
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

(a) List of all databases and columns. (b) Databases and columns accessible by ‘physician’.

(c) Databases and columns accessible by ‘nursing’.
empty space

(d) Databases and columns accessible by ‘general ad-
ministration’.

Figure 6: Databases and columns accessible to the three roles defined for EICU-AC, and the complete
list of databases and columns for reference. Accessible columns and inaccessible columns for each
role are marked in green while inaccessible ones are shaded.

SOCIAL IMPACTS

We propose GuardAgent with potentially positive social impacts. GuardAgent is the first LLM
agent framework that safeguards other LLM agents. GuardAgent directly addresses the safety
and trustworthiness concerns of LLM agents and will potentially inspire more advanced guardrail
approaches for LLM agents.

A DETAILS ABOUT THE EICU-AC BENCHMARK

A.1 ROLE-BASED ACCESS PERMISSION

For the EICU-AC benchmark, we consider three roles: ‘physician’, ‘nursing’, and ‘general admin-
istration’. These roles are selected based on our understanding of the ICU environment. Although
various other roles exist, we focus on these three roles due to their prevalence, ensuring sufficient
queries relevant to each role when creating the benchmark.

For each role, we select a subset of accessible databases and columns from the EICU benchmark, as
shown in Fig. 6. Our selection rule is to query ChatGPT about the access permission for the three roles
over each database and then verify the suggested access permission by human experts2 For example,
for the ‘diagnosis’ database with four columns, ‘patientunitstayid’, ‘icd9code’, ‘diagnosisname’, and
‘diagnosistime’, we query ChatGPT using the prompt shown in Fig. 7. ChatGPT responds with the
recommended access permission (‘full access’, ‘limited access’, or ‘no access’) for each role to each
of the four columns. Here, we follow all ‘full access’ and ‘no access’ recommendations by ChatGPT.
For ‘limited access’, we set it to ‘no access’ if it is recommended for ‘physician’ or ‘nursing’; if it is

2Our human experts are from the Nationwide Children’s Hospital, Ohio, USA and Peking University Third
Hospital, Beijing, China.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 7: Our prompt to ChatGPT for the access permission for the three roles to the ‘diagnosis’
database (with four columns, ‘patientunitstayid’, ‘icd9code’, ‘diagnosisname’, and ‘diagnosistime’),
and the responses of ChatGPT.

recommended for ‘general administration’, we set it to ‘full access’. This is to ensure both ‘physician’
and ‘nursing’ roles have sufficient inaccessible databases so that there will be sufficient queries that
should be denied in the ground truth (to achieve relatively balanced labeling for both roles).

A.2 SAMPLING FROM EICU

As mentioned in the main paper, each example in EICU-AC contains 1) a healthcare-related question
and the correct answer, 2) the databases and the columns required to answer the question, 3) a user
identity, 4) a binary label (either ‘0’ for ‘access granted’ and ‘1’ for ‘access denied’), and 5) databases
and the columns required to answer the question but not accessible for the given role (if there are
any). The examples in EICU-AC are created by sampling from the original EICU dataset following
the steps below. First, from the 580 test examples in EICU, we obtain 183 examples that are correctly
responded to by EHRAgent with GPT-4 at temperature zero. For each of these examples, we manually
check the code generated by EHRAgent to obtain the databases and columns required to answer the
question. Second, we assign the three roles to each example, which gives 549 examples in total. We
label these examples by checking if any of the required databases or columns are inaccessible to the
given role (i.e., by comparing with the access permission for each role in Fig. 6). This will lead to
a highly imbalanced dataset with 136, 110, and 48 examples labeled ‘0’ for ‘physician’, ‘nursing’,
and ‘general administration’, respectively, and 47, 73, and 135 examples labeled ‘1’ for ‘physician’,
‘nursing’, and ‘general administration’, respectively. In the third step, we remove some of the 549
created examples to a) achieve a better balance between the labels and b) reduce the duplication of
questions among these examples. We notice that for ‘general administration’, there are many more
examples labeled ‘1’ than ‘0’, while for the other two roles, there are many more examples labeled
‘0’ than ‘1’. Thus, for each example with ‘general administration’ and label ‘1’, we remove it if
any of the two examples with the same question for the other two roles are labeled ‘1’. Then, for
each example with ‘nursing’ and label ‘1’, we remove it if any example with the same question for
‘physician’ is labeled ‘1’. Similarly, we remove each example with ‘physician’ and label ‘0’ if any
of the two examples with the same question for the other two roles are also labeled ‘0’. Then for
each example with ‘nursing’ and label ‘0’, we remove it if any example with the same question for
‘general administration’ is labeled ‘0’. After this step, we have 41, 78, and 48 examples labeled ‘0’ for
‘physician’, ‘nursing’, and ‘general administration’, respectively, and 47, 41, and 62 examples labeled
‘1’ for ‘physician’, ‘nursing’, and ‘general administration’, respectively. Finally, we randomly remove
some examples for ‘nursing’ with label ‘0’ and ‘general administration’ with label ‘1’, and randomly
add some examples for the other four categories (‘physician’ with label ‘0’, ‘general administration’
with label ‘0’, ‘physician’ with label ‘1’, and ‘nursing’ with label ‘1’) to achieve a better balance.
The added examples are generated based on the questions from the training set3 of the original EICU

3In the original EICU dataset, both the training set and the test set do not contain the ground truth answer for
each question. The ground truth answers in the test set of EICU are provided by Shi et al. Shi et al. (2024).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 4: Number of examples in EICU-AC for each role and each label.

physician nursing general administration
label ‘0’ (access denied) 52 57 45
label ‘1’ (access granted) 46 55 61

Table 5: Number of examples labeled ‘1’ in Mind2Web-SC for each rule violation. Note that examples
labeled ‘0’ do not violate any rules.

Safety rules No. examples
Rule 1: User must be a member to shop. 19

Rule 2: Unvaccinated user cannot book a flight 12
Rule 3: User without a driver’s license cannot buy or rent a car. 24

Rule 4: User aged under 18 cannot book a hotel. 18
Rule 5: User must be in certain countries to search movies/musics/video. 21

Rule 6: User under 15 cannot apply for jobs. 6

benchmark. The ultimate number of examples in our created EICU-AC benchmark is 316, with the
distribution of examples across the three roles and two labels displayed in Tab 4.

A.3 HEALTHCARE QUESTIONS INVOLVED IN EICU-AC

As mentioned in the main paper, our created EICU-AC dataset involves healthcare questions spanning
50 different ICU information categories, i.e., columns across all 10 databases of the EICU benchmark.
We further categorize the questions in EICU-AC following the ‘template’ provided by EICU (extracted
from the ‘q_tag’ entry of each example Shi et al. (2024)). This gives 70 different question templates,
showing the high diversity of healthcare questions involved in our EICU-AC benchmark.

B DETAILS ABOUT THE MIND2WEB-SC BENCHMARK

In Sec. 3.2, we have defined six safety rules for the Mind2Web-SC Benchmark. Rule 1 requires
‘membership’ in the user information to be ‘true’. Rule 2 requires ‘vaccine’ in the user information to
be ‘true’. Rule 3 requires ‘dr_license’ in the user information to be ‘true’. Rule 4 requires ‘age’ in
the user information to be no less than 18. Rule 5 requires ‘domestic’ in the user information to be
‘true’. Rule 6 requires ‘age’ in the user information to be no less than 15. In Tab. 5, we show the
number of examples labeled ‘1’ in Mind2Web-SC for each rule violation. Note that examples labeled
‘0’ do not violate any rules.

During the construction of Mind2Web-SC, we added some examples with label ‘1’ and removed
some examples with label ‘0’ to balance the two classes. By only following the steps in Sec. 3.2
without any adding or removal of examples, we obtain a highly imbalanced dataset with 178 examples
labeled ‘0’ and only 70 examples labeled ‘1’. Among the 178 examples labeled ‘0’, there are 148
examples with the tasks irrelevant to any of the rules – we keep 50 of them and remove the other
(148 − 50 =) 98 examples. All 30 examples labeled ‘0’ but related to at least one rule are also
kept. Then, we create 30 examples labeled ‘1’ by reusing the tasks for these 30 examples labeled ‘0’.
We keep generating random user profiles for these tasks until the task-related rule is violated, and
the example is labeled to ‘1’. Note that the tasks are randomly selected but manually controlled to
avoid duplicated tasks within one class. Similarly, we created 20 examples labeled ‘0’ by reusing the
tasks for examples labeled ‘1’, with randomly generated user information without any rule violation.
Finally, we obtain the Mind2Web-SC dataset with 100 examples in each class (200 examples in total).
Among the 100 examples labeled ‘0’, 50 are related to at least one of the rules.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 8: Instructions injected into the system prompt of EHRAgent for access control and SeeAct
for safety control, as naive baselines that motivate our GuardAgent.

C DETAILED SYSTEM PROMPTS FOR NAIVE ACCESS CONTROL AND SAFETY
CONTROL BASED ON INSTRUCTIONS

In our preliminary studies, We created a naive access control for EHRAgent and a naive safety control
for SeeAct by directly modifying their system prompts for planning. These approaches are either
ineffective in safeguarding the agents or degrade the benign performance of the agents. In Fig. 8, we
show the instructions we injected into the system prompts of these two agents.

D COMPLETE INPUTS AND OUTPUTS OF GUARDAGENT

Complete Inputs to GuardAgent As described in Sec. 4.2, the inputs to GuardAgent include
a specification Is of the target agent, a set of guard requests Ir, inputs Ii to the target agent, and the
output log Io by the target agent corresponding to Ii. In Fig. 9, we show the actual Is and Ir for
GuardAgent in our experiments for both EHRAgent on EICU-AC and SeeAct on Mind2Web. In
the same figure, we also show the actual planning instruction Ip and the actual instruction Ic used for
code generation. In Fig. 10, we show real examples for the target agent inputs Ii and output logs Io
for both EHRAgent on EICU-AC and SeeAct on Mind2Web.

Outputs of GuardAgent The intermediate outputs of GuardAgent, including the generated
action plan P and the guardrail code C, are similar to those in the manually created demonstrations
(see App. G); thus, we do not repeatedly show them. Here, we show example outputs, including the
label prediction Ol and the detailed reasons Od of GuardAgent for both benchmarks in Fig. 11.

E CALLABLE FUNCTIONS

Our experiments involve two callable functions shown in Fig. 12. However, the user of GuardAgent
can easily extend the toolbox by uploading more functions. The actual toolbox of GuardAgent in
practice will contain much more callable functions than for our experiments.

F PROMPTS FOR BASELINES

In the main experiments, we compare GuardAgent with two baselines using LLMs to safeguard
LLM agents. The guardrail is created by prompting the LLM with a system instruction, the specifi-
cation of the target agent, the guard requests, the user inputs to the target agent with the associated
output logs, and a few show of examples. Here the system instruction is adapted from the one used
by GuardAgent for task planning. However, we include additional instructions about the format of
the guardrail outputs. The baselines do not involve any guardrail code generation, and this is reflected

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 9: The actual planning instruction Ip, instruction Ic for guardrail code generation, target agent
specification Is and guard requests Ir we used in our experiments for the two agents, EHRAgent and
SeeAct, and the two benchmarks, EICU-AC and Mind2Web-SC.

by the demonstrations we created that generate guardrails solely based on reasoning over the textual
inputs to the LLM. In Fig. 13, we show the modified system prompt template for the baselines, with
two example demonstrations for the two benchmarks, respectively.

G MANUALLY CREATED DEMONSTRATIONS

We manually created a set of demonstrations for each benchmark. In Fig. 14, we show two example
demonstrations for EHRAgent on EICU-AC and SeeAct on Mind2Web-SC, respectively.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 10: Examples for target agent inputs Ii and output logs Io, as the inputs to GuardAgent, for
the two agents, EHRAgent and SeeAct, and the two benchmarks, EICU-AC and Mind2Web-SC.

Figure 11: Example outputs of GuardAgent, including the label prediction Ol, the detailed reasons
Od, and the final answer/action of the target agent with guardrail, for the two agents, EHRAgent and
SeeAct, and the two benchmarks, EICU-AC and Mind2Web-SC.

H COST OF GUARDAGENT

In Tab. 6, we show the average execution time of GuardAgent compared with the ‘model guarding
agent’ baseline (both with GPT-4). The average execution time of the target agents on their designated
tasks is also shown for reference. Additionally, the time costs for one debugging iteration on EICU-
AC and Mind2Web-SC are 15.2s and 17.8s, respectively, though in most cases, the code generated by
GuardAgent is directly executable without the need for debugging. Furthermore, in Tab. 7, we
show the average word count of one demonstration, full prompts with one demonstration, and full
responses for GuardAgent on the two benchmarks.

From the results, we found that while slower than the baseline, the execution time for GuardAgent
is comparable to the execution time of the target agent. Moreover, human inspectors will likely need
much more time than our GuardAgent to read the guard requests and then moderate the inputs and
outputs of the target agent correspondingly. Given the effectiveness of our GuardAgent as shown
in the main paper, GuardAgent is the current best for safeguarding LLM agents.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 12: Callable functions in the toolbox of GuardAgent involved in our experiments.

Figure 13: System prompt template for the baselines and the two example demonstrations for EICU-
AC and Mind2Web-SC, respectively.

Table 6: Average execution time (in second) of GuardAgent compared with the ‘model guarding
agent’ baseline, both with GPT-4. The average execution time of the target agent on their designated
tasks is shown for reference.

EICU-AC Mind2Web-SC
Target Agent (reference) 31.9 30.0

Baseline (GPT-4) 8.5 14.4
GuardAgent (GPT-4) 45.4 37.3

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 14: Example demonstrations for EHRAgent on EICU-AC and SeeAct on Mind2Web-SC.

Table 7: Average word count of one demonstration, full prompts with one demonstration, and full
responses (including both task plan and code) for GuardAgent on EICU-AC and Mind2Web-SC.

EICU-AC Mind2Web-SC
one demonstration 298 494

full prompts with one demonstration 571 1265
full responses 195 277

I CHOICE OF THE CORE MODEL FOR GUARDAGENT

In the main paper, we show in Tab. 2 that the capability of the core LLM does affect the performance
of GuardAgent. This is generally true for most specialized LLM agents, such as those used in
autonomy, healthcare, and finance. However, EHRAgent achieves only 53.1% task accuracy on the
EICU dataset, even when utilizing GPT-4 as the core LLM. Similarly, SeeAct achieves 40.8% task
accuracy on Mind2Web using GPT-4 as the core LLM. As a consequence, it is unlikely for these
agents to adopt much weaker models (e.g. with 7B or 13B parameters). Thus, as the guardrail for
these target agents, GuardAgent will likely share the same (powerful) core, and it is not interesting
to discuss the case where GuardAgent is equipped with a weak core LLM.

20


