B, it
had a higher percentage of time spent in severe hy-
poglycemia, hypoglycemia, and severe hyperglycemia
than Profile B. These examples highlight specific ar-
eas where LLM judgments differ from expectations,
raising questions about how models internally weigh
trade-offs between hypoglycemia and hyperglycemia.

4.4. Perturbation Analysis

Figure 7 shows the results from the perturbation
analysis, where we create patient profiles by trad-
ing off hyperglycemia with hypoglycemia and assess
which profiles were rated “better” than 100 patients.
The results from the four models are compared to
the references of TIR and GRI computed for each of
the profiles in the grid. In panel A, we show the re-
sults from perturbations of mild hypoglycemia and
mild hyperglycemia. Notably, the heatmaps show
that Claude 3.7 Sonnet and o4-mini were not as sen-
sitive to mild hypoglycemia as expected given the
corresponding GRI. For example, when ranking the
profile (0%, 0%) compared to the profile (0% mild
hypoglycemia, 9% mild hyperglycemia), Claude 3.7
Sonnet’s rank changes from 100 to 99, o4-mini’s rank
changes from 100 to 95, yet the GRI changes from
8 to 30. Visually, the contours of the heatmap also
reveal the sensitivity to both mild hypoglycemia and
mild hyperglycemia. We observe that the contours for
Claude 3.7 Sonnet, Claude 3 Haiku, and o4-mini all
resembled the contour of TIR, and not GRI. In other
words, the models appear to be equally sensitive to
mild hyperglycemia as to mild hypoglycemia, while
the GRI penalizes mild hypoglycemia more than mild
hyperglycemia. This reveals divergence between the
GRI and LLMs that was not evident from previous
analyses such as correlation and concordance.

On the other hand, this inconsistency with the GRI
was not as pronounced in perturbations of severe hy-
poglycemia and severe hyperglycemia. In Panel B,
Claude 3.7 Sonnet and o4-mini appeared to be more
sensitive to severe hypoglycemia than severe hyper-
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% Mild Hyper
GRI
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% Mild Hyper
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012345678 01234567868
% Mild Hypo % Mild Hypo
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Haiku 3 Sonnet 3.7

TIR Reference

% Sovere Hypor
g hoentw
Percentile
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00 05 10
% Severe Hypo

30 35 40 00 05 10 30 35 40 00 05 10 15 20 25 30 35 40
% Severe Hypo % Severe Hypo

GPT 3.5 Turbo 04 Mini
2 2

Percentile
GRI

% Severe Hypo

% Severe Hypo

% Severe Hypo

Figure 7: Perturbation analysis. (A) Mild hypo-
glycemia vs. mild hyperglycemia. (B) Severe hypo-
glycemia vs. severe hyperglycemia. For all models
and GRI, we show the total number of individuals
from the CSII dataset that the profile rated was “bet-
ter” than compared to the CGM profile in the cell.
TIR is provided as a reference.

glycemia, as indicated by the steeper descent in rank-
ing along the x-axis than the y-axis, similar to the
GRI. This trend was less obvious for Claude 3 Haiku,
where the model’s sensitivity to hypoglycemia over
hyperglycemia was not as clearly visualized.

4.5. Regressing LLM Preference Weights
4.5.1. REGRESSION ON DATASET RANKINGS

In Figure 8, we show the results of the regression
analysis where the dependent variable is the derived
percentile rank, the covariates are % Severe Hypo,
% Mild Hypo, % Mild Hyper, and % Severe Hyper,

and observations include all 100 patients in a given
dataset. Rather than focusing on the absolute coeffi-
cient values, we focus on evaluating their ratios as a
measure of the relative importance.

In the GRI, the ratio of coefficients for mild hy-
perglycemia (0.8) and severe hyperglycemia (1.6) is
1:2, implying that each percentage of time spent in
severe hyperglycemia is considered twice as bad as
time spent in mild hyperglycemia. Across all three
datasets, the coeflicients generally have higher values
for the time spent in severe hyperglycemia as com-
pared to time spent in mild hyperglycemia. In fact,
for all LLMs except for GPT 3.5, the coefficient ratio
is very close to 1:2 implying strong consistency with
the GRI. GPT 3.5 has a more 1:1 ratio, which is more
closely reflective of TIR tradeoffs.

- GRI

= gpt_3.5-turbo (R* = 0.67)
gpt_4.1 (R* = 0.96)
od-mini (R? = 0.97)
haiku_3 (R? = 0.92)

= sonnel 3.7 (R"=097)

-5.0

- GRI
= gpt_35-turbo (R* = 0.61)

P41 (R*=0.93)
od-mini (R? = 0.95)
e haiku_3 (R? = 0.93)
= sonnet 3.7 (R* = 0.94)

-5.0

- GRI
= gpt_35-4urbo (R° = 0.82)
gpt_A.1 (R*=0.97)
od-min (R? = 0.98)
haiku_3 (R = 0.95)

= sonnet 37 (R =0.98)

Figure 8: Regression analysis of the four out-of-range
indices and the percentile ranking. * < .05; ** < .01;
ik <.001

We similarly examine the relative risk of mild hy-
poglycemia to mild hyperglycemia. The GRI weights
time spent in mild hypoglycemia three times as much
as time spent in mild hyperglycemia. While GPT 4.1
and o4-mini reflect greater sensitivity to mild hypo-
glycemia, other models do not. The confidence in-
tervals for the regression coefficients for time spent
in severe hypoglycemia were large. This was likely
due to the fact that there were many profiles in the
simulated datasets with no time spent in severe hy-
poglycemia.
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Figure 9: Regression analysis including perturbed
profile. A positive coefficient indicates contribution
to the perturbation score, where a higher score in-
dicates worse glycemic control. Panels correspond
to coefficients from perturbation analysis of (A) mild
hypoglycemia and mild hyperglycemia and (B) severe
hypoglycemia and severe hyperglycemia. The legend
indicates the model and regression linear fit. * < .05;
<01 R < .001

4.5.2. REGRESSION ON DATASETS AND PERTURBED
PROFILES RANKINGS

In Figure 9, we show regression analysis where the
perturbation score is regressed on the two variables
that were perturbed while controlling for the remain-
ing two variables that were held constant in the per-
turbation analysis. Observations include the per-
turbed profiles and their ranking against the 100 pro-
files in the CSII dataset.

In 9A, we show the coefficients trading-off between
mild hypoglycemia and mild hyperglycemia. The
GRI assigns thrice the weight to mild hypoglycemia
as it does to mild hyperglycemia. However for all
models except o4-mini, this ratio is less than one, in-
dicating higher relative importance placed on mild
hyperglycemia. In 9B, we show coefficients weighing
severe hypoglycemia against severe hyperglycemia.
The GRI considers severe hypoglycemia to be roughly
twice the weight as severe hyperglycemia. While
Claude 3.7 Sonnet and o4-mini assign the same rel-
ative importance, GPT 3.5 and Claude 3 Haiku do
not.

4.6. Robustness Analysis

Our robustness analysis revealed there was an effect
from the order of the pairwise comparison, but overall

alignment to the GRI and TIR remained similar for
most models. When evaluating the effect of rerunning
the same prompts multiple times, we found all models
were generally stable, with the exception of GPT 3.5.
The results from both of these analyses can be found
in Appendix D.

5. Discussion

We presented a novel evaluation framework designed
to reveal implicit value judgments within LLMs when
no gold standard answer exists. Our methodology
can be generalized to any consensus-based medical
decision to evaluate alignment with complex clinical
judgments. We focused on the setting of assessing
the quality of glycemic control from CGM data in dia-
betes. Using the GRI as a proxy for expert judgment,
we assessed how well commercial LLMs contextual-
ize multiple glycemic metrics. This was followed by
a perturbation analysis designed to reveal the LLMs’
relative weighting of hypo- and hyperglycemia.

Our findings suggest a generational shift in value
alignment. Older models, GPT-3.5 and Claude 3
Haiku, were more closely aligned to TIR than to the
GRI. Newer models, such as o4-mini and Claude 3.7
Sonnet, are more closely aligned to the GRI. Since the
GRI was not introduced until 2023, it is possible that
the older generation of LLMs were not trained on lit-
erature that used this metric when assessing glycemic
control. Another plausible explanation is that newer
models like o4-mini leverage advanced reasoning that
enables superior clinical reasoning. Since commercial
LLMs are constantly undergoing reinforcement learn-
ing from human feedback, evolving model behavior is
expected and has been documented previously (Chen
et al., 2024). This variation raises questions about
the stability and transparency of LLM alignment over
time. The fact that newer models better reflect clin-
ical priorities could signal progress in clinical align-
ment. However, without transparency into propri-
etary alignment datasets, it is unclear whether these
changes reflect deliberate improvements. This lack of
transparency challenges the feasibility of long-term
clinical trust.

Although LLMs demonstrated high correlation and
concordance with expert-derived metrics, we iden-
tified specific instances of disagreement. To better
understand how models evaluate glycemic extremes,
we conducted a perturbation analysis, a form of ex-
plainable Al, involving over 100,000 LLM APT calls.
Notably, GPT-3.5 generated unexpected and incon-
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sistent responses, in contrast to other LLMs, which
appeared to provide more stable responses. While the
GRI places significantly greater weight on mild hypo-
glycemia than mild hyperglycemia, our perturbation
analysis revealed that some LLMs tended to weigh
mild hyperglycemia and mild hypoglycemia equally.
These inconsistencies were less pronounced in trade-
offs between severe hypoglycemia and severe hyper-
glycemia, where models showed more sensitivity to
time spent in severe hypoglycemia than severe hy-
perglycemia, which was in line with the GRI. Given
the acuity of hypoglycemia, this behavior deviates
substantially from clinical consensus and raises con-
cerns about the clinical judgment embedded in cur-
rent LLMs.

Our work has several limitations. First, the GRI is
an approximation of clinician consensus. Although it
correlates strongly with expert assessments, the GRI
does not perfectly fit the aggregate clinician rankings
it was derived from (Klonoff et al., 2023). Conse-
quently, differences between LLM-rankings and the
GRI may reflect limitations in the GRI itself rather
than true misalignment of the models. Future work
should include direct comparisons of LLMs with indi-
vidual clinicians to better ground LLM evaluation in
real-world practice. Second, our technical evaluation
focused on commercial LLMs using a standardized,
minimal prompt format. We did not explore open-
source LLMs, sensitivity to prompt engineering, vari-
ations in phrasing, or inclusion of contextual informa-
tion (e.g., treatment regimen). Nor did we ask models
to explain their reasoning, which might have altered
the responses and given insight into internal model
reasoning. Future work should explore how LLM
judgements might shift under more tailored prompt-
ing strategies. Third, we used simulated CGM data
from synthetic data. This was done in order to en-
able controlled, large-scale evaluations of commercial
LLMs without the constraints of patient privacy. Al-
though synthetic CGM data is widely used in dia-
betes technology research (Cobelli and Kovatchev,
2023), replication using real CGM data is needed,
particularly for edge cases that may be underrepre-
sented in simulation environments. Together, these
limitations highlight the need for continued develop-
ment of evaluation frameworks that incorporate real
clinician input, richer clinical context, and real-world
patient data.

6. Conclusion

In conclusion, we demonstrated that even subtle in-
consistencies in the alignment of LLMs for clini-
cal decision-making can result in recommendations
that conflict with safety norms. This demonstrated
an important challenge in deploying AI systems
in medicine: models may be misaligned with the
consensus-based reasoning that clinicians rely on
when making clinical judgements. We show that it is
important to investigate not only the generated out-
put of LLMs, but also the underlying value systems
driving outputs. The framework we have presented
in our work can be extended to other applications
for the evaluation of clinical LLMs in settings where
there are subjective trade-offs. Looking forward, we
argue for the evolution of regulatory frameworks to
include value-informed, explainable Al, where evalu-
ations probe whether LLMs encode clinical priorities
consistent with real-world expert reasoning.
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Appendix A. Data

We simulated the following three insulin modalities:

1. MDI: Multiple daily injections regimen simu-
lated with a daily long-acting insulin basal dose
and fast-acting insulin boluses provided at meal-
times.

2. CSII: Continuous subcutaneous insulin infusion
(open-loop pump therapy) simulated using indi-
vidualized therapy profiles.

3. CLC: Closed-loop control therapy simulated us-
ing the USS-Virginia algorithm, the academic
version of a commercially available automated
insulin delivery system (Control-1Q).

We simulated patient data using the UVA /Padova
T1D FDA-accepted patient simulator (Visentin et al.,
2018). For each dataset, we generated 14 consecu-
tive days of CGM data for each of the 100 synthetic
adults. Each day included three meals and three
snacks. To simulate realistic conditions, both behav-
ioral and metabolic variability were introduced. Meal
timing varied within typical breakfast (7:00), lunch
(13:00), and dinner (19:00) windows (£1.5 h), with
snacks scheduled between meals (30 min). Carbo-
hydrate amounts for meals and snacks were sampled
from ranges proportional to body weight. Additional
behavioral variability included carbohydrate count-
ing errors of up to 20% and random meal announce-
ments delays ranging from -15 to +15 minutes. There
was also induced intra-day and inter-day metabolic
variability represented by fluctuations in insulin sen-
sitivity related parameters. Descriptive statistics and
distributions for each dataset are shown in Table 1
and Figure 10, respectively.

Table 1: Statistics of CGM data by dataset. Mean
and standard deviation are shown.

MDI CSII CLC
Number of Patients 100 100 100
Length of CGM data (days) 1440 14+0 14+0
GRI 43.95 £ 16.38  44.37 £ 16.75  31.86 £ 12.78
Mean (mg/dL) 165.51 + 15.04 165.82 + 16.81 154.12 + 8.78
CV (%) 34.71 + 8.24 36.65 + 6.95 33.38 + 7.31
TIR (%) 59.95 + 11.24  61.17 +£ 11.19  70.60 + 8.84
VLow (%) 0.08 + 0.19 0.09 £+ 0.21 0.09 £ 0.20
Low (%) 2.46 + 2.45 2.45 £ 1.94 1.97 £+ 1.68
High (%) 2776 + 7.68  24.81 + 656  21.10 + 5.45
VHigh (%) 9.75 £ 7.65 11.48 £ 8.59 6.24 £ 5.48
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Figure 10: GRI distributions by dataset.

Appendix B. Measuring LLM
Alignment with the
Glycemic Risk Index

We used three OpenAl GPT series models (OpenAl
et al., 2023; Brown et al., 2020) and two Anthropic
Claude series models (Anthropic, 2025b). Our evalu-

ation used five commercial LLMs from two companies
Table 2).

Table 2: Description of LLMs models evaluated.

Abbrev. Full Model Name Release Date  Training Cutoff
sonnet3.7 claude-3-7-sonnet-20250219  2025-02-19 Nov 2024
haiku3 claude-3-haiku-20240307 2024-03-07 Aug 2023
gpt3.5-turbo  gpt-3.5-turbo-0125 2023-01-25 Aug 2021
gptd.1 gpt-4.1-2025-04-14 2025-04-14 May 2024
o4-mini 04-mini-2025-04-16 2025-04-16 May 2024

For each patient, seven metrics were extracted from
the CGM data. These metrics were then used for
pairwise comparisons to all other patients in the
dataset. The prompt used for the comparisons is
shown in Figure 2. Each dataset had 100 patients,
corresponding to 4950 total comparisons. The LLM
was prompted to identify which patient had better
glycemic control. Each patient was then assigned a
score based on the number of other patients the LLM
deemed them “better than”, yielding a score from 0
to 99. Rankings were then assembled by subtracting
this score from 100.

Appendix C. Perturbation Analysis

To better understand how the models place value
on hypoglycemia and hyperglycemia, we performed a
perturbation analysis. In these experiments, we per-
turbed the metrics by reallocating percentages from
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one metric to another and making pairwise compar-
isons to see which profiles the models deemed “bet-
ter.” We leveraged the same prompt structure from
Figure 2, except we removed Mean and CV from
the prompt and only included the time in glycemic
ranges. We created artificial profiles across a range of
hypoglycemia and hyperglycemia levels. The goal of
the perturbation analysis was to elucidate the values
embedded in the LLM for hypoglycemia and hyper-
glycemia.

We did this by prompting the LLM to perform pair-
wise comparisons of metric profiles with perturba-
tions on hypoglycemia and hyperglycemia. Figure 7
shows an overview of the experimental setup. By
asking the models to decide which profile was “bet-
ter,” we aimed to reveal how the models weigh hy-
poglycemia and hyperglycemia when assessing qual-
ity of glycemic control. We used the 100 individu-
als from the CSII dataset to compare each profile to.
Each profile was assessed based on how many of the
100 individuals the model deemed it was better than.

We performed two perturbation experiments:

1. Mild hypoglycemia vs. mild hyper-
glycemia: Mild hypoglycemia was varied from
0% to 9% and mild hyperglycemia from 10%
to 29%, both in 1% increments. Severe hyper-
glycemia and severe hypoglycemia were held con-
stant at 0%. This resulted in 200 profiles, corre-
sponding to 20,000 API requests per model.

2. Severe hypoglycemia vs. severe hyper-
glycemia: Severe hypoglycemia was varied from
0% to 4% and severe hyperglycemia from 0%
to 4%, both in 0.5% increments. Mild hypo-
glycemia was held constant at 2% and mild hy-
perglycemia at 30%.

Due to the computational cost of each perturbation
experiment, we reduced the number of LLMs studied
by evaluating two older models (GPT-3.5 and Claude
3 Haiku) and two newer models (04-mini and Claude
3.7 Sonnet).

Appendix D. Robustness Analysis
D.0.1. METHODOLOGY

Testing the effect of order reversal. To better
understand the effect of the order of the comparisons
in the prompts, we conducted an additional analysis
where we reran the alignment experiments with every
pairwise comparison appearing in the reversed order.
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For example, if in the original experiments patient X
was first in the prompt when patient X was compared
to patient Y, the reversed prompt put patient Y first.
Testing the stability of repeated runs. We fur-
ther evaluated the stability of answers in repeated
runs using the same prompts. In this analysis, we fo-
cused on the CSII dataset and ran the original experi-
ment three additional times. For the OpenAl models,
these were ran three additional times in the reversed
order. For the Anthropic models, these were ran three
additional times in the non-reversed order.

D.0.2. RESULTS

Results of order reversal

In Table 3, we show the alignment of the models
when each pairwise comparison is reversed. The con-
cordance represents the overall agreement of each of
the 4950 pairs between the original prompts and the
prompts with the order reversed.

Results of multiple iterations In Table 4, we
show the results from three additional repeated runs
for the CSII dataset.

Appendix E. Statistical Analysis and
Software

Language models. OpenAl models were lever-
aged using the v1/responses endpoint in batch mode
(Version 1.84.0) (OpenAl, 2025). Claude models were
leveraged using Anthropic’s Message Batch APT (Ver-
sion 0.55.0) (Anthropic, 2025a).

Comparison to GRI. We computed the GRI for
each patient. For each dataset, we measured the cor-
relation of the LLM-ranked percentiles and the GRI
using the Spearman correlation coefficient. We also
measured the correlation with the other seven met-
rics, including TTR. This analysis was conducted us-
ing scipy (Version 1.13.0).

Regression analysis. Regression analysis was
conducted for each model using statsmodels (Ver-
sion 0.14.2), allowing for a y-intercept, and plotting
confidence intervals for each covariate. All analyses
were performed in Python (Version 3.12.3). The re-
gression for all analyses used the ranking as the out-
put, where a higher rank corresponded to a worse
profile. This was computed by counting the total
number of profiles that the profile was seen as ”bet-
ter” than and subtracting that number from 100.
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Table 3: Results from order reversal. Table shows the
correlation of the LLM percentile rank with the GRI
and TIR for each model and dataset. The Reversed
column indicates whether the pairwise comparison
was reversed. The concordance represents the per-
cent agreement between the reversed results and the
non-reversed result for each model and dataset.

Dataset Model Reversed GRI corr  TIR corr  Concordance
W3 N tm otk gy
sonnet_3.7 No 0.97 -0.98 0.94

Yes 0.97 -0.98
5= N ¢ -

Mpr  8Pt-3o-turbo $e°s 8:;2 _8:2‘11 0.60
war N g,
=

. . - K

A
. N . 006

sonnet_3.7 IY\PZ 89); 7((;9)2 0.93

. = T Py

csip 8pt3oturbo 3; 8:;3 _8:;‘6’ 0.56
- -
o am
Wy e am oo

. 7 9 20.96
i

qg e Nowmoo0m g
war N ma
A-mini N[ o]¢ -0.6
N

Table 4: Results of multiple additional runs. The
results show the correlation of the LLM percentile
rankings to the GRI and TIR for each additional run.
All prompts were kept exactly the same for each ad-
ditional run.

Model Dataset | run | GRI TIR
corr corr

haiku_3 CSII 0 0.946 -0.962
haiku_3 CSII 1 0.945 -0.963
haiku_3 CSII 2 0.944 -0.963
sonnet_3.7 CSII 0 0.977 -0.959
sonnet_3.7 CSII 1 0.976 -0.961
sonnet_3.7 CSII 2 0.978 -0.96

gpt_3.5-turbo | CSII 0 0.68 -0.73

gpt_3.5-turbo | CSII 1 0.721 -0.763
gpt-3.5-turbo | CSII 2 0.731 -0.759
gpt_4.1 CSII 0 0.986 -0.928
gpt_4.1 CSII 1 0.986 | -0.929
gpt_4.1 CSII 2 0.986 -0.928
04-mini CSII 0 0.99 -0.956
o4-mini CSII 1 0.989 -0.958
04-mini CSII 2 0.989 -0.959
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